1 the Identification of Colorectal Cancer Susceptibility Genes Using

Total Page:16

File Type:pdf, Size:1020Kb

1 the Identification of Colorectal Cancer Susceptibility Genes Using The Identification of Colorectal Cancer Susceptibility Genes Using a Cross-Species, Systems Genetics Approach DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Madelyn Margaret Gerber Graduate Program in Biomedical Sciences The Ohio State University 2015 Dissertation Committee: Amanda Ewart Toland, PhD, Advisor Joanna Groden, PhD Jeffrey Parvin, MD, PhD Wolfgang Sadee, Dr.rer.nat. 1 Copyright by Madelyn Margaret Gerber 2015 2 Abstract Colorectal cancer (CRC) is the third most commonly diagnosed and third leading cause of cancer-related death in the United States. As much as 35% of risk for developing this disease is due to genetic risk factors. Genome-wide association studies (GWAS) have identified ~40 independent common risk variants that contribute to genetic predisposition. However, these variants fail to explain the majority of the genetic component for risk. Identification of additional susceptibility alleles for CRC is critical for developing genetic screening tools capable of predicting individuals at heightened genetic risk. This dissertation describes three projects aimed at uncovering CRC susceptibility genes using a cross-species systems genetics approach. The first project (Chapter 2) involves assessing single nucleotide polymorphisms (SNPs) at loci that were linked to CRC risk by GWAS for allele-specific somatic copy number gains or losses in human colorectal tumor genomes. We hypothesized that GWAS-identified SNPs exhibit allele-specific copy number changes (termed ‗allele- specific imbalance,‘ or ASI) in the tumor genome of patient specimens in much the same fashion as oncogenes are amplified and tumor suppressors are lost. We tested this hypothesis using quantitative genotyping to detect relative gains or losses of GWAS- identified SNP alleles in a cohort of human paired colorectal tumor/normal DNA samples. Testing of 17 SNPs revealed statistically significant allele-specific copy number ii changes at one SNP, rs6983267 at 8q24, which suggests that ASI occurs at CRC risk loci but perhaps at low frequency. The second project discussed in this document (Chapter 3) describes a large ASI screen of SNPs tagging for candidate genes at the human orthologs of three murine CRC susceptibility quantitative trait loci (QTL). We prioritized genes for inclusion in this study based on RNA-seq data generated from the normal colons of the CRC-resistant and CRC-susceptible mouse parental strains that were used to linkage-map these QTLs. Because no protein-damaging coding SNPs were identified by RNA-seq, we focused largely on genes showing differential expression between the strains and/or genes with a documented role in cancer-relevant pathways or processes. Two SNPs in SNX10 emerged from our screen and warrant further investigation. The third project (Chapter 4) reports our preliminary functional investigations of the hypoxia-inducible factor Epas1, whose gene maps to the Scc4 susceptibility QTL. This gene is differentially expressed in the colons of the CRC-resistant and CRC- susceptible mouse strains used to map Scc4. Furthermore, five tagging SNPs within EPAS1 show suggestive evidence of ASI in human colorectal tumor/normal DNA pairs, but were not statistically significant after correction for multiple comparisons. These data prompted us to investigate EPAS1/Epas1 for functional effects in human and mouse colon cell lines. We tested this gene for effects on β-catenin/TCF-mediated transcriptional activity under conditions of normoxia and hypoxia in SW480 and HCT116 human colon adenocarcinoma cell lines. Under hypoxic culture conditions, we observed activation of our TOPflash β-catenin/TCF reporter construct when Epas1 iii expression was enforced, suggesting a plausible role for EPAS1 in modifying CRC susceptibility. In summary, our data validate our cross-species approach as an innovative strategy for uncovering novel candidate CRC susceptibility genes. iv Dedication This document is dedicated to my parents, John and Rebecca Gerber, for their loving support and guidance. My amazing mom and dad have taught me the value of hard work, optimism, and fearlessness in the face of adversity. They are truly my superheroes without capes. v Acknowledgments I would like to acknowledge my advisor, Dr. Amanda Toland, for the knowledge and training she has imparted over the four years I was fortunate to spend in her laboratory. It was an honor and a pleasure to be mentored by such an outstanding geneticist and role model for women in science. I give sincere thanks to my committee members, Drs. Groden, Parvin, and Sadee, for their wisdom and guidance throughout my graduate education. Each member of my dissertation committee has provided invaluable insights that have been tremendously beneficial to my research and to my development as a scientist. I would like to extend many heartfelt thanks to my friends, classmates, and co-workers for the support and expertise they have provided over the course of my graduate education. Each of the following individuals has contributed their friendship, support, wisdom, and scholarly advice: Jessica Fleming, Jessica Gillespie, Bill Hankey, Andrew Kerns, Morgan Schrock, Mary Severin, Mia Tazi, and Linan Wang. vi My dear friend, Mia ―Precious‖ Tazi, encouraged me on a constant basis and was the best dissertation writing buddy anyone could ask for. I truly could not have written this document were it not for her positive energy and the comic relief she