Β-Caryophyllene: a Sesquiterpene with Countless Biological Properties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Régulation De L'inflammation Par Les Lipides Bioactifs : Interactions Biosynthétiques Et Fonctionnelles Entre Les Endocannabinoïdes Et Les Éicosanoïdes
Régulation de l'inflammation par les lipides bioactifs : interactions biosynthétiques et fonctionnelles entre les endocannabinoïdes et les éicosanoïdes Thèse Caroline Turcotte Doctorat en microbiologie-immunologie Philosophiæ doctor (Ph. D.) Québec, Canada © Caroline Turcotte, 2019 Régulation de l’inflammation par les lipides bioactifs : interactions biosynthétiques et fonctionnelles entre les endocannabinoïdes et les éicosanoïdes Thèse Caroline Turcotte Sous la direction de : Nicolas Flamand, directeur de recherche Marie-Renée Blanchet, codirectrice de recherche Résumé Les maladies inflammatoires chroniques sont un fardeau de santé important à travers le monde. Les traitements actuellement disponibles soulagent la douleur et l’inflammation, mais leurs effets secondaires rendent leur utilisation à long terme risquée. À la lumière de cette problématique, la communauté scientifique s’intéresse au potentiel d’anti-inflammatoires naturels comme les endocannabinoïdes. Les endocannabinoïdes sont des lipides endogènes qui activent les récepteurs cannabinoïdes (CB1 et CB2). Ils régulent ainsi divers processus physiologiques tels l’appétit, l’adipogénèse et la nociception. Les deux endocannabinoïdes les mieux caractérisés, le 2-AG et l’AEA, peuvent également moduler l’inflammation en activant le récepteur CB2 à la surface des cellules immunitaires. Les souris déficientes pour le récepteur CB2 présentent un phénotype inflammatoire exacerbé, suggérant que ce récepteur est anti-inflammatoire. Cependant, le rôle des endocannabinoïdes dans l’inflammation est beaucoup plus complexe puisqu’ils peuvent être métabolisés en une grande variété de médiateurs lipidiques de l’inflammation. Leur voie de dégradation principale est leur hydrolyse en acide arachidonique (AA), qui sert de précurseur à la biosynthèse d’éicosanoïdes pro-inflammatoires comme le leucotriène B4 et la prostaglandine E2. Ils peuvent également être métabolisés directement par certaines enzymes impliquées dans la synthèse d’éicosanoïdes, pour générer des médiateurs comme les prostaglandines-glycérol (PG-G). -
In Vitro Immunopharmacological Profiling of Ginger (Zingiber Officinale Roscoe)
Research Collection Doctoral Thesis In vitro immunopharmacological profiling of ginger (Zingiber officinale Roscoe) Author(s): Nievergelt, Andreas Publication Date: 2011 Permanent Link: https://doi.org/10.3929/ethz-a-006717482 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH Nr. 19591 In Vitro Immunopharmacological Profiling of Ginger (Zingiber officinale Roscoe) ABHANDLUNG zur Erlangung des Titels DOKTOR DER WISSENSCHAFTEN der ETH ZÜRICH vorgelegt von Andreas Nievergelt Eidg. Dipl. Apotheker, ETH Zürich geboren am 18.12.1978 von Schleitheim, SH Angenommen auf Antrag von Prof. Dr. Karl-Heinz Altmann, Referent Prof. Dr. Jürg Gertsch, Korreferent Prof. Dr. Michael Detmar, Korreferent 2011 Table of Contents Summary 6 Zusammenfassung 7 Acknowledgements 8 List of Abbreviations 9 1. Introduction 13 1.1 Ginger (Zingiber officinale) 13 1.1.1 Origin 14 1.1.2 Description 14 1.1.3 Chemical Constituents 15 1.1.4 Traditional and Modern Pharmaceutical Use of Ginger 17 1.1.5 Reported In Vitro Effects 20 1.2 Immune System and Inflammation 23 1.2.1 Innate and Adaptive Immunity 24 1.2.2 Cytokines in Inflammation 25 1.2.3 Pattern Recognition Receptors 29 1.2.4 Toll-Like Receptors 30 1.2.5 Serotonin 1A and 3 Receptors 32 1.2.6 Phospholipases A2 33 1.2.7 MAP Kinases 36 1.2.8 Fighting Inflammation, An Ongoing Task 36 1.2.9 Inflammation Assays Using Whole Blood 38 1.3 Arabinogalactan-Proteins 39 1.3.1 Origin and Biological Function of AGPs 40 1.3.2 Effects on Animals 41 1.3.3 The ‘Immunostimulation’ Theory 42 1/188 2. -
Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System
