4. Compactness

Total Page:16

File Type:pdf, Size:1020Kb

4. Compactness 4. Compactness Definition. Let X be a topological space X. A subset K ⊂ X is said to be compact set in X, if it has the finite open cover property: S (f.o.c) Whenever {Di}i∈I is a collection of open sets such that K ⊂ i∈I Di, there exists a finite sub-collection Di1 ,...,Din such that K ⊂ Di1 ∪ · · · ∪ Din . An equivalent description is the finite intersection property: (f.i.p.) If {Fi}i∈I is is a collection of closed sets such that for any finite sub- collection Fi1 ,...,Fin we have K ∩ Fi1 ∩ ...Fin 6= ∅, it follows that \ K ∩ Fi 6= ∅. i∈I A topological space (X, T ) is called compact if X itself is a compact set. Remark 4.1. Suppose (X, T ) is a topological space, and K is a subset of X. Equip K with the induced topology T K . Then it is straightforward from the definition that the following are equivalent: • K is compact, as a subset in (X, T ); • (K, T K ) is a compact space, that is, K is compact as a subset in (K, T K ). The following three results, whose proofs are immediate from the definition, give methods of constructing compact sets. Proposition 4.1. A finite union of compact sets is compact. Proposition 4.2. Suppose (X, T ) is a topological space and K ⊂ X is a compact set. Then for every closed set F ⊂ X, the intersection F ∩ K is again compact. Proposition 4.3. Suppose (X, T ) and (Y, S) are topological spaces, f : X → Y is a continuous map, and K ⊂ X is a compact set. Then f(K) is compact. The following results discuss compactness in Hausdorff spaces. Proposition 4.4. Suppose (X, T ) is toplological Hausdorff space. (i) Any compact set K ⊂ X is closed. (ii) If K is a compact set, then a subset F ⊂ K is compact, if and only if F is closed (in X). Proof. (i) The key step is contained in the following Claim: For every x ∈ X r K, there exists some open set Dx with x ∈ Dx ⊂ X r K. Fix x ∈ X r K. For every y ∈ K, using the Hausdorff property, we can find two open sets Uy and Vy with Uy 3 x, Vy 3 y, and Uy ∩ Vy = ∅. Since we S obviously have K ⊂ y∈K Vy, by compactness, there exist points y1, . , yn ∈ K, such that K ⊂ Vy1 ∪ · · · ∪ Vyn . The claim immediately follows if we then define Dx = Uy1 ∩ · · · ∩ Uyn . 26 §4. Compactness 27 Using the Claim we now see that we can write the complement of K as a union of open sets: [ X r K = Dx, x∈XrK so X r K is open, which means that K is indeed closed. (ii). If F is closed, then F is compact by Proposition 4.2. Conversely, if F is compact, then by (i) F is closed. Corollary 4.1. Let X be a compact Hausdorff space, let Y be a topological space, and let f : X → Y be a continuous map, which is bijective. Then f is a homeomorphism, i.e. the inverse map f −1 : Y → X is continuous. Proof. What we need to prove is the fact that, whenever D ⊂ X is open, it follows that its preimage under f −1, that is, the set f(D) ⊂ Y , is again open. To get this fact we take complements. Consider the set X r D, which is closed in X. Since X is compact, by Proposition 4.2 it follows that X r D is compact. By Proposition 4.3, the set f(X r D) is compact in Y , and finally by Proposition 4.4 it follows that f(X r D) is closed. Now we are done, because the fact that f is bijcetive gives Y r f(D) = f(X r D), and the fact that Y r f(D) is closed means that f(D) is indeed open in Y . Proposition 4.5. Every compact Hausdorff space is normal. Proof. Let X be a compact Hausdorff space. Let A, B ⊂ X be two closed sets with A∩B = ∅. We need to find two open sets U, V ⊂ X, with A ⊂ U, B ⊂ V , and U ∩ V = ∅. We start with the following Particular case: Assume B is a singleton, B = {b}. The proof follows line by line the first part of the proof of part (i) from Proposition 4.4. For every a ∈ A we find open sets Ua and Va, such that Ua 3 a, Va 3 b, and Ua ∩ Va = ∅. Using Proposition 4.4 we know that A is compact, and since we S clearly have A ⊂ a∈A Ua, there exist a1, . , an ∈ A, such that Ua1 ∪· · ·∪Uan ⊃ A. Then we are done by taking U = Ua1 ∪ · · · ∪ Uan and V = Va1 ∩ · · · ∩ Van . Having proven the above particular case, we proceed now with the general case. For every b ∈ B, we use the particular case to find two open sets Ub and Vb, with Ub ⊃ A, Vb 3 b, and Ub ∩ Vb = ∅. Arguing as above, the set B is compact, and S we have B ⊂ b∈B Vb, so there exist b1, . , bn ∈ B, such that Vb1 ∪ · · · ∪ Vbn ⊃ B. Then we are done by taking U = Ub1 ∩ · · · ∩ Ubn and V = Vb1 ∪ · · · ∪ Vbn . Examples 4.1. A. Any closed interval of the form [a, b] is a compact set in R. To prove this, we start with an arbitrary collection D of open subsets of R, with S [a, b] ⊂ D∈D D, and we wish to find D1,...,Dn ∈ D, with D1 ∪ · · · ∪ Dn ⊃ [a, b]. To get this we consider the set M = t ∈ (a, b] : there exist D1,...,Dn ∈ D with D1 ∪ · · · ∪ Dn ⊃ [a, t] , so that all we need is the fact that b ∈ M. We first show that the number s = sup M also belongs to M. On the one hand, there exists some open set D ∈ D with D 3 s, so there exists ε > 0 such that D ⊃ (s − ε, s + ε). On the other hand, there exists t ∈ M with s − ε < t, so there exist D1,...,Dn ⊃ [a, t] ⊃ [a, s − ε]. Since we clearly have D ∪ D1 ∪ · · · ∪ Dn ⊃ [a, s − ε] ∪ (s − ε, s + ε) = [a, s + ε) ⊃ [a, s], 28 CHAPTER I: TOPOLOGY PRELIMINARIES it follows that indeed s belongs to M. Finally, by the same argument as above, it follows that the set M will also contain the intersection [s, s + ε) ∩ [a, b], which clearly forces s = b. B. The above result has a famous generalization - the Bolzano-Weierstrass Theorem - which states that a set X ⊂ R is compact, if and only if (i) X is closed, and (ii) X is bounded, in the sense that there exists some C ≥ 0 such that |x| ≤ C, ∀ x ∈ X. The fact that every compact set X ⊂ R is closed and bounded is clear (use the S∞ finite open cover property with n=1(−n, n) = R ⊃ X). Conversely, if X is closed and bounded, then X is a closed subset of some interval of the form [−C, C], which is compact by A, so X itself is compact. The Bolzano-Weierstarss Theorem has the following important consequence. Proposition 4.6. Let X be a compact space, and let f : X → R be a continu- ous function. Then f attains its maximum and minimum values, in the sense that there exist points x1, x2 ∈ X, such that f(x1) ≤ f(x) ≤ f(x2), ∀ x ∈ X. Proof. Consider the set K = f(X) which is compact in R. Since K is bounded, the quantities t1 = inf K and t2 = sup K are finite. Since K is closed, both t1 and t2 belong to K, so there exist x1, x2 ∈ X such that t1 = f(x1) and t2 = f(x2). The following is a useful technical result, which deals with the notion of uniform convergence. ∞ Theorem 4.1 (Dini). Let X be a compact space, let (fn)n=1 be a sequence of ∞ continuous functions fn : X → R. Assume the sequence (fn)n=1 is monotone, in the sense that either (↑) f1 ≤ f2 ≤ ... , or (↓) f1 ≥ f2 ≥ ... Assume f : X → R is another continuous function, with the property that the ∞ sequence (fn)n=1 converges pointwise to f, that is: lim fn(x) = f(x), ∀ x ∈ X. n→∞ ∞ Then the sequence (fn)n=1 is converges uniformly to f, in the sense that lim max |fn(x) − f(x)| = 0. n→∞ x∈X Proof. Replacing fn with fn − f, we can assume that f = 0, which means that we have limn→∞ fn(x) = 0, ∀ x ∈ X. Replacing (if necessary) fn with −fn, we can also assume that the sequence (fn)n≥1 satisfies (↓). In particular, each fn is non-negative. For each n ≥ 1, let us define sn = maxx∈X fn(x), so that what we need to prove is the fact that limn→∞ sn = 0. Using (↓) it is clear that we have the inequalities s1 ≥ s2 ≥ · · · ≥ 0, so the desired result is equivalent to showing that inf{sn : n ≥ 1} = 0. §4. Compactness 29 We are going to prove this equality by contradiction. Assume there exists some ε > 0, such that sn ≥ ε, ∀ n ≥ 1. For each integer n ≥ 1, let us define the set Fn = {x ∈ X : fn(x) ≥ ε}, −1 so that (use Proposition 4.6) Fn 6= ∅. Since Fn = fn [ε, ∞) , it is clear that Fn is closed, for every n ≥ 1. Using (↓) it is obvious that we have the inclusions F1 ⊃ F2 ⊃ ..., so using the the finite intersection property, it follows that ∞ \ Fn 6= ∅.