so wonderfully provided. I will forever cherish the memories of working on our dissertations together in the wee hours of the morning and our writing breaks spent laughing together over episodes of Parks and Recreation. Finally, I would like to acknowledge my dear family for giving me the strength and determination to pursue a PhD. My parents, John and Rebecca, and siblings Matthew, Blake, and Eleanor have been a source of tremendous inspiration to me. My aunt, Mary Wiley, has been a role model and second mother to me since an early age. My grandmother, Margaret Wiley, possesses such a curious mind and a keen interest in science. Her curiosity and thirst for knowledge inspire the same in me. Lastly, I wish to acknowledge my late grandfather, Donald Wiley, Jr. Grandpa Wiley was my biggest cheerleader and is the bravest and wisest man I have ever known. All my love and thanks go out to those who have helped me achieve this dream. vii Vita August 6, 1988……………………………...Born, St. Paul, MN 2006…………………………………………Mahtomedi Senior High School 2010 ...............................................................B.A. Biology and Psychology, University of Minnesota, Morris 2010 to present ..............................................Graduate Research Associate, Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University Publications Gerber MM, Hampel H, Schulz NP, Fernandez S, Wei L, Zhou X-P, de la Chapelle A, Toland AE. Evaluation of allele-specific somatic changes in genome-wide association study susceptibility alleles in human colorectal cancers. PLOS ONE 2012; 7(5): e37672. Siekmann TE, Gerber MM, Toland AE. Variants in an Hdac9 intronic enhancer impact Twist1 expression. Submitted to International Journal of Cancer, In Revision, 2015. viii Gerber MM, Hampel H, Zhou XP, Deveci M, Catalyurek U, Schulz NP, Suhy A, de la Chapelle A, Eward Toland A. Allele-specific imbalance mapping at human orthologs of mouse susceptibility to colon cancer (Scc) loci. Submitted to International Journal of Cancer, In Revision, 2015. Fields of Study Major Field: Biomedical Sciences (Human Genetics and Cancer Biology Areas of Emphasis) ix Table of Contents Abstract ............................................................................................................................... ii Dedication ........................................................................................................................... v Acknowledgments.............................................................................................................. vi Vita ................................................................................................................................... viii List of Tables ................................................................................................................... xvi List of Figures ................................................................................................................ xviii Chapter 1: Introduction ...................................................................................................... 1 1.1 Biology of the Colon and Rectum ............................................................................. 1 1.2 Colorectal Cancer: Cancer of the Colon or Rectum .................................................. 2 1.3 The Genetics behind Colorectal Cancer .................................................................... 4 1.4 Strategies for Identifying Colorectal Cancer Susceptibility Genes ........................... 6 1.5 Mouse Models for the Study of Colon Carcinogenesis............................................. 9 1.6 A Cross-Species, Systems Genetics Approach to Uncover Candidate Genes ........ 13 Chapter 2: Analysis of Allele-Specific Imbalance at Single Nucleotide Polymorphisms Identified by Genome-Wide Association Studies of Colorectal Cancer .......................... 19 2.1 Introduction ............................................................................................................
Recommended publications
  • Datasheet Blank Template
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . DIP2A (L-16): sc-67555 BACKGROUND APPLICATIONS DIP2A (Disco-interacting protein 2 homolog A), also known as DIP2, is a 1,571 DIP2A (L-16) is recommended for detection of DIP2A of human origin by amino acid nuclear protein. It is one of three human homologs (DIP2A, DIP2B Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), and DIP2C) of the Drosophila dip2 (disconnected-interacting protein 2) protein. immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell In Drosophila , dip2 interacts with disco, a protein required for neuronal con - lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- nections in the visual systems of larvae and adults. The closest vertebrate 1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30- homologs to disco are the basonuclin genes. In mice, DIP2 homologs show 1:3000). restricted expression to the brain. This suggests that, similar to the function DIP2A (L-16) is also recommended for detection of DIP2A, also designated of Drosphila dip2, vertebrate DIP2 homologs may play a role in the develop - Disco-interacting protein 2 homolog A, in additional species, including ment of the nervous system. Expressed ubiquitously with highest expression canine. in the brain, DIP2A is thought to function in signaling throughout the central nervous system by providing positional clues for axon patterning and pathfind - Suitable for use as control antibody for DIP2A siRNA (h): sc-62212, DIP2A ing . Four isoforms of DIP2A exist due to alternative splicing events.
