California): Introduction and Implications

Total Page:16

File Type:pdf, Size:1020Kb

California): Introduction and Implications Vol. 6, No. 2 February 1996 INSIDE • Penrose Conference Reports, p. 14, 16 GSA TODAY • Rocky Mountain Section Meeting, p. 24 A Publication of the Geological Society of America • North-Central Section Meeting, p. 30 Alternate Origins of the Coast Range Ophiolite (California): Introduction and Implications William R. Dickinson, Department of Geosciences, University of Arizona, Tucson, AZ 85721 Clifford A. Hopson, Department of Geological Sciences, University of California, Santa Barbara, CA 93106 Jason B. Saleeby, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 ABSTRACT Correctly interpreting the tectonic evolution of the California continental margin requires understanding the ori- gin of the Jurassic Coast Range Ophio- lite, which represents a fragment of mafic-to-ultramafic crust of oceanic character lying depositionally beneath the western flank of the Great Valley forearc basin in fault contact with the Franciscan subduction complex of the California Coast Ranges. Three con- trasting hypotheses for genesis of the ophiolite as seafloor are each based on internally consistent logic within the framework of plate tectonics, but are mutually exclusive and lead to strikingly different interpretations of regional tectonic relations, even though each assumes that the Sierra Nevada batholith to the east represents the eroded roots of a magmatic arc linked to subduction along the Mesozoic continental margin. To encourage the further work or analy- Multiple basaltic sills of the sheeted dike and sill complex, Point Sal remnant of the Middle Jurassic Coast sis needed to develop a definitive inter- Range ophiolite. The ridge in background exposes sheeted sills and (to left of tree on the skyline) base of pretation, summary arguments for each the overlying pillow lavas. hypothesis of Coast Range Ophiolite genesis in mid- to late Jurassic time are presented in parallel: (1) backarc now incorporated within the continental larger than our area of disagreement. We spreading behind an east-facing intra- block (Bailey et al., 1970). The overall span each interpret the Coast Range Ophiolite oceanic island arc that then collided and of Middle to Late Jurassic radiometric ages layered assemblage as a profile of mafic amalgamated with the Sierran continen- for igneous components of ophiolite and crust and lithosphere of oceanic character, tal-margin arc; (2) paleoequatorial mid- postophiolite hypabyssal intrusions is and we infer that this profile was formed ocean spreading to form oceanic litho- ~170 to 155-150 Ma (Hopson et al., 1981, through magmatism induced by mantle sphere that was then drawn northward 1991; Saleeby et al., 1984; Mattinson and upwelling linked to lithospheric extension toward a subduction zone in front of Hopson, 1992). Understanding correctly or “spreading.” We each also argue for the Sierran continental-margin arc; and the origin and emplacement of the Coast emplacement of the ophiolite within the (3) forearc spreading within the forearc Range Ophiolite is essential for under- conceptual framework of plate tectonics, region of the Sierran continental-margin standing the Mesozoic evolution of the taking the Sierra Nevada composite batho- arc in response to transtensional defor- Cordilleran continental margin (Saleeby, lith to the east to be the deeply eroded mation during slab rollback. 1992). The time is long past when geosci- roots of Jurassic-Cretaceous magmatic arc entists could assume that all ophiolites belts, and regarding Franciscan rocks of INTRODUCTION formed in the same way or have the same the California Coast Ranges farther west Widely distributed exposures of the tectonic significance. as part of the subduction complex Jurassic Coast Range Ophiolite in the Cali- With the help of co-authors, we out- accreted near the trench that was paired fornia Coast Ranges represent deformed line here three divergent views on the ori- with the Sierran-Klamath arc assemblage and structurally dismembered segments gin of the Coast Range Ophiolite. We of oceanic crust and uppermost mantle emphasize that our areas of agreement are Ophiolite continued on p. 2 IN THIS ISSUE GSA TODAY February Vol. 6, No. 2 1996 Alternate Origins of the Coast SAGE Remarks ......................... 