Endocannabinoid System Components As Potential Biomarkers in Psychiatry

Total Page:16

File Type:pdf, Size:1020Kb

Endocannabinoid System Components As Potential Biomarkers in Psychiatry REVIEW published: 27 April 2020 doi: 10.3389/fpsyt.2020.00315 Endocannabinoid System Components as Potential Biomarkers in Psychiatry Francisco Navarrete 1,2, Mar´ıa Salud Garc´ıa-Gutie´ rrez 1,2, Rosa Jurado-Barba 3,4,5, Gabriel Rubio 2,3,4,6, Ani Gasparyan 1,2, Amaya Austrich-Olivares 1 and Jorge Manzanares 1,2* 1 Instituto de Neurociencias, Universidad Miguel Herna´ ndez-CSIC, Alicante, Spain, 2 Red Tema´ tica de Investigacio´ n Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Edited by: Spain, 3 Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain, 4 Servicio de Psiquiatría, Helge Frieling, Hospital Universitario 12 de Octubre, Madrid, Spain, 5 Departamento de Psicolog´ıa, Facultad de Educacio´ n y Salud, Hannover Medical School, Germany Universidad Camilo Jose´ Cela, Madrid, Spain, 6 Department of Psychiatry, Complutense University of Madrid, Madrid, Spain Reviewed by: Kirsten R. Müller-Vahl, Hannover Medical School, The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Germany Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more Opal Ousley, personalized medicine. The endocannabinoid system (ECS) has gained increasing interest Emory University, United States Amanda Arnold, due to its involvement in many different functional processes in the brain, including the Georgia State University, regulation of emotions, motivation, and cognition. This article reviews the role of the main United States, in collaboration with reviewer OO components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out *Correspondence: in rodents evaluating the effects of pharmacological and geneticmanipulationof Jorge Manzanares cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. [email protected] Likewise, the ECS-related alterations occurring at the molecular level in animal models Specialty section: reproducing some behavioral and/or neuropathological aspects of psychiatric disorders This article was submitted to were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post- Molecular Psychiatry, mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were a section of the journal Frontiers in Psychiatry analyzed. Also, the results from neuroimaging studies using positron emission Received: 15 January 2020 tomography (PET) or functional magnetic resonance (fMRI) were included. This review Accepted: 30 March 2020 shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the Published: 27 April 2020 development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post- Citation: traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, Navarrete F, Garc´ıa-Gutie´ rrez MS, Jurado-Barba R, Rubio G, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and Gasparyan A, Austrich-Olivares A bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action and Manzanares J (2020) Endocannabinoid System of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as Components as Potential well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, Biomarkers in Psychiatry. antidepressive, or antipsychotic associated effects. Further clinical research studies are Front. Psychiatry 11:315. doi: 10.3389/fpsyt.2020.00315 needed; however, current evidence suggests that the components of the ECS may Frontiers in Psychiatry | www.frontiersin.org 1 April 2020 | Volume 11 | Article 315 Navarrete et al. Endocannabinoid System Biomarkers in Psychiatry become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders. Keywords: endocannabinoid system, cannabinoid receptor (CB1r, CB2r), endocannabinoid, biomarker, psychiatry, diagnosis, treatment INTRODUCTION The endocannabinoid system (ECS) components (receptors, ligands, synthesizing and degrading enzymes) have gained a Psychiatric disorders are one of the main causes of disability in special interest because of their critical neuromodulatory the general population (1). According to a recent estimation, involvement in a plethora of functional mechanisms in the psychiatric disorders account for 32.4% of years lived with central nervous system (CNS), including emotional regulation, disability (YLDs) and 13% of disability adjusted life-years motivational behavior, and cognitive