    [Show full text]
  • Longitudinal Study of Leukocyte DNA Methylation and Biomarkers for Cancer Risk in Older Adults
    bioRxiv preprint doi: https://doi.org/10.1101/597666; this version posted April 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Longitudinal Study of Leukocyte DNA Methylation and 2 Biomarkers for Cancer Risk in Older Adults 3 Alexandra H. Bartlett1, Jane W Liang1, Jose Vladimir Sandoval-Sierra1, Jay H 4 Fowke 1, Eleanor M Simonsick2, Karen C Johnson1, Khyobeni Mozhui1* 5 1Department of Preventive Medicine, University of Tennessee Health Science 6 Center, Memphis, Tennessee, USA 7 2Intramural Research Program, National Institute on Aging, Baltimore Maryland, 8 USA 9 AHB: [email protected]; JWL: [email protected]; JVSS: 10 [email protected]; JHF: [email protected]; EMS: [email protected]; 11 KCJ: [email protected]; KM: [email protected] 12 *Corresponding author: Khyobeni Mozhui 13 14 15 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/597666; this version posted April 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 19 Abstract 20 Background: Changes in DNA methylation over the course of life may provide 21 an indicator of risk for cancer. We explored longitudinal changes in CpG 22 methylation from blood leukocytes, and likelihood of a future cancer diagnosis.
    [Show full text]
  • The Role of Nuclear Lamin B1 in Cell Proliferation and Senescence
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press The role of nuclear lamin B1 in cell proliferation and senescence Takeshi Shimi,1 Veronika Butin-Israeli,1 Stephen A. Adam,1 Robert B. Hamanaka,2 Anne E. Goldman,1 Catherine A. Lucas,1 Dale K. Shumaker,1 Steven T. Kosak,1 Navdeep S. Chandel,2 and Robert D. Goldman1,3 1Department of Cell and Molecular Biology, 2Department of Medicine, Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA Nuclear lamin B1 (LB1) is a major structural component of the nucleus that appears to be involved in the regulation of many nuclear functions. The results of this study demonstrate that LB1 expression in WI-38 cells decreases during cellular senescence. Premature senescence induced by oncogenic Ras also decreases LB1 expression through a retinoblastoma protein (pRb)-dependent mechanism. Silencing the expression of LB1 slows cell proliferation and induces premature senescence in WI-38 cells. The effects of LB1 silencing on proliferation require the activation of p53, but not pRb. However, the induction of premature senescence requires both p53 and pRb. The proliferation defects induced by silencing LB1 are accompanied by a p53-dependent reduction in mitochondrial reactive oxygen species (ROS), which can be rescued by growth under hypoxic conditions. In contrast to the effects of LB1 silencing, overexpression of LB1 increases the proliferation rate and delays the onset of senescence of WI-38 cells. This overexpression eventually leads to cell cycle arrest at the G1/S boundary.
    [Show full text]
  • Identifying Novel Disease-Associated Variants and Understanding The
    Identifying Novel Disease-variants and Understanding the Role of the STAT1-STAT4 Locus in SLE A dissertation submitted to the Graduate School of University of Cincinnati In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Immunology Graduate Program of the College of Medicine by Zubin H. Patel B.S., Worcester Polytechnic Institute, 2009 John B. Harley, M.D., Ph.D. Committee Chair Gurjit Khurana Hershey, M.D., Ph.D Leah C. Kottyan, Ph.D. Harinder Singh, Ph.D. Matthew T. Weirauch, Ph.D. Abstract Systemic Lupus Erythematosus (SLE) or lupus is an autoimmune disorder caused by an overactive immune system with dysregulation of both innate and adaptive immune pathways. It can affect all major organ systems and may lead to inflammation of the serosal and mucosal surfaces. The pathogenesis of lupus is driven by genetic factors, environmental factors, and gene-environment interactions. Heredity accounts for a substantial proportion of SLE risk, and the role of specific genetic risk loci has been well established. Identifying the specific causal genetic variants and the underlying molecular mechanisms has been a major area of investigation. This thesis describes efforts to develop an analytical approach to identify candidate rare variants from trio analyses and a fine-mapping analysis at the STAT1-STAT4 locus, a well-replicated SLE-risk locus. For the STAT1-STAT4 locus, subsequent functional biological studies demonstrated genotype dependent gene expression, transcription factor binding, and DNA regulatory activity. Rare variants are classified as variants across the genome with an allele-frequency less than 1% in ancestral populations.