20 Range Ophiolite (California): GSA TODAY (ISSN 1052-5173) is published Introduction and Implications .... 1 Environment Matters ................... 22 monthly by The Geological Society of America, Inc., Calendar .............................. 23 with offices at 3300 Penrose Place, Boulder, Colorado. Washington Report ..................... 10 Mailing address: P.O. Box 9140, Boulder, CO 80301- Rocky Mountain Section Meeting ....... 24 9140, U.S.A. Second-class postage paid at Boulder, Book Nook ............................ 11 Colorado, and at additional mailing offices. Postmas- North-Central Section Meeting ......... 30 ter: Send address changes to GSA Today, Membership GSAF Update .......................... 12 Services, P.O. Box 9140, Boulder, CO 80301-9140. 1995 Annual Meeting Revisited ......... 36 Copyright © 1996, The Geological Society of America, Penrose Conference Reports Inc. (GSA). All rights reserved. Copyright not claimed Fault-Related Folding ................ 14 GSA Meetings ......................... 38 on content prepared wholly by U.S. Government Argentine Precordillera .............. 16 employees within the scope of their employment. Per- Classifieds ............................. 39 mission is granted to individuals to photocopy freely all 1996 GeoVentures ..................... 19 Northeastern Section Meeting Update . 39 items other than the science articles to further science and education. Individual scientists are hereby granted GSA on the Web ....................... 19 permission, without royalties or further requests, to make unlimited photocopies of the science articles for use in classrooms to further education and science, and to make up to five copies for distribution to associates in the furtherance of science; permission is granted to Ophiolite continued from p. 1 We thank conveners R. G. Anderson, make more than five photocopies for other noncom- mercial, nonprofit purposes furthering science and edu- D. M. Miller, and R. M. Tosdal for arrang- cation upon payment of the appropriate fee ($0.25 per (Fig. 1). We concur that the east flank of ing the 1993 Penrose Conference on page) directly to the Copyright Clearance Center, 27 the Franciscan subduction complex was Jurassic Cordilleran magmatism at which Congress Street, Salem, Massachusetts 01970, phone (508) 744-3350 (include title and ISSN when paying). thrust beneath and otherwise faulted our opposing thoughts were pointedly Written permission is required from GSA for all other against the Coast Range Ophiolite , which juxtaposed, and we dedicate the following forms of capture, reproduction, and/or distribution of formed the westernmost segment of the discussions to the memory of E. H. Bailey any item in this journal by any means. GSA provides this and other forums for the presentation of diverse floor of the Great Valley forearc basin (who started it all). opinions and positions by scientists worldwide, regard- lying between Sierran arc and Franciscan less of their race, citizenship, gender, religion, or politi- trench. 1. COAST RANGE OPHIOLITE cal viewpoint. Opinions presented in this publication do not reflect official positions of the Society. We nevertheless ascribe generation of AS BACK-ARC–INTER-ARC the Coast Range Ophiolite to three differ- BASIN LITHOSPHERE ent tectonic settings: (1) Dickinson infers SUBSCRIPTIONS for 1996 calendar year: William R. Dickinson, Department of Society Members: GSA Today is provided as part of “backarc” seafloor spreading behind a Geosciences, University of Arizona, membership dues. Contact Membership Services at migratory east-facing intraoceanic island (800) 472-1988 or (303) 447-2020 for membership Tucson, AZ 85721 arc, which collided with the west-facing information. Nonmembers & Institutions: Free with Richard A. Schweickert, Department of paid subscription to both GSA Bulletin and Geology, Sierran arc along the continental margin Geological Sciences, University of Nevada, otherwise $45 for U.S., Canada, and Mexico; $55 else- (as intervening oceanic lithosphere was where. Contact Subscription Services. Single copies Reno, NV 89557 consumed), to lodge the migratory arc and may be ordered from Publication Sales. Claims: For Raymond V. Ingersoll, Department of Earth nonreceipt or for damaged copies, members contact its backarc seafloor against the continental