function (6, 7). The wide (DALYs), leading the global burden of disease (2). Despite this, distribution of ECS in the brain, together with the effects derived we still have a great lack of knowledge about its neurobiological from its pharmacological modulation on mood or cognition with basis, and clinically applicable biomarkers have been elusive. exogenous cannabinoid compounds, mainly those contained or During the last decades, an increasing effort has been made in the derived from the Cannabis sativa plant, suggests that the search of biomarkers in psychiatry to help in the diagnosis and identification of the functional role of ECS elements in certain prediction of disease progression or treatment response. psychiatric disorders could be a breakthrough to improve However, a clinical biomarker should be validated, sensitive, diagnosis and treatment (8–11). specific, feasible, and easily reproducible, characteristics that Therefore, this review summarizes the findings regarding the make difficult the implementation in this field (3–5). potential involvement of ECS components as biomarkers, mainly in terms of the discovery of new therapeutic approaches, but also from the point of view of its diagnostic, prognostic and predictive Abbreviations: ECS, endocannabinoid system; eCBs, endocannabinois; CB1r, application. For that purpose, studies on animal models and fl cannabinoid receptor 1; CB2r, cannabinoid receptor 2; CSF, cerebrospinal uid; patients have been collected focusing on the most prevalent PET, positron emission tomography; fMRI, functional magnetic resonance; BD, bipolar disorder; PTSD, posttraumatic stress disorder; ADHD, attention deficit psychiatric conditions, including anxiety disorders (3.8%) (12), hyperactivity disorder; YLDs, years lived with disability; DALYs, disability depressive disorders (3.4%) (12), schizophrenia (0.3%) (12), adjusted life-years; CNS, central nervous system; PFC, prefrontal cortex; NAc, bipolar disorder (0.6%) (12), post-traumatic stress disorder nucleus accumbens; Hipp, hippocampus; Amy, amygdala; PVN, paraventricular (7.8%) (13), attention-deficit hyperactivity disorder (2.2%) nucleus; Hyp, hypothalamus; VTA, ventral tegmental area; AEA, anandamide; 2- AG, 2-arachidonoylglycerol; NAPE-PLD, N-acylphosphatidylethanolamine (14), and eating disorders (0.2%) (12). specificphospholipaseD;FAAH,fattyacidamidehydrolase;GPCRs,Gq protein-coupled receptors; DAGL, diacylglycerol; MAGL, monoacylglycerol lipase; ABHD, alpha/beta-hydrolase domain; DSM-5, diagnostic and statistical manual of mental disorders, 5th version; TRPV1, transient receptor potential A BRIEF OVERVIEW OF THE cation channel subfamily V member 1; dlPAG, dorsolateral periaqueductal gray matter; NO, nitric oxide; WT, wild-type; DMH, dorsomedial hypothalamus; BLA, ENDOCANNABINOID SYSTEM basolateral amygdala; EPM, elevated plus maze; LHb, lateral habenula; LC, locus COMPONENTS coeruleus; DRN, dorsal raphe nucleus; NA, noradrenaline; 5-HT, serotonin; HPA axis, hypothalamus–pituitary–adrenal axis; CRH, corticotropin-releasing ECS regulates a number of physiological functions and mediates hormone; CRHR1, corticotropin-releasing hormone type 1 receptor; 5HTT, the crosstalk between different neurotransmitter systems, serotonin transporter; HDAC, histone deacetylase; CUS, chronic unpredictable stress; CB2xP, transgenic mice overexpression CB2r in the brain; BCP, beta- therefore representing a key player in the control of behavioral caryophyllene; THC, tetrahydrocannabinol; MDD, major depressive disorder; responses (15, 16). ECS is a ubiquitous lipid signaling system BDNF, brain-derived neurotrophic factor; TST, tail suspension test; FST, forced distributed throughout the organism that participates in multiple swimming test; CMS, chronic mild stress; FSL, Flinders sensitive line rats; WKY, intracellular signaling pathways (17, 18). Cannabinoid receptors, Wistar Kyoto rats; cKO, conditional knockout; SSRIs, serotonin selective reuptake endogenous ligands or endocannabinoids (eCBs), and their inhibitors; 5HTT, serotonin transporter; rTMS, repeated transcranial magnetic stimulation; ECT, electroconvulsive therapy; ACC, anterior cingulate cortex; PPI, synthesizing and degrading enzymes are the main components prepulse inhibition; NMDAr, N-methyl-D-aspartate receptors; MAM, of the ECS (Figure 1) present in the central and peripheral methylazoxymethanol; SHR, spontaneously hypertensive rat; CNR1P1, nervous system (15, 19) and in many other peripheral tissues cannabinoid receptor interacting protein; Nrg1, neuregulin 1; DLPFC, regulating distinct functions (20). dorsolateral prefrontal cortex; STG, superior temporal gyrus; qRT-PCR, The CB1 receptor (CB1r) is the most abundant G protein- quantitative real time polymerase chain reaction; FEP, first episode psychosis; PBMCs, peripheral blood mononuclear cells; PANSS, positive and negative coupled receptor