International Journal of Molecular Sciences Review Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System Ana Lago-Fernandez , Sara Zarzo-Arias, Nadine Jagerovic * and Paula Morales * Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; [email protected] (A.L.-F.); [email protected] (S.Z.-A.) * Correspondence: [email protected] (N.J.); [email protected] (P.M.); Tel.: +34-91-562-2900 (P.M.) Abstract: Cannabinoids have shown to exert their therapeutic actions through a variety of targets. These include not only the canonical cannabinoid receptors CB1R and CB2R but also related orphan G protein-coupled receptors (GPCRs), ligand-gated ion channels, transient receptor potential (TRP) channels, metabolic enzymes, and nuclear receptors. In this review, we aim to summarize reported compounds exhibiting their therapeutic effects upon the modulation of CB1R and/or CB2R and the nuclear peroxisome proliferator-activated receptors (PPARs). Concomitant actions at CBRs and PPARα or PPARγ subtypes have shown to mediate antiobesity, analgesic, antitumoral, or neuroprotective properties of a variety of phytogenic, endogenous, and synthetic cannabinoids. The relevance of this multitargeting mechanism of action has been analyzed in the context of diverse pathologies. Synergistic effects triggered by combinatorial treatment with ligands that modulate the aforementioned targets have also been considered. This literature overview provides structural and pharmacological insights for the further development of dual cannabinoids for specific disorders. Citation: Lago-Fernandez, A.; Zarzo-Arias, S.; Jagerovic, N.; Keywords: PPAR; cannabinoids; CB1R; CB2R; FAAH; multitarget; endocannabinoid system Morales, P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. -
Melissa Officinalis L., a Valuable Medicine Plant: a Review
Journal of Medicinal Plants Research Vol. 4(25), pp. 2753-2759, 29 December Special Review, 2010 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2010 Academic Journals Review Melissa officinalis L., a valuable medicine plant: A review Moradkhani H.1, Sargsyan E.1, Bibak H.2, Naseri B.3, Sadat-Hosseini M.2, Fayazi-Barjin A.4 and Meftahizade H.5* 1Institute of Hydroponic Problems, National Academic of Sciences, Yerevan, Republic of Armenia. 2Department of plant production, faculty of Agriculture, university of Jiroft, Kerman, Iran. 3Faculty of Islamic Azad University, Ilam, Iran. 4Department of Plant Protection, University of Tehran, Iran. 5Researcher of ACECR Medicinal Plants Center, Ilam, Iran. Accepted 6 December, 2010 Melissa officinalis L., a valuable medicinal plant in herbal medicine is native to the eastern Mediterranean Region and western Asia. The constituent of the essential oil of the plant in various climates is different, but citral (geranial and neral), citronellal, geraniol are main components. Many parameters influencing essential oil composition and yield, such as light intensity, nutrient, temperature, cultural practice genotype, plant part age, harvesting time. Lemon balm has been traditionally used for different medical purposes as tonic, antispasmodic, carminative, diaphoretic, surgical dressing for wounds, sedative-hypnotic strengthening the memory, and relief of stress induced headache, but in modern pharmacology is value in the management of mild to moderate Alzheimer’s, against migraine and rheumatism, antitumel and antioxidant activities. Key words: Melissa officinalis, essential oil, pharmacology and antioxidant. INTRODUCTION Lemon balm, member of the family Lamiaceae (formerly years may no longer germinate (Zargari, 1991). Labiatae) is a perennial bushy plant and is upright, Lemon balm has a hairy root system with many lateral reaching a height of about 1 m. -
Potential Cannabis Antagonists for Marijuana Intoxication
Central Journal of Pharmacology & Clinical Toxicology Bringing Excellence in Open Access Review Article *Corresponding author Matthew Kagan, M.D., Cedars-Sinai Medical Center, 8730 Alden Drive, Los Angeles, CA 90048, USA, Tel: 310- Potential Cannabis Antagonists 423-3465; Fax: 310.423.8397; Email: Matthew.Kagan@ cshs.org Submitted: 11 October 2018 for Marijuana Intoxication Accepted: 23 October 2018 William W. Ishak, Jonathan Dang, Steven Clevenger, Shaina Published: 25 October 2018 Ganjian, Samantha Cohen, and Matthew Kagan* ISSN: 2333-7079 Cedars-Sinai Medical Center, USA Copyright © 2018 Kagan et al. Abstract OPEN ACCESS Keywords Cannabis use is on the rise leading to the need to address the medical, psychosocial, • Cannabis and economic effects of cannabis intoxication. While effective agents have not yet been • Cannabinoids implemented for the treatment of acute marijuana intoxication, a number of compounds • Antagonist continue to hold promise for treatment of cannabinoid intoxication. Potential therapeutic • Marijuana agents are reviewed with advantages and side effects. Three agents appear to merit • Intoxication further inquiry; most notably Cannabidiol with some evidence of antipsychotic activity • THC and in addition Virodhamine and Tetrahydrocannabivarin with a similar mixed receptor profile. Given the results of this research, continued development of agents acting on cannabinoid receptors with and without peripheral selectivity may lead to an effective treatment for acute cannabinoid intoxication. Much work still remains to develop strategies that will interrupt and reverse the effects of acute marijuana intoxication. ABBREVIATIONS Therapeutic uses of cannabis include chronic pain, loss of appetite, spasticity, and chemotherapy-associated nausea and CBD: Cannabidiol; CBG: Cannabigerol; THCV: vomiting [8]. Recreational cannabis use is on the rise with more Tetrahydrocannabivarin; THC: Tetrahydrocannabinol states approving its use and it is viewed as no different from INTRODUCTION recreational use of alcohol or tobacco [9]. -
(C5–C20) Emissions of Downy Birches
Atmos. Chem. Phys., 21, 8045–8066, 2021 https://doi.org/10.5194/acp-21-8045-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Sesquiterpenes and oxygenated sesquiterpenes dominate the VOC (C5–C20) emissions of downy birches Heidi Hellén1, Arnaud P. Praplan1, Toni Tykkä1, Aku Helin1, Simon Schallhart1, Piia P. Schiestl-Aalto2,3,4, Jaana Bäck2,3, and Hannele Hakola1 1Atmospheric Composition Research Unit, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland 2Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland 3Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland 4Department of Forest Ecology and Management, SLU, 901 83 Umeå, Sweden Correspondence: Heidi Hellén (heidi.hellen@fmi.fi) Received: 2 December 2020 – Discussion started: 16 December 2020 Revised: 23 March 2021 – Accepted: 28 April 2021 – Published: 26 May 2021 Abstract. Biogenic volatile organic compounds (BVOCs) 24 % and 17 % of the total SQT and OSQT emissions, re- emitted by the forests are known to have strong impacts in spectively. A stressed tree growing in a pot was also stud- the atmosphere. However, lots of missing reactivity is found, ied, and high emissions of α-farnesene and an unidentified especially in the forest air. Therefore better characterization SQT were detected together with high emissions of GLVs. of sources and identification/quantification of unknown re- Due to the relatively low volatility and the high reactivity of active compounds is needed. While isoprene and monoter- SQTs and OSQTs, downy birch emissions are expected to pene (MT) emissions of boreal needle trees have been studied have strong impacts on atmospheric chemistry, especially on quite intensively, there is much less knowledge on the emis- secondary organic aerosol (SOA) production. -
Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects
nutrients Review Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects Maša Knez Hrnˇciˇc 1,†, Eva Španinger 2,†, Iztok Jože Košir 3, Željko Knez 1 and Urban Bren 2,* 1 Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; [email protected] (M.K.H.); [email protected] (Ž.K.) 2 Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; [email protected] 3 Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-2-2294-421 † These authors contributed equally to this work. Received: 7 December 2018; Accepted: 18 January 2019; Published: 24 January 2019 Abstract: Hop plants comprise a variety of natural compounds greatly differing in their structure and properties. A wide range of methods have been developed for their isolation and chemical analysis, as well as for determining their antioxidative, antimicrobial, and antigenotoxic potentials. This contribution provides an overview of extraction and fractionation techniques of the most important hop compounds known for their health-promoting features. Although hops remain the principal ingredient for providing the taste, stability, and antimicrobial protection of beer, they have found applications in the pharmaceutical and other food industries as well. This review focuses on numerous health-promoting effects of hops raging from antioxidative, sedative, and anti-inflammatory potentials, over anticarcinogenic features to estrogenic activity. -