    [Show full text]
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Dedifferentiation by Adenovirus E1A Due to Inactivation of Hippo Pathway Effectors YAP and TAZ
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Dedifferentiation by adenovirus E1A due to inactivation of Hippo pathway effectors YAP and TAZ Nathan R. Zemke, Dawei Gou, and Arnold J. Berk Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA Adenovirus transformed cells have a dedifferentiated phenotype. Eliminating E1A in transformed human embryonic kidney cells derepressed ∼2600 genes, generating a gene expression profile closely resembling mesenchymal stem cells (MSCs). This was associated with a dramatic change in cell morphology from one with scant cytoplasm and a globular nucleus to one with increased cytoplasm, extensive actin stress fibers, and actomyosin-dependent flat- tening against the substratum. E1A-induced hypoacetylation at histone H3 Lys27 and Lys18 (H3K27/18) was reversed. Most of the increase in H3K27/18ac was in enhancers near TEAD transcription factors bound by Hippo signaling-regulated coactivators YAP and TAZ. E1A causes YAP/TAZ cytoplasmic sequestration. After eliminating E1A, YAP/TAZ were transported into nuclei, where they associated with poised enhancers with DNA-bound TEAD4 and H3K4me1. This activation of YAP/TAZ required RHO family GTPase signaling and caused histone acetylation by p300/CBP, chromatin remodeling, and cohesin loading to establish MSC-associated enhancers and then superenhancers. Consistent results were also observed in primary rat embryo kidney cells, human fibroblasts, and human respiratory tract epithelial cells. These results together with earlier studies suggest that YAP/TAZ function in a developmental checkpoint controlled by signaling from the actin cytoskeleton that prevents differ- entiation of a progenitor cell until it is in the correct cellular and tissue environment.
    [Show full text]
  • Examples of Successful Protein Expression with SUMO Reference Protein Type Family Kda System (Pubmed ID)
    Examples of Successful Protein Expression with SUMO Reference Protein Type Family kDa System (PubMed ID) 23 (FGF23), human Growth factor FGF superfamily ~26 E. coli 22249723 SARS coronavirus (SARS-CoV) membrane 3C-like (3CL) protease Viral membrane protein protein 33.8 E. coli 16211506 5′nucleotidase-related apyrase (5′Nuc) Saliva protein (apyrase) 5′nucleotidase-related proteins 65 E. coli 20351782 Acetyl-CoA carboxylase 1 (ACC1) Cytosolic enzyme Family of five biotin-dependent carboxylases ~7 E. coli 22123817 Acetyl-CoA carboxylase 2 (ACC2) BCCP domain Cytosolic enzyme Family of five biotin-dependent carboxylases ~7 E. coli 22123817 Actinohivin (AH) Lectin Anti-HIV lectin of CBM family 13 12.5 E. coli DTIC Allium sativum leaf agglutinin (ASAL) Sugar-binding protein Mannose-binding lectins 25 E. coli 20100526 Extracellular matrix Anosmin protein Marix protein 100 Mammalian 22898776 Antibacterial peptide CM4 (ABP-CM4) Antibacterial peptide Cecropin family of antimicrobial peptides 3.8 E. coli 19582446 peptide from centipede venoms of Scolopendra Antimicrobial peptide scolopin 1 (AMP-scolopin 1) small cationic peptide subspinipes mutilans 2.6 E. coli 24145284 Antitumor-analgesic Antitumor-analgesic peptide (AGAP) peptide Multifunction scorpion peptide 7 E. coli 20945481 Anti-VEGF165 single-chain variable fragment (scFv) Antibody Small antibody-engineered antibody 30 E. coli 18795288 APRIL TNF receptor ligand tumor necrosis factor (TNF) ligand 16 E. coli 24412409 APRIL (A proliferation-inducing ligand, also named TALL- Type II transmembrane 2, TRDL-1 and TNFSF-13a) protein Tumor necrosis factor (TNF) family 27.51 E. coli 22387304 Aprotinin/Basic pancreatic trypsin inhibitor (BPTI) Inhibitor Kunitz-type inhibitor 6.5 E.