and Space Sciences, University of California, Membership Services; all others contact Subscription margin; (2) Hopson infers “midocean” Services. Claims are honored for one year; please allow Los Angeles, CA 90024-1567 sufficient delivery time for overseas copies. seafloor spreading along an intraoceanic ridge crest, followed by tectonic transport The concept that the Coast Range STAFF: Prepared from contributions from the of the resulting seafloor to the continental Ophiolite was formed by backarc-interarc GSA staff and membership. margin (as Sierran subduction drew it ever spreading behind an east-facing intra- Executive Director: Donald M. Davidson, Jr. Science Editor: Suzanne M. Kay closer), until the ophiolite docked against oceanic island arc that was accreted to the Department of Geological Sciences, Cornell University, the continental margin prior to the onset continent in Jurassic time by arc collision Ithaca,
Recommended publications
  • Chapter 5: Parks, Recreation, and Open Space
    5 Parks, Recreation, and Open Space This chapter is a guide to the parks, recreation and open space resources in Humboldt County. Humboldt is home to recreational, park, and open space resources of statewide, nationwide, and even global significance. With this in mind, the first two sections describe these resources, while the final section addresses existing policies and policy issues identified during Phase I along with policy options that respond to them. 5.1 PARK AND RECREATION FACILITIES Humboldt County has a wealth of outdoor recreational opportunities and areas of incomparable value and unsurpassed beauty. More than twenty percent of the county’s 2.3 million acres are protected open space, forests, and recreation areas. Within the county boundaries, there are 4 federal parks and beaches, 10 state parks (3 of which are encompassed by Redwood National Park), 16 county parks and beaches, recreational areas and reserves, and National Parkland and National Forest land. These areas contribute to the quality of life in Humboldt County and provide needed recreation opportunities for residents of neighboring counties and from all over the world as well. Parklands are important elements of the Humboldt economy through both their role in the timber industry and the tourist industry. As tourism eclipses timber as the stronghold of Humboldt’s economy, parks and recreational resources will prove of greater and greater value to Humboldt’s future. The natural qualities of Humboldt County attract a great many people from outside the county. The tourist industry and demand for park resources in Humboldt are linked to the accessibility of parkland.
    [Show full text]
  • Late Cenozoic Tectonics of the Central and Southern Coast Ranges of California
    OVERVIEW Late Cenozoic tectonics of the central and southern Coast Ranges of California Benjamin M. Page* Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 George A. Thompson† Department of Geophysics, Stanford University, Stanford, California 94305-2215 Robert G. Coleman Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 ABSTRACT within the Coast Ranges is ascribed in large Taliaferro (e.g., 1943). A prodigious amount of part to the well-established change in plate mo- geologic mapping by T. W. Dibblee, Jr., pre- The central and southern Coast Ranges tions at about 3.5 Ma. sented the areal geology in a form that made gen- of California coincide with the broad Pa- eral interpretations possible. E. H. Bailey, W. P. cific–North American plate boundary. The INTRODUCTION Irwin, D. L. Jones, M. C. Blake, and R. J. ranges formed during the transform regime, McLaughlin of the U.S. Geological Survey and but show little direct mechanical relation to The California Coast Ranges province encom- W. R. Dickinson are among many who have con- strike-slip faulting. After late Miocene defor- passes a system of elongate mountains and inter- tributed enormously to the present understanding mation, two recent generations of range build- vening valleys collectively extending southeast- of the Coast Ranges. Representative references ing occurred: (1) folding and thrusting, begin- ward from the latitude of Cape Mendocino (or by these and many other individuals were cited in ning ca. 3.5 Ma and increasing at 0.4 Ma, and beyond) to the Transverse Ranges. This paper Page (1981).
