Scavenger Receptor CD36 Is Essential for the Cerebrovascular Oxidative Stress and Neurovascular Dysfunction Induced by Amyloid-Β
Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid-β Laibaik Parka, Gang Wanga, Ping Zhoua, Joan Zhoua, Rose Pitstickb, Mary Lou Previtic, Linda Younkind, Steven G. Younkind, William E. Van Nostrandc, Sunghee Choe, Josef Anrathera, George A. Carlsonb, and Costantino Iadecolaa,1 aDivision of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065; bMcLaughlin Research Institute, Great Falls, MT 56405; cDepartment of Neurosurgery, Stony Brook University, Stony Brook, NY 11794; dMayo Clinic Jacksonville, Jacksonville, FL 32224; and eDepartment of Neurology and Neuroscience, Weill Medical College of Cornell University, Burke Rehabilitation Center, White Plains, NY 10605 Edited by Thomas C. Südhof, Stanford University School of Medicine, Palo Alto, CA, and approved February 8, 2011 (received for review October 14, 2010) Increasing evidence indicates that cerebrovascular dysfunction anisms ensure that the brain receives a sufficient amount of plays a pathogenic role in Alzheimer’s dementia (AD). Amyloid-β blood flow at all times (9). For example, functional hyperemia (Aβ), a peptide central to the pathogenesis of AD, has profound matches the delivery of blood flow with the metabolic demands vascular effects mediated, for the most part, by reactive oxygen imposed by neural activity, whereas vasoactive agents released species produced by the enzyme NADPH oxidase. The mechanisms from endothelial cells regulate microvascular flow (9). Aβ1–40, β linking A to NADPH oxidase-dependent vascular oxidative stress but not Aβ1–42, disrupts these vital homeostatic mechanisms, have not been identified, however. We report that the scavenger leading to neurovascular dysfunction and increasing the suscep- receptor CD36, a membrane glycoprotein that binds Aβ, is essen- tibility of the brain to injury (3).
[Show full text]