Recommended publications
  • Régulation De L'inflammation Par Les Lipides Bioactifs : Interactions Biosynthétiques Et Fonctionnelles Entre Les Endocannabinoïdes Et Les Éicosanoïdes
    Régulation de l'inflammation par les lipides bioactifs : interactions biosynthétiques et fonctionnelles entre les endocannabinoïdes et les éicosanoïdes Thèse Caroline Turcotte Doctorat en microbiologie-immunologie Philosophiæ doctor (Ph. D.) Québec, Canada © Caroline Turcotte, 2019 Régulation de l’inflammation par les lipides bioactifs : interactions biosynthétiques et fonctionnelles entre les endocannabinoïdes et les éicosanoïdes Thèse Caroline Turcotte Sous la direction de : Nicolas Flamand, directeur de recherche Marie-Renée Blanchet, codirectrice de recherche Résumé Les maladies inflammatoires chroniques sont un fardeau de santé important à travers le monde. Les traitements actuellement disponibles soulagent la douleur et l’inflammation, mais leurs effets secondaires rendent leur utilisation à long terme risquée. À la lumière de cette problématique, la communauté scientifique s’intéresse au potentiel d’anti-inflammatoires naturels comme les endocannabinoïdes. Les endocannabinoïdes sont des lipides endogènes qui activent les récepteurs cannabinoïdes (CB1 et CB2). Ils régulent ainsi divers processus physiologiques tels l’appétit, l’adipogénèse et la nociception. Les deux endocannabinoïdes les mieux caractérisés, le 2-AG et l’AEA, peuvent également moduler l’inflammation en activant le récepteur CB2 à la surface des cellules immunitaires. Les souris déficientes pour le récepteur CB2 présentent un phénotype inflammatoire exacerbé, suggérant que ce récepteur est anti-inflammatoire. Cependant, le rôle des endocannabinoïdes dans l’inflammation est beaucoup plus complexe puisqu’ils peuvent être métabolisés en une grande variété de médiateurs lipidiques de l’inflammation. Leur voie de dégradation principale est leur hydrolyse en acide arachidonique (AA), qui sert de précurseur à la biosynthèse d’éicosanoïdes pro-inflammatoires comme le leucotriène B4 et la prostaglandine E2. Ils peuvent également être métabolisés directement par certaines enzymes impliquées dans la synthèse d’éicosanoïdes, pour générer des médiateurs comme les prostaglandines-glycérol (PG-G).
    [Show full text]
  • Targeting the Endocannabinoid System to Reduce Nociception
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2011 Targeting the endocannabinoid system to reduce nociception Lamont Booker Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medical Pharmacology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2419 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Targeting the Endocannabinoid System to Reduce Nociception A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. By Lamont Booker Bachelor’s of Science, Fayetteville State University 2003 Master’s of Toxicology, North Carolina State University 2005 Director: Dr. Aron H. Lichtman, Professor, Pharmacology & Toxicology Virginia Commonwealth University Richmond, Virginia April 2011 Acknowledgements The author wishes to thank several people. I like to thank my advisor Dr. Aron Lichtman for taking a chance and allowing me to work under his guidance. He has been a great influence not only with project and research direction, but as an excellent example of what a mentor should be (always willing to listen, understanding the needs of each student/technician, and willing to provide a hand when available). Additionally, I like to thank all of my committee members (Drs. Galya Abdrakmanova, Francine Cabral, Sandra Welch, Mike Grotewiel) for your patience and willingness to participate as a member. Our term together has truly been memorable! I owe a special thanks to Sheryol Cox, and Dr.