    [Show full text]
  • The Crustal Structure of the Axis of the Great Valley, California, from Seismic Refraction Measurements
    Tectonophysics, 140 (1987) 49-63 49 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands The crustal structure of the axis of the Great Valley, California, from seismic refraction measurements W. STEVEN HOLBROOK ’ and WALTER D. MOONEY * ’ Geophysics Department, Stanford University, Stanford, CA 94305 (U.S.A.) ’ U.S. Geological Survey, MS 977, 345 Middlefield Road, Menlo Park, CA 94025 (U.S.A.) (Received March 18,1986; accepted June 151986) Abstract Holbrook, W.S. and Mooney, W.D., 1987. The crustal structure of the axis of the Great Valley, California, from seismic refraction measurements. In: S. Asano and W.D. Mooney (Editors), Seismic Studies of the Continental Lithosphere. Tectonophysics, 140: 49-63. In 1982 the U.S. Geological Survey collected six seismic refraction profiles in the Great Valley of California: three axial profiles with a maximum shot-to-receiver offset of 160 km, and three shorter profiles perpendicular to the valley axis. This paper presents the results of two-dimensional raytracing and synthetic seismogram modeling of the central axial profile. The crust of the central Great Valley is laterally heterogeneous along its axis, but generally consists of a sedimentary section overlying distinct upper, middle, and lower crustal units. The sedimentary rocks are 3-5 km thick along the profile, with velocities increasing with depth from 1.6 to 4.0 km/s. The basement (upper crust) consists of four units: (1) a 1.0-1.5 km thick layer of velocity 5.4-5.8 km/s, (2) a 3-4 km thick layer of velocity 6.0-6.3 km/s, (3) a 1.5-3.0 km thick layer of velocity 6.5-6.6 km/s, and (4) a laterally discontinuous, 1.5 km thick layer of velocity 6.8-7.0 km/s.
    [Show full text]
  • Geologic Gems of California's State Parks
    STATE OF CALIFORNIA – EDMUND G. BROWN JR., GOVERNOR NATURAL RESOURCES AGENCY – JOHN LAIRD, SECRETARY CALIFORNIA GEOLOGICAL SURVEY DEPARTMENT OF PARKS AND RECREATION – LISA MANGAT, DIRECTOR JOHN D. PARRISH, Ph.D., STATE GEOLOGIST DEPARTMENT OF CONSERVATION – DAVID BUNN, DIRECTOR PLATE 1 The rugged cliffs of Del Norte Coast Redwoods State Park are composed of some of California’s Bio-regions the most tortured, twisted, and mobile rocks of the North American continent. The California’s Geomorphic Provinces rocks are mostly buried beneath soils and covered by vigorous redwood forests, which thrive in a climate famous for summer fog and powerful winter storms. The rocks only reveal themselves in steep stream banks, along road and trail cut banks, along the precipitous coastal cliffs and offshore in the form of towering rock monuments or sea stacks. (Photograph by CalTrans staff.) Few of California’s State parks display impressive monoliths adorned like a Patrick’s Point State Park displays a snapshot of geologic processes that have castle with towering spires and few permit rock climbing. Castle Crags State shaped the face of western North America, and that continue today. The rocks Park is an exception. The scenic beauty is best enjoyed from a distant exposed in the seacliffs and offshore represent dynamic interplay between the vantage point where one can see the range of surrounding landforms. The The Klamath Mountains consist of several rugged ranges and deep canyons. Klamath/North Coast Bioregion San Joaquin Valley Colorado Desert subducting oceanic tectonic plate (Gorda Plate) and the continental North American monolith and its surroundings are a microcosm of the Klamath Mountains The mountains reach elevations of 6,000 to 8,000 feet.
    [Show full text]
  • A Bibliography of Klamath Mountains Geology, California and Oregon
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A bibliography of Klamath Mountains geology, California and Oregon, listing authors from Aalto to Zucca for the years 1849 to mid-1995 Compiled by William P. Irwin Menlo Park, California Open-File Report 95-558 1995 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. PREFACE This bibliography of Klamath Mountains geology was begun, although not in a systematic or comprehensive way, when, in 1953, I was assigned the task of preparing a report on the geology and mineral resources of the drainage basins of the Trinity, Klamath, and Eel Rivers in northwestern California. During the following 40 or more years, I maintained an active interest in the Klamath Mountains region and continued to collect bibliographic references to the various reports and maps of Klamath geology that came to my attention. When I retired in 1989 and became a Geologist Emeritus with the Geological Survey, I had a large amount of bibliographic material in my files. Believing that a comprehensive bibliography of a region is a valuable research tool, I have expended substantial effort to make this bibliography of the Klamath Mountains as complete as is reasonably feasible. My aim was to include all published reports and maps that pertain primarily to the Klamath Mountains, as well as all pertinent doctoral and master's theses.