Chemistry of Hop Aroma in Beer'
Chemistry of Hop Aroma in Beer’ Val E. Peacock’ and Max L. Deinzer, Department of Agricultural Chemistry, Oregon State University, Corvallis 97331 ABSTRACT Tressl et a1 also speculated that the bicyclic terpenoids hop ether and karahana ether may play a part in beer hop flavor. They Three beers were analyzed by gas chromatography/mass spectrometry reported 35 and 60 pg/ L, respectively, of these compounds in beer3 for hop-derived flavor components. Hop ether, karahana ether, linalool, and 5 pg/ L thresholds for both compounds in water. geraniol, humulol, humuladienone, humulenol 11, and humulene epoxides Linalool has been found in beer by Micketts and Lindsay (5), I, 11, and III are among the compounds identified in beer that are believed to Tressl et a1 (13), and Peacock et a1 (9). All three groups have influence beer flavor. These humulene oxidation products probably contribute to the traditional “kettle-hop” flavor/aroma of beer, but speculated that it may be a flavor contributor to beer. Peacock et a1 geraniol and linalool contribute to a floral flavor note that is distinctly (8) found large amounts of geraniol and geranyl isobutyrate in different from the kettle-hop aroma/ taste. The humulene oxidation some beers and claimed that these compounds, with linalool, are products, the main one of which is humulene epoxide 11, increased in responsible for a floral flavor note in these beers. concentration with hop storage. Key words: Aroma. Beer, Geraniol, Hops, Humulene. Linalool, Taste The major components of hop oil, terpene and sesquiterpene EXPERIMENTAL hydrocarbons, are rarely found in beer (9,13) and are not considered responsible for hoppy flavors in beer. -
Cannabinoid Receptor Cannabinoid Receptor
Cannabinoid Receptor Cannabinoid Receptor Cannabinoid receptors are currently classified into three groups: central (CB1), peripheral (CB2) and GPR55, all of which are G-protein-coupled. CB1 receptors are primarily located at central and peripheral nerve terminals. CB2 receptors are predominantly expressed in non-neuronal tissues, particularly immune cells, where they modulate cytokine release and cell migration. Recent reports have suggested that CB2 receptors may also be expressed in the CNS. GPR55 receptors are non-CB1/CB2 receptors that exhibit affinity for endogenous, plant and synthetic cannabinoids. Endogenous ligands for cannabinoid receptors have been discovered, including anandamide and 2-arachidonylglycerol. www.MedChemExpress.com 1 Cannabinoid Receptor Antagonists, Agonists, Inhibitors, Modulators & Activators (S)-MRI-1867 (±)-Ibipinabant Cat. No.: HY-141411A ((±)-SLV319; (±)-BMS-646256) Cat. No.: HY-14791A (S)-MRI-1867 is a peripherally restricted, orally (±)-Ibipinabant ((±)-SLV319) is the racemate of bioavailable dual cannabinoid CB1 receptor and SLV319. (±)-Ibipinabant ((±)-SLV319) is a potent inducible NOS (iNOS) antagonist. (S)-MRI-1867 and selective cannabinoid-1 (CB-1) receptor ameliorates obesity-induced chronic kidney disease antagonist with an IC50 of 22 nM. (CKD). Purity: >98% Purity: 99.93% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg 2-Arachidonoylglycerol 2-Palmitoylglycerol Cat. No.: HY-W011051 (2-Palm-Gl) Cat. No.: HY-W013788 2-Arachidonoylglycerol is a second endogenous 2-Palmitoylglycerol (2-Palm-Gl), an congener of cannabinoid ligand in the central nervous system. 2-arachidonoylglycerol (2-AG), is a modest cannabinoid receptor CB1 agonist. 2-Palmitoylglycerol also may be an endogenous ligand for GPR119. -
Understanding the Endocannabinoid System
UNDERSTANDING THE ENDOCANNABINOID SYSTEM (ECS) COMPOUND: Cannabidiol (CBD) CBD is one of approximately 100 phytocannabinoids that are naturally occurring in hemp plants. Cannabinoids refer to molecules found in the cannabis plant that interact with cannabinoid receptors. Common cannabinoids include D9-THC, THCV, CBD, CBDV, CBG and CBC. KEY FACTS: Understanding the ECS • Plays vital neurological and immunomodulatory roles that can affect overall health • Comprised of specialized eicosanoids, known as endocannabinoids, that the body makes from lipid precursors 1. 2. 3. CBCB1 CB2 Endocannabinoids Cannabinoid Enzymes 1. Anandamide Receptors that control 2. 