    [Show full text]
  • S41467-020-19780-Z.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-19780-z OPEN Endocannabinoid signaling regulates the reinforcing and psychostimulant effects of ketamine in mice Wei Xu1,3, Hongchun Li1,3, Liang Wang1, Jiamei Zhang1, Chunqi Liu1, Xuemei Wan1, Xiaochong Liu1, Yiming Hu1, ✉ Qiyao Fang1, Yuanyuan Xiao1, Qian Bu1, Hongbo Wang2, Jingwei Tian2, Yinglan Zhao1 & Xiaobo Cen 1 The abuse potential of ketamine limits its clinical application, but the precise mechanism remains largely unclear. Here we discovered that ketamine significantly remodels the 1234567890():,; endocannabinoid-related lipidome and activates 2-arachidonoylglycerol (2-AG) signaling in the dorsal striatum (caudate nucleus and putamen, CPu) of mice. Elevated 2-AG in the CPu is essential for the psychostimulant and reinforcing effects of ketamine, whereas blockade of the cannabinoid CB1 receptor, a predominant 2-AG receptor, attenuates ketamine-induced remodeling of neuronal dendrite structure and neurobehaviors. Ketamine represses the transcription of the monoacylglycerol lipase (MAGL) gene by promoting the expression of PRDM5, a negative transcription factor of the MAGL gene, leading to increased 2-AG pro- duction. Genetic overexpression of MAGL or silencing of PRDM5 expression in the CPu robustly reduces 2-AG production and ketamine effects. Collectively, endocannabinoid signaling plays a critical role in mediating the psychostimulant and reinforcing properties of ketamine. 1 National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041 Chengdu, People’s Republic of China. 2 Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 264005 Yantai, People’s Republic of China.
    [Show full text]
  • In Vitro Immunopharmacological Profiling of Ginger (Zingiber Officinale Roscoe)
    Research Collection Doctoral Thesis In vitro immunopharmacological profiling of ginger (Zingiber officinale Roscoe) Author(s): Nievergelt, Andreas Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-006717482 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH Nr. 19591 In Vitro Immunopharmacological Profiling of Ginger (Zingiber officinale Roscoe) ABHANDLUNG zur Erlangung des Titels DOKTOR DER WISSENSCHAFTEN der ETH ZÜRICH vorgelegt von Andreas Nievergelt Eidg. Dipl. Apotheker, ETH Zürich geboren am 18.12.1978 von Schleitheim, SH Angenommen auf Antrag von Prof. Dr. Karl-Heinz Altmann, Referent Prof. Dr. Jürg Gertsch, Korreferent Prof. Dr. Michael Detmar, Korreferent 2011 Table of Contents Summary 6 Zusammenfassung 7 Acknowledgements 8 List of Abbreviations 9 1. Introduction 13 1.1 Ginger (Zingiber officinale) 13 1.1.1 Origin 14 1.1.2 Description 14 1.1.3 Chemical Constituents 15 1.1.4 Traditional and Modern Pharmaceutical Use of Ginger 17 1.1.5 Reported In Vitro Effects 20 1.2 Immune System and Inflammation 23 1.2.1 Innate and Adaptive Immunity 24 1.2.2 Cytokines in Inflammation 25 1.2.3 Pattern Recognition Receptors 29 1.2.4 Toll-Like Receptors 30 1.2.5 Serotonin 1A and 3 Receptors 32 1.2.6 Phospholipases A2 33 1.2.7 MAP Kinases 36 1.2.8 Fighting Inflammation, An Ongoing Task 36 1.2.9 Inflammation Assays Using Whole Blood 38 1.3 Arabinogalactan-Proteins 39 1.3.1 Origin and Biological Function of AGPs 40 1.3.2 Effects on Animals 41 1.3.3 The ‘Immunostimulation’ Theory 42 1/188 2.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Inhibition of Monoacylglycerol Lipase Reduces the Reinstatement Of
    International Journal of Neuropsychopharmacology (2019) 22(2): 165–172 doi:10.1093/ijnp/pyy086 Advance Access Publication: November 27, 2018 Regular Research Article regular research article Inhibition of Monoacylglycerol Lipase Reduces the Reinstatement of Methamphetamine-Seeking and Anxiety-Like Behaviors in Methamphetamine Self-Administered Rats Yoko Nawata, Taku Yamaguchi, Ryo Fukumori, Tsuneyuki Yamamoto Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, Nagasaki, Japan Correspondence: Tsuneyuki Yamamoto, PhD, Department of Pharmacology, Faculty of Pharmaceutical Science, Nagasaki International University, 2825–7 Huis Ten Bosch Sasebo, Nagasaki 859–3298, Japan ([email protected]). Abstract Background: Methamphetamine is a highly addictive psychostimulant with reinforcing properties. Our laboratory previously found that Δ8-tetrahydrocannabinol, an exogenous cannabinoid, suppressed the reinstatement of methamphetamine- seeking behavior. The purpose of this study was to determine whether the elevation of endocannabinoids modulates the reinstatement of methamphetamine-seeking behavior and emotional changes in methamphetamine self-administered rats. Methods: Rats were tested for the reinstatement of methamphetamine-seeking behavior following methamphetamine self- administration and