    [Show full text]
  • Segmentation of the Laramide Slab—Evidence from the Southern
    Segmentation of the Laramide SlabÐevidence from the southern Sierra Nevada region Jason Saleeby² Division of Geological and Planetary Sciences, California Institute of Technology, M.S. 100-23, Pasadena, California 91125, USA ABSTRACT ®ned by plate edge relations and the cor- 1992). A commonly cited plate tectonic mech- responding trajectory of Farallon±North anism for the orogeny is intensi®ed traction During the latest Cretaceous-early Paleo- American relative plate motions when and tectonic erosion of the subcontinental gene Laramide orogeny, the lithosphere be- viewed on a pre-Neogene palinspastic base. mantle lithosphere due to ¯attening of the sub- neath the southernmost Sierra Nevada The plate interior is suggested to have been ducted slab (Coney and Reynolds, 1977; batholith and the adjacent Mojave Desert deformed ®rst by end loading as the shal- Dickinson and Snyder, 1978; Bird, 1988). The region batholith was sheared off and dis- low slab segment initially descended be- response of the craton was deformation and placed deeper into the mantle. The litho- neath the plate edge, and then by greater uplift along a north-northeast±trending corri- sphere beneath the greater Sierra Nevada basal traction components as the shallow dor extending from southwest Arizona batholith to the north was left intact until segment progressed beneath the cratonic through Wyoming (Fig. 1). This intracratonal mid-Miocene time, when fragments of it region. The subcontinental mantle litho- deformation zone is for the most part inboard were entrained as volcanic xenoliths. The sphere beneath the cratonic deformation of the Cordilleran (Sevier) foreland fold-thrust Laramide slab was evidently segmented zone remained intact through Laramide belt, thereby calling for special circumstances into a shallow ¯at segment to the south and time.
    [Show full text]
  • DEPARTMENT of the INTERIOR U.S. GEOLOGICAL SURVEY Review of the Great Valley Sequence, Eastern Diablo Range and Northern San
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Review of the Great Valley sequence, eastern Diablo Range and northern San Joaquin Valley, central California by J. Alan Bartow1 and TorH.Nilsen2 Open-File Report 90-226 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1990 , Menlo Park, California 2Applied Earth Technologies, Inc, Redwood City, California ABSTRACT The Great Valley sequence of the eastern Diablo Range and northern San Joaquin Valley consists of a thick accumulation of marine and nonmarine clastic rocks of Jurassic to early Paleocene age deposited in a forearc basin that was situated between the Sierran magmatic arc to the east and the Franciscan subduction complex to the west. In the western part of the basin, the sequence rests conformably on the Jurassic Coast Range Ophiolite or is faulted against the structurally underlying Franciscan Complex. Beneath the eastern San Joaquin Valley, the sequence unconformably onlaps igneous and metamorphic rocks of the Sierran magmatic arc. The sequence generally thickens westward to as much as 8-9 km in the Diablo Range, where it is unconformably overlain by late Paleocene and younger strata. The stratigraphy of the Great Valley sequence has been the subject of much work, but problems, particularly nomenclatural, remain. Lithostratigraphic subdivisions of the sequence have not gained widespread acceptance because of the lenticularity of most sandstone bodies, abrupt fades changes in subsurface and outcrops, and the lack of detailed subsurface information from closely spaced or deep wells.
    [Show full text]
  • Timing and Structural Expression of the Nevadan Orogeny, Sierra Nevada, California: Discussions and Reply
    Timing and structural expression of the Nevadan orogeny, Sierra Nevada, California: Discussions and reply Discussion TAPAS BHATTACHARYYA i _ „ . _ . ,, . , _ ... „ , _ _ ,., . nATi-DCAM I ^art'1 Science Board, University of California, Santa Cruz, California 95064 SCO IT R. PA [ bKSON / Prior to commenting on several aspects of the paper by Schweickert and others, 1984, can be divided into four topics: (1) the position/exist- and others, 1984, we wish to note that we have benefited from the work of ence of the "Sonora fault," (2) the "polymetamorphism and structural these authors. We also wish to note that all of our comments concern complexity" of the Calaveras Complex and Shoo Fly Formation, (3) the statements made about the southern portion of the Western Metamorphic interpretation of "Late Phase" or Cretaceous folds and possible conjugate Belt where we are presently completing an east-west transect on scales of structures, and (4) their model for "rigid body rotation of the central belt" 1:24,000 and larger. during Nevadan deformation. We will discuss each of these in turn. Our objections to observations and interpretations by Schweickert 1. Many of the age relations and positions of contacts/faults dis- cussed by Schweickert and others, 1984, are better established in the The article discussed appeared in the Bulletin, v. 95, p. 967-979. northern Sierra or the part of the southern belt which lies north of 3£ We Geological Society of America Bulletin, v. 96, p. 1346-1352, 1 fig., October 1985. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/96/10/1349/3445091/i0016-7606-96-10-1349.pdf by guest on 02 October 2021 DISCUSSIONS AND REPLY 1347 think that similar relations are not nearly so well established in the south- Belt.