Recommended publications
  • K-THEORY of FUNCTION RINGS Theorem 7.3. If X Is A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 69 (1990) 33-50 33 North-Holland K-THEORY OF FUNCTION RINGS Thomas FISCHER Johannes Gutenberg-Universitit Mainz, Saarstrage 21, D-6500 Mainz, FRG Communicated by C.A. Weibel Received 15 December 1987 Revised 9 November 1989 The ring R of continuous functions on a compact topological space X with values in IR or 0Z is considered. It is shown that the algebraic K-theory of such rings with coefficients in iZ/kH, k any positive integer, agrees with the topological K-theory of the underlying space X with the same coefficient rings. The proof is based on the result that the map from R6 (R with discrete topology) to R (R with compact-open topology) induces a natural isomorphism between the homologies with coefficients in Z/kh of the classifying spaces of the respective infinite general linear groups. Some remarks on the situation with X not compact are added. 0. Introduction For a topological space X, let C(X, C) be the ring of continuous complex valued functions on X, C(X, IR) the ring of continuous real valued functions on X. KU*(X) is the topological complex K-theory of X, KO*(X) the topological real K-theory of X. The main goal of this paper is the following result: Theorem 7.3. If X is a compact space, k any positive integer, then there are natural isomorphisms: K,(C(X, C), Z/kZ) = KU-‘(X, Z’/kZ), K;(C(X, lR), Z/kZ) = KO -‘(X, UkZ) for all i 2 0.
    [Show full text]
  • 3. Closed Sets, Closures, and Density
    3. Closed sets, closures, and density 1 Motivation Up to this point, all we have done is define what topologies are, define a way of comparing two topologies, define a method for more easily specifying a topology (as a collection of sets generated by a basis), and investigated some simple properties of bases. At this point, we will start introducing some more interesting definitions and phenomena one might encounter in a topological space, starting with the notions of closed sets and closures. Thinking back to some of the motivational concepts from the first lecture, this section will start us on the road to exploring what it means for two sets to be \close" to one another, or what it means for a point to be \close" to a set. We will draw heavily on our intuition about n convergent sequences in R when discussing the basic definitions in this section, and so we begin by recalling that definition from calculus/analysis. 1 n Definition 1.1. A sequence fxngn=1 is said to converge to a point x 2 R if for every > 0 there is a number N 2 N such that xn 2 B(x) for all n > N. 1 Remark 1.2. It is common to refer to the portion of a sequence fxngn=1 after some index 1 N|that is, the sequence fxngn=N+1|as a tail of the sequence. In this language, one would phrase the above definition as \for every > 0 there is a tail of the sequence inside B(x)." n Given what we have established about the topological space Rusual and its standard basis of -balls, we can see that this is equivalent to saying that there is a tail of the sequence inside any open set containing x; this is because the collection of -balls forms a basis for the usual topology, and thus given any open set U containing x there is an such that x 2 B(x) ⊆ U.
    [Show full text]
  • Generalized Inverse Limits and Topological Entropy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of Faculty of Science, University of Zagreb FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Zagreb, 2016. FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Supervisors: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Mentori: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016. Acknowledgements First of all, i want to thank my supervisor professor Judy Kennedy for accept- ing a big responsibility of guiding a transatlantic student. Her enthusiasm and love for mathematics are contagious. I thank professor Vlasta Matijevi´c, not only my supervisor but also my role model as a professor of mathematics. It was privilege to be guided by her for master's and doctoral thesis. I want to thank all my math teachers, from elementary school onwards, who helped that my love for math rises more and more with each year. Special thanks to Jurica Cudina´ who showed me a glimpse of math theory already in the high school. I thank all members of the Topology seminar in Split who always knew to ask right questions at the right moment and to guide me in the right direction. I also thank Iztok Baniˇcand the rest of the Topology seminar in Maribor who welcomed me as their member and showed me the beauty of a teamwork.