extinction. The elevated plus-maze test was performed in methamphetamine self-administered rats during withdrawal. We investigated the effects of JZL184 and URB597, 2 inhibitors of endocannabinoid hydrolysis, on the reinstatement of methamphetamine-seeking and anxiety-like behaviors. Results: JZL184 (32 and 40 mg/kg, i.p.), an inhibitor of monoacylglycerol lipase, significantly attenuated both the cue- and stress-induced reinstatement of methamphetamine-seeking behavior. Furthermore, URB597 (3.2 and 10 mg/kg, i.p.), an inhibitor of fatty acid amide hydrolase, attenuated only cue-induced reinstatement. AM251, a cannabinoid CB1 receptor antagonist, antagonized the attenuation of cue-induced reinstatement by JZL184 but not URB597.
    [Show full text]
  • Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System
    International Journal of Molecular Sciences Review Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System Ana Lago-Fernandez , Sara Zarzo-Arias, Nadine Jagerovic * and Paula Morales * Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; [email protected] (A.L.-F.); [email protected] (S.Z.-A.) * Correspondence: [email protected] (N.J.); [email protected] (P.M.); Tel.: +34-91-562-2900 (P.M.) Abstract: Cannabinoids have shown to exert their therapeutic actions through a variety of targets. These include not only the canonical cannabinoid receptors CB1R and CB2R but also related orphan G protein-coupled receptors (GPCRs), ligand-gated ion channels, transient receptor potential (TRP) channels, metabolic enzymes, and nuclear receptors. In this review, we aim to summarize reported compounds exhibiting their therapeutic effects upon the modulation of CB1R and/or CB2R and the nuclear peroxisome proliferator-activated receptors (PPARs). Concomitant actions at CBRs and PPARα or PPARγ subtypes have shown to mediate antiobesity, analgesic, antitumoral, or neuroprotective properties of a variety of phytogenic, endogenous, and synthetic cannabinoids. The relevance of this multitargeting mechanism of action has been analyzed in the context of diverse pathologies. Synergistic effects triggered by combinatorial treatment with ligands that modulate the aforementioned targets have also been considered. This literature overview provides structural and pharmacological insights for the further development of dual cannabinoids for specific disorders. Citation: Lago-Fernandez, A.; Zarzo-Arias, S.; Jagerovic, N.; Keywords: PPAR; cannabinoids; CB1R; CB2R; FAAH; multitarget; endocannabinoid system Morales, P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System.
    [Show full text]
  • Potential Cannabis Antagonists for Marijuana Intoxication
    Central Journal of Pharmacology & Clinical Toxicology Bringing Excellence in Open Access Review Article *Corresponding author Matthew Kagan, M.D., Cedars-Sinai Medical Center, 8730 Alden Drive, Los Angeles, CA 90048, USA, Tel: 310- Potential Cannabis Antagonists 423-3465; Fax: 310.423.8397; Email: Matthew.Kagan@ cshs.org Submitted: 11 October 2018 for Marijuana Intoxication Accepted: 23 October 2018 William W. Ishak, Jonathan Dang, Steven Clevenger, Shaina Published: 25 October 2018 Ganjian, Samantha Cohen, and Matthew Kagan* ISSN: 2333-7079 Cedars-Sinai Medical Center, USA Copyright © 2018 Kagan et al. Abstract OPEN ACCESS Keywords Cannabis use is on the rise leading to the need to address the medical, psychosocial, • Cannabis and economic effects of cannabis intoxication. While effective agents have not yet been • Cannabinoids implemented for the treatment of acute marijuana intoxication, a number of compounds • Antagonist continue to hold promise for treatment of cannabinoid intoxication. Potential therapeutic • Marijuana agents are reviewed with advantages and side effects. Three agents appear to merit • Intoxication further inquiry; most notably Cannabidiol with some evidence of antipsychotic activity • THC and in addition Virodhamine and Tetrahydrocannabivarin with a similar mixed receptor profile. Given the results of this research, continued development of agents acting on cannabinoid receptors with and without peripheral selectivity may lead to an effective treatment for acute cannabinoid intoxication. Much work still remains to develop strategies that will interrupt and reverse the effects of acute marijuana intoxication. ABBREVIATIONS Therapeutic uses of cannabis include chronic pain, loss of appetite, spasticity, and chemotherapy-associated nausea and CBD: Cannabidiol; CBG: Cannabigerol; THCV: vomiting [8]. Recreational cannabis use is on the rise with more Tetrahydrocannabivarin; THC: Tetrahydrocannabinol states approving its use and it is viewed as no different from INTRODUCTION recreational use of alcohol or tobacco [9].