    [Show full text]
  • Bigbig Sursur
    CalCal PolyPoly -- PomonaPomona GeologyGeology ClubClub SpringSpring 20032003 FFieldield TTriprip BigBig SurSur David R. Jessey Randal E. Burns Leianna L. Michalka Danielle M. Wall ACKNOWLEDGEMENT The authors of this field guide would like to express their appreciation and sincere thanks to the Peninsula Geologic Society, the California Geological Survey and Caltrans. Without their excellent publications this guide would not have been possible. We apologize for any errors made through exclusion or addition of trip field stops. For more detailed descriptions please see the following: Zatkin, Robert (ed.), 2000, Salinia/Nacimiento Amalgamated Terrane Big Sur Coast, Central California, Peninsula Geological Society Spring Field Trip 2000 Guidebook, 214 p. Wills, C.J., Manson, M.W., Brown, K.D., Davenport, C.W. and Domrose, C.J., 2001, LANDSLIDES IN THE HIGHWAY 1 CORRIDOR: GEOLOGY AND SLOPE STABILITY ALONG THE BIG SUR COAST, California Department of Conservation Division of Mines & Geology, 43 p. 0 122 0 00' 122 0 45' 121 30 Qal Peninsula Geological Society Qal G a b i Qt la Field Trip to Salina/Nacimento 1 n R S a A n L Big Sur Coast, Central California I g N qd A e S R Qt IV E Salinas R S a lin a s Qs V Qal 101 a Qs Monterey Qc lle Qt Qp y pgm Tm Qm Seaside pgm EXPLANATION Qt Chualar Qp Qt UNCONSOLIDATED Tm pgm SEDIMENTS Qp Carmel Qal sur Qs Qal Alluvium qd CARMEL RIVER Tm Qal Point sur Qs Dune Sand Tm Lobos pgm 0 S 0 36 30 ie ' r 36 30' pgm ra Qt Quaternary non-marine d CARMEL e S terrace deposits VALLEY a Qal lin a Qt Pleistocene non-marine Tm pgm s Qc 1 Tm Tula qd rcit Qp Plio-Pleistocene non-marine qd os F ault Qm Pleistocene marine Terrace sur sur deposits qd Tm COVER ROCKS pgm qd Tm Monterey Formation, mostly qm pgm qm pgm marine biogenic and sur pgm clastic sediments middle to qdp sur qd late Miocene in age.
    [Show full text]
  • Field Report (PDF)
    Field Forum Report Sierra Nevada, California • 1–8 SEptEMBER 2012 Each evening participants of the field forum led follow-up group Formation of the Sierra Nevada discussions. These discussions were enriched by a number of posters presented by the participants. Two students, Laura Waters Batholith: Magmatic and Tectonic at the University of Michigan, and Jesse Hahm from the University Processes and Their Tempos of Wyoming, received Best Student Poster awards, which earned them each a trip to the GSA Annual Meeting in Charlotte, North Carolina, USA. Plans are underway to publish the field guide as a GSA Special Paper following this field forum. ConvENErs Scott R. Paterson, Department of Earth Sciences, University of DAILY ACTIVITIES Southern California, Los Angeles, California 90089-0740, USA, Day 1 was organized by Keith Putirka and Scott Paterson, who [email protected] kicked off the field forum by presenting outcrops of the Jurassic, 28° tilted, upper crustal Guadalupe Igneous Complex and nearby Jade Star Lackey, Pomona College, Claremont, California 91711, USA Hornitos pluton intruding oceanic host rocks of the western Vali Memeti, Department of Earth Sciences, University of foothills of the Sierra Nevada. The Hornitos consists of vertical Southern California, Los Angeles, California 90089-0740, USA mafic and felsic dikes, which appear to feed compositionally equivalent magmas into the overlying Guadalupe Igneous Robert B. Miller and Jonathan S. Miller, Department of Geology, Complex (GIC). The GIC is in turn composed of moderately San José State University, San José, California 95192-0102, USA dipping sheets of gabbro and meladiorite at its base, which are overlain by a mingled granite and gabbro zone.