    [Show full text]
  • I-Sequential Topological Spaces∗
    Applied Mathematics E-Notes, 14(2014), 236-241 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ -Sequential Topological Spaces I Sudip Kumar Pal y Received 10 June 2014 Abstract In this paper a new notion of topological spaces namely, I-sequential topo- logical spaces is introduced and investigated. This new space is a strictly weaker notion than the first countable space. Also I-sequential topological space is a quotient of a metric space. 1 Introduction The idea of convergence of real sequence have been extended to statistical convergence by [2, 14, 15] as follows: If N denotes the set of natural numbers and K N then Kn denotes the set k K : k n and Kn stands for the cardinality of the set Kn. The natural densityf of the2 subset≤ Kg is definedj j by Kn d(K) = lim j j, n n !1 provided the limit exists. A sequence xn n N of points in a metric space (X, ) is said to be statistically f g 2 convergent to l if for arbitrary " > 0, the set K(") = k N : (xk, l) " has natural density zero. A lot of investigation has been donef on2 this convergence≥ andg its topological consequences after initial works by [5, 13]. It is easy to check that the family Id = A N : d(A) = 0 forms a non-trivial f g admissible ideal of N (recall that I 2N is called an ideal if (i) A, B I implies A B I and (ii) A I,B A implies B I.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • Compact Non-Hausdorff Manifolds
    A.G.M. Hommelberg Compact non-Hausdorff Manifolds Bachelor Thesis Supervisor: dr. D. Holmes Date Bachelor Exam: June 5th, 2014 Mathematisch Instituut, Universiteit Leiden 1 Contents 1 Introduction 3 2 The First Question: \Can every compact manifold be obtained by glueing together a finite number of compact Hausdorff manifolds?" 4 2.1 Construction of (Z; TZ ).................................5 2.2 The space (Z; TZ ) is a Compact Manifold . .6 2.3 A Negative Answer to our Question . .8 3 The Second Question: \If (R; TR) is a compact manifold, is there always a surjective ´etale map from a compact Hausdorff manifold to R?" 10 3.1 Construction of (R; TR)................................. 10 3.2 Etale´ maps and Covering Spaces . 12 3.3 A Negative Answer to our Question . 14 4 The Fundamental Groups of (R; TR) and (Z; TZ ) 16 4.1 Seifert - Van Kampen's Theorem for Fundamental Groupoids . 16 4.2 The Fundamental Group of (R; TR)........................... 19 4.3 The Fundamental Group of (Z; TZ )........................... 23 2 Chapter 1 Introduction One of the simplest examples of a compact manifold (definitions 2.0.1 and 2.0.2) that is not Hausdorff (definition 2.0.3), is the space X obtained by glueing two circles together in all but one point. Since the circle is a compact Hausdorff manifold, it is easy to prove that X is indeed a compact manifold. It is also easy to show X is not Hausdorff. Many other examples of compact manifolds that are not Hausdorff can also be created by glueing together compact Hausdorff manifolds.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
    DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V .
    [Show full text]
  • Classification of Compact 2-Manifolds
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2016 Classification of Compact 2-manifolds George H. Winslow Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Geometry and Topology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/4291 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Abstract Classification of Compact 2-manifolds George Winslow It is said that a topologist is a mathematician who can not tell the difference between a doughnut and a coffee cup. The surfaces of the two objects, viewed as topological spaces, are homeomorphic to each other, which is to say that they are topologically equivalent. In this thesis, we acknowledge some of the most well-known examples of surfaces: the sphere, the torus, and the projective plane. We then ob- serve that all surfaces are, in fact, homeomorphic to either the sphere, the torus, a connected sum of tori, a projective plane, or a connected sum of projective planes. Finally, we delve into algebraic topology to determine that the aforementioned sur- faces are not homeomorphic to one another, and thus we can place each surface into exactly one of these equivalence classes. Thesis Director: Dr. Marco Aldi Classification of Compact 2-manifolds by George Winslow Bachelor of Science University of Mary Washington Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Mathematics Virginia Commonwealth University 2016 Dedication For Lily ii Abstract It is said that a topologist is a mathematician who can not tell the difference between a doughnut and a coffee cup.