2Arachidonoylglycerol (2AG) endocannabinoid levels This piece is for educational purposes and is intended for review by licensed healthcare practitioners only. This information should not be applied to any particular product offered for sale by company. These therapies are not substitutes for standard medical care. THE ECS IN THE CNS The two major endocannabinoids — anandamide and 2-AG — activate two different cannabinoid receptors: CB1 and CB2. The CB1 receptor is primarily expressed on neurons in the brain and nervous systems; a main function is to inhibit excitatory neurotransmission. Presynaptic neuron Once activated, the CB1 receptor 3 inhibits further release of the stimulating neurotransmitter, Anandamide or 2AG eliciting a relaxant eect. (endocannabinoids) CB Excitatory neurotransmitter 1 (e.g., glutamate) Endocannabinoids 2 activate CB1 receptors, which are located on the presynaptic neuron. CBD increases levels of the endocannabinoid Excitatory neurotransmitters anandamide by inhibiting its reuptake and 1 activate endocannabinoid degradation. As a result, more anandamide synthesis and release. is available to activate cannabinoid receptors. Neurotransmitter receptor The enzyme that CBD modulates is known as FAAH. -
Clove, an Alternative Medicine Beyond the Spices
Original Article Reversal of Paracetamol Induced Hepatotoxicity in Animals Model: Clove, an Alternative Medicine beyond the Spices Sadia Kazi, Mashkoor Ahmed Ansari, Ashfaque Rahim Memon, Abdul Rahim Memon, Qamar Zaman Phull ABSTRACT INTRODUCTION: Clove is used as spice commonly and exerts beneficial effects in different human pathologies especially diabetes and infectious diseases discovered in recent times. OBJECTIVE: Current study was aimed to investigate the effects of clove extract on paracetamol induced liver toxicity. METHODOLOGY: This animal study was conducted in Department of pharmacology, Isra University Laboratory Hyderabad and at animal house of veterinary department, Sindh Agriculture University, Tando Jam between September 2013 to October 2013. Through non probability purposive sampling, 30 Rabbits were divided into three groups I, II and III. Acetaminophen 500mg was given to group II and III for 10 days orally, while group I served as control. Group III was co administered 100mg of clove powder for 20 days while group II was started 100mg clove powder on 11th day till 20th day of experiment. All blood samples were taken from ear lobe Base line blood sample before intervention was taken at day 0, then 2nd and 3rd samples were taken at 10 and 20 days respectively after intervention. Liver enzymes were also measured. Data was analyzed on SPSS version 21 using t-test, keeping P-value < 0.05 significant. RESULTS: No significant rise in liver enzymes noticed in group I and group III while all enzymes were increased in group II in initial 10 days but declined back in next 10 days. P-value calculated was 002, 0.001 and 0.001 for ALT,AST and GGT respectively. -
Exploring Plant Sesquiterpene Diversity by Generating Chemical Networks
processes Article Exploring Plant Sesquiterpene Diversity by Generating Chemical Networks Waldeyr M. C. da Silva 1,2,3,∗ , Jakob L. Andersen 4 , Maristela T. Holanda 5 , Maria Emília M. T. Walter 3 , Marcelo M. Brigido 2 , Peter F. Stadler 5,6,7,8,9 and Christoph Flamm 7 1 Federal Institute of Goiás, Rua 64, esq. c/ Rua 11, s/n, Expansão Parque Lago, Formosa, GO 73813-816, Brazil 2 Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil; [email protected] 3 Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; [email protected] 4 Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; [email protected] 5 Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade de Brasília, Brasília, DF 70910-900, Brazil; [email protected] (M.T.H.); [email protected] (P.F.S.) 6 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions Dresden-Leipzig, and Leipzig Research Center for Civilization Diseases, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany 7 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria; [email protected] 8 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany 9 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA * Correspondence: [email protected]; Tel.: +55-61-99671-6025 Received: 28 February 2019; Accepted: 11 April 2019; Published: 25 April 2019 Abstract: Plants produce a diverse portfolio of sesquiterpenes that are important in their response to herbivores and the interaction with other plants.