    [Show full text]
  • Cannabinoid Interventions for PTSD: Where to Next?
    Accepted Manuscript Cannabinoid interventions for PTSD: Where to next? Luke Ney, Allison Matthews, Raimondo Bruno, Kim Felmingham PII: S0278-5846(19)30034-X DOI: https://doi.org/10.1016/j.pnpbp.2019.03.017 Reference: PNP 9622 To appear in: Progress in Neuropsychopharmacology & Biological Psychiatry Received date: 14 January 2019 Revised date: 20 March 2019 Accepted date: 29 March 2019 Please cite this article as: L. Ney, A. Matthews, R. Bruno, et al., Cannabinoid interventions for PTSD: Where to next?, Progress in Neuropsychopharmacology & Biological Psychiatry, https://doi.org/10.1016/j.pnpbp.2019.03.017 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Cannabinoid interventions for PTSD: Where to next? Luke Ney1, Allison Matthews1, Raimondo Bruno1 and Kim Felmingham2 1School of Psychology, University of Tasmania, Australia 2School of Psychological Sciences, University of Melbourne, Australia ACCEPTED MANUSCRIPT ACCEPTED MANUSCRIPT 2 Abstract Cannabinoids are a promising method for pharmacological treatment of post- traumatic stress disorder (PTSD). Despite considerable research devoted to the effect of cannabinoid modulation on PTSD symptomology, there is not a currently agreed way by which the cannabinoid system should be targeted in humans. In this review, we present an overview of recent research identifying neurological pathways by which different cannabinoid-based treatments may exert their effects on PTSD symptomology.
    [Show full text]
  • The Expanded Endocannabinoid System/Endocannabinoidome As a Potential Target for Treating Diabetes Mellitus
    Current Diabetes Reports (2019) 19:117 https://doi.org/10.1007/s11892-019-1248-9 OBESITY (KM GADDE, SECTION EDITOR) The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus Alain Veilleux1,2,3 & Vincenzo Di Marzo1,2,3,4,5 & Cristoforo Silvestri3,4,5 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review The endocannabinoid (eCB) system, i.e. the receptors that respond to the psychoactive component of cannabis, their endogenous ligands and the ligand metabolic enzymes, is part of a larger family of lipid signals termed the endocannabinoidome (eCBome). We summarize recent discoveries of the roles that the eCBome plays within peripheral tissues in diabetes, and how it is being targeted, in an effort to develop novel therapeutics for the treatment of this increasingly prevalent disease. Recent Findings As with the eCB system, many eCBome members regulate several physiological processes, including energy intake and storage, glucose and lipid metabolism and pancreatic health, which contribute to the development of type 2 diabetes (T2D). Preclinical studies increasingly support the notion that targeting the eCBome may beneficially affect T2D. Summary The eCBome is implicated in T2D at several levels and in a variety of tissues, making this complex lipid signaling system a potential source of many potential therapeutics for the treatments for T2D. Keywords Endocannabinoidome . Bioactive lipids . Peripheral tissues . Glucose . Insulin Introduction: The Endocannabinoid System cannabis-derived natural product, Δ9-tetrahydrocannabinol and its Subsequent Expansion (THC), responsible for most of the psychotropic, euphoric to the “Endocannabinoidome” and appetite-stimulating actions (via CB1 receptors) and immune-modulatory effects (via CB2 receptors) of marijuana, The discovery of two G protein-coupled receptors, the canna- opened the way to the identification of the endocannabinoids binoid receptor type-1 (CB1) and − 2 (CB2) [1, 2], for the (eCBs).