    [Show full text]
  • Temporal and Spatial Trends of Late Cretaceous-Early Tertiary Underplating of Pelona and Related Schist Beneath Southern California and Southwestern Arizona
    spe374-14 page 1 of 26 Geological Society of America Special Paper 374 2003 Temporal and spatial trends of Late Cretaceous-early Tertiary underplating of Pelona and related schist beneath southern California and southwestern Arizona M. Grove Department of Earth and Space Sciences, University of California, 595 Charles Young Drive E, Los Angeles, California 90095-1567, USA Carl E. Jacobson Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011-3212, USA Andrew P. Barth Department of Geology, Indiana University–Purdue University, Indianapolis, Indiana 46202-5132, USA Ana Vucic Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011-3212, USA ABSTRACT The Pelona, Orocopia, and Rand Schists and the schists of Portal Ridge and Sierra de Salinas constitute a high–pressure-temperature terrane that was accreted beneath North American basement in Late Cretaceous–earliest Tertiary time. The schists crop out in a belt extending from the southern Coast Ranges through the Mojave Desert, central Transverse Ranges, southeastern California, and southwest- ern Arizona. Ion microprobe U-Pb results from 850 detrital zircons from 40 meta- graywackes demonstrates a Late Cretaceous to earliest Tertiary depositional age for the sedimentary part of the schist’s protolith. About 40% of the 206Pb/238U spot ages are Late Cretaceous. The youngest detrital zircon ages and post-metamorphic mica 40Ar/39Ar cooling ages bracket when the schist’s graywacke protolith was eroded from its source region, deposited, underthrust, accreted, and metamorphosed. This interval averages 13 ± 10 m.y. but locally is too short (<~3 m.y.) to be resolved with our methods.
    [Show full text]
  • Geochemistry of the Great Valley Group: an Integrated Provenance Record Kathleen D
    Trinity University Digital Commons @ Trinity Geosciences Faculty Research Geosciences Department 6-2014 Geochemistry of the Great Valley Group: An Integrated Provenance Record Kathleen D. Surpless Trinity University, [email protected] Follow this and additional works at: https://digitalcommons.trinity.edu/geo_faculty Part of the Earth Sciences Commons Repository Citation Surpless, K.D. (2014). Geochemistry of the great valley group: An integrated provenance record. International Geology Review, 57(5-8), 747-766. doi: 10.1080/00206814.2014.923347 This Article is brought to you for free and open access by the Geosciences Department at Digital Commons @ Trinity. It has been accepted for inclusion in Geosciences Faculty Research by an authorized administrator of Digital Commons @ Trinity. For more information, please contact [email protected]. International Geology Review, 2014 http://dx.doi.org/10.1080/00206814.2014.923347 Geochemistry of the Great Valley Group: an integrated provenance record Kathleen D. Surpless* Department of Geosciences, Trinity University, San Antonio, TX 78212, USA (Received 13 March 2014; accepted 8 May 2014) Sedimentary geochemistry of fine-grained strata of the Great Valley Group (GVG) in California documents a provenance signal that may better represent unstable, mafic minerals and volcanic clasts within sediment source regions than the provenance signal documented in the petrofacies and detrital zircon analysis of coarser sedimentary fractions. Geochemistry of the GVG provides an overall provenance framework within which to interpret sandstone petrofacies and detrital zircon age signatures. The geochemical signature for all Sacramento Valley samples records an overall continental arc source, with significant variation but no clear spatial or temporal trends, indicating that the geochemical provenance signal remained relatively consistent and homogenized through deposition of Sacramento basin strata.
    [Show full text]