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology Len Evens Rob Thompson Northwestern University City University of New York Contents Chapter 1. Introduction 5 1. Introduction 5 2. Point Set Topology, Brief Review 7 Chapter 2. Homotopy and the Fundamental Group 11 1. Homotopy 11 2. The Fundamental Group 12 3. Homotopy Equivalence 18 4. Categories and Functors 20 5. The fundamental group of S1 22 6. Some Applications 25 Chapter 3. Quotient Spaces and Covering Spaces 33 1. The Quotient Topology 33 2. Covering Spaces 40 3. Action of the Fundamental Group on Covering Spaces 44 4. Existence of Coverings and the Covering Group 48 5. Covering Groups 56 Chapter 4. Group Theory and the Seifert{Van Kampen Theorem 59 1. Some Group Theory 59 2. The Seifert{Van Kampen Theorem 66 Chapter 5. Manifolds and Surfaces 73 1. Manifolds and Surfaces 73 2. Outline of the Proof of the Classification Theorem 80 3. Some Remarks about Higher Dimensional Manifolds 83 4. An Introduction to Knot Theory 84 Chapter 6. Singular Homology 91 1. Homology, Introduction 91 2. Singular Homology 94 3. Properties of Singular Homology 100 4. The Exact Homology Sequence{ the Jill Clayburgh Lemma 109 5. Excision and Applications 116 6. Proof of the Excision Axiom 120 3 4 CONTENTS 7. Relation between π1 and H1 126 8. The Mayer-Vietoris Sequence 128 9. Some Important Applications 131 Chapter 7. Simplicial Complexes 137 1. Simplicial Complexes 137 2. Abstract Simplicial Complexes 141 3. Homology of Simplicial Complexes 143 4. The Relation of Simplicial to Singular Homology 147 5. Some Algebra. The Tensor Product 152 6.
    [Show full text]
  • Derived Smooth Manifolds
    DERIVED SMOOTH MANIFOLDS DAVID I. SPIVAK Abstract. We define a simplicial category called the category of derived man- ifolds. It contains the category of smooth manifolds as a full discrete subcat- egory, and it is closed under taking arbitrary intersections in a manifold. A derived manifold is a space together with a sheaf of local C1-rings that is obtained by patching together homotopy zero-sets of smooth functions on Eu- clidean spaces. We show that derived manifolds come equipped with a stable normal bun- dle and can be imbedded into Euclidean space. We define a cohomology theory called derived cobordism, and use a Pontrjagin-Thom argument to show that the derived cobordism theory is isomorphic to the classical cobordism theory. This allows us to define fundamental classes in cobordism for all derived man- ifolds. In particular, the intersection A \ B of submanifolds A; B ⊂ X exists on the categorical level in our theory, and a cup product formula [A] ^ [B] = [A \ B] holds, even if the submanifolds are not transverse. One can thus consider the theory of derived manifolds as a categorification of intersection theory. Contents 1. Introduction 1 2. The axioms 8 3. Main results 14 4. Layout for the construction of dMan 21 5. C1-rings 23 6. Local C1-ringed spaces and derived manifolds 26 7. Cotangent Complexes 32 8. Proofs of technical results 39 9. Derived manifolds are good for doing intersection theory 50 10. Relationship to similar work 52 References 55 1. Introduction Let Ω denote the unoriented cobordism ring (though what we will say applies to other cobordism theories as well, e.g.
    [Show full text]
  • 16. Compactness
    16. Compactness 1 Motivation While metrizability is the analyst's favourite topological property, compactness is surely the topologist's favourite topological property. Metric spaces have many nice properties, like being first countable, very separative, and so on, but compact spaces facilitate easy proofs. They allow you to do all the proofs you wished you could do, but never could. The definition of compactness, which we will see shortly, is quite innocuous looking. What compactness does for us is allow us to turn infinite collections of open sets into finite collections of open sets that do essentially the same thing. Compact spaces can be very large, as we will see in the next section, but in a strong sense every compact space acts like a finite space. This behaviour allows us to do a lot of hands-on, constructive proofs in compact spaces. For example, we can often take maxima and minima where in a non-compact space we would have to take suprema and infima. We will be able to intersect \all the open sets" in certain situations and end up with an open set, because finitely many open sets capture all the information in the whole collection. We will specifically prove an important result from analysis called the Heine-Borel theorem n that characterizes the compact subsets of R . This result is so fundamental to early analysis courses that it is often given as the definition of compactness in that context. 2 Basic definitions and examples Compactness is defined in terms of open covers, which we have talked about before in the context of bases but which we formally define here.
    [Show full text]