    [Show full text]
  • Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model
    Glaucoma Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model Sally Miller,1 Emma Leishman,1 Sherry Shujung Hu,2 Alhasan Elghouche,1 Laura Daily,1 Natalia Murataeva,1 Heather Bradshaw,1 and Alex Straiker1 1Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States 2Department of Psychology, National Cheng Kung University, Tainan, Taiwan Correspondence: Alex Straiker, De- PURPOSE. Cannabinoids, such as D9-THC, act through an endogenous signaling system in the partment of Psychological and Brain vertebrate eye that reduces IOP via CB1 receptors. Endogenous cannabinoid (eCB) ligand, 2- Sciences, Indiana University, Bloom- arachidonoyl glycerol (2-AG), likewise activates CB1 and is metabolized by monoacylglycerol ington, IN 47405, USA; lipase (MAGL). We investigated ocular 2-AG and its regulation by MAGL and the therapeutic [email protected]. potential of harnessing eCBs to lower IOP. Submitted: February 16, 2016 Accepted: May 16, 2016 METHODS. We tested the effect of topical application of 2-AG and MAGL blockers in normotensive mice and examined changes in eCB-related lipid species in the eyes and spinal Citation: Miller S, Leishman E, Hu SS, cord of MAGL knockout (MAGLÀ/À) mice using high performance liquid chromatography/ et al. Harnessing the endocannabinoid tandem mass spectrometry (HPLC/MS/MS). We also examined the protein distribution of 2-arachidonoylglycerol to lower intra- ocular pressure in a murine model. MAGL in the mouse anterior chamber. Invest Ophthalmol Vis Sci. RESULTS. 2-Arachidonoyl glycerol reliably lowered IOP in a CB1- and concentration-dependent 2016;57:3287–3296. DOI:10.1167/ manner. Monoacylglycerol lipase is expressed prominently in nonpigmented ciliary iovs.16-19356 epithelium.
    [Show full text]
  • Inhibition of Fatty Acid Amide Hydrolase (FAAH) by Macamides
    Molecular Neurobiology (2019) 56:1770–1781 https://doi.org/10.1007/s12035-018-1115-8 Inhibition of Fatty Acid Amide Hydrolase (FAAH) by Macamides M. Alasmari1 & M. Bӧhlke1 & C. Kelley1 & T. Maher1 & A. Pino-Figueroa1 Received: 25 October 2017 /Accepted: 11 May 2018 /Published online: 20 June 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract The pentane extract of the Peruvian plant, Lepidium meyenii (Maca), has been demonstrated to possess neuroprotective activity in previous in vitro and in vivo studies (Pino-Figueroa et al. in Ann N Y Acad Sci 1199:77–85, 2010; Pino-Figueroa et al. in Am J Neuroprot Neuroregener 3:87–92, 2011). This extract contains a number of macamides that may act on the endocannabinoid system (Pino-Figueroa et al. in Ann N Y Acad Sci 1199:77–85, 2010; Pino-Figueroa et al., 2011; Dini et al. in Food Chem 49:347–349, 1994). The aim of this study was to characterize the inhibitory activity of four of these maccamides (N- benzylstearamide, N-benzyloleamide, N-benzyloctadeca-9Z,12Z-dienamide, and N-benzyloctadeca-9Z,12Z,15Z-trienamide) on fatty acid amide hydrolase (FAAH), an enzyme that is responsible for endocannabinoid degradation in the nervous system (Kumar et al. in Anaesthesia 56:1059–1068, 2001). The four compounds were tested at concentrations between 1 and 100 μM, utilizing an FAAH inhibitor screening assay. The results demonstrated concentration-dependent FAAH inhibitory activities for the four macamides tested. N-Benzyloctadeca-9Z,12Z-dienamide demonstrated the highest FAAH inhibitory activ- ity whereas N-benzylstearamide had the lowest inhibitory activity.
    [Show full text]