    [Show full text]
  • QPCT (4E11): Sc-517122
    SANTA CRUZ BIOTECHNOLOGY, INC. QPCT (4E11): sc-517122 BACKGROUND APPLICATIONS QPCT (glutaminyl-peptide cyclotransferase) is a 361 amino acid protein that QPCT (4E11) is recommended for detection of QPCT of human origin by belongs to the glutaminyl-peptide cyclotransferase family. QPCT is responsible Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), for the presence of pyroglutamyl residues in many neuroendocrine peptides. immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell QPCT binds one zinc ion per subunit and has a bias against acidic and trypto- lysate)] and solid phase ELISA (starting dilution 1:30, dilution range 1:30- phan residues adjacent to the N-terminal glutaminyl residue. The human QPCT 1:3000). gene shares 86% overall sequence identity with its bovine homolog. QPCT Suitable for use as control antibody for QPCT siRNA (h): sc-94268, QPCT contains an N-terminal signal peptide region, several glycosylation and phos- shRNA Plasmid (h): sc-94268-SH and QPCT shRNA (h) Lentiviral Particles: phorylation sites and two cysteine residues conserved between the bovine sc-94268-V. and human enzymes. Existing as two alternatively spliced isoforms, the QPCT gene is conserved in chimpanzee, canine, bovine, mouse, rat, chicken, fruit fly, Molecular Weight of QPCT isoforms: 41/35 kDa. mosquito, M. grisea and N. crassa, and maps to human chromosome 2p22.2. RECOMMENDED SUPPORT REAGENTS REFERENCES To ensure optimal results, the following support reagents are recommended: 1. Busby, W.H., et al. 1987. An enzyme(s) that converts glutaminyl-peptides 1) Western Blotting: use m-IgGk BP-HRP: sc-516102 or m-IgGk BP-HRP (Cruz into pyroglutamyl-peptides.
    [Show full text]
  • Regulation of Cdc42 and Its Effectors in Epithelial Morphogenesis Franck Pichaud1,2,*, Rhian F
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs217869. doi:10.1242/jcs.217869 REVIEW SUBJECT COLLECTION: ADHESION Regulation of Cdc42 and its effectors in epithelial morphogenesis Franck Pichaud1,2,*, Rhian F. Walther1 and Francisca Nunes de Almeida1 ABSTRACT An overview of Cdc42 Cdc42 – a member of the small Rho GTPase family – regulates cell Cdc42 was discovered in yeast and belongs to a large family of small – polarity across organisms from yeast to humans. It is an essential (20 30 kDa) GTP-binding proteins (Adams et al., 1990; Johnson regulator of polarized morphogenesis in epithelial cells, through and Pringle, 1990). It is part of the Ras-homologous Rho subfamily coordination of apical membrane morphogenesis, lumen formation and of GTPases, of which there are 20 members in humans, including junction maturation. In parallel, work in yeast and Caenorhabditis elegans the RhoA and Rac GTPases, (Hall, 2012). Rho, Rac and Cdc42 has provided important clues as to how this molecular switch can homologues are found in all eukaryotes, except for plants, which do generate and regulate polarity through localized activation or inhibition, not have a clear homologue for Cdc42. Together, the function of and cytoskeleton regulation. Recent studies have revealed how Rho GTPases influences most, if not all, cellular processes. important and complex these regulations can be during epithelial In the early 1990s, seminal work from Alan Hall and his morphogenesis. This complexity is mirrored by the fact that Cdc42 can collaborators identified Rho, Rac and Cdc42 as main regulators of exert its function through many effector proteins.
    [Show full text]
  • Longitudinal Study of Leukocyte DNA Methylation and Biomarkers for Cancer Risk in Older Adults Alexandra H
    Bartlett et al. Biomarker Research (2019) 7:10 https://doi.org/10.1186/s40364-019-0161-3 RESEARCH Open Access Longitudinal study of leukocyte DNA methylation and biomarkers for cancer risk in older adults Alexandra H. Bartlett1, Jane W. Liang1, Jose Vladimir Sandoval-Sierra1, Jay H. Fowke1, Eleanor M. Simonsick2, Karen C. Johnson1 and Khyobeni Mozhui1* Abstract Background: Changes in DNA methylation over the course of life may provide an indicator of risk for cancer. We explored longitudinal changes in CpG methylation from blood leukocytes, and likelihood of future cancer diagnosis. Methods: Peripheral blood samples were obtained at baseline and at follow-up visit from 20 participants in the Health, Aging and Body Composition prospective cohort study. Genome-wide CpG methylation was assayed using the Illumina Infinium Human MethylationEPIC (HM850K) microarray. Results: Global patterns in DNA methylation from CpG-based analyses showed extensive changes in cell composition over time in participants who developed cancer. By visit year 6, the proportion of CD8+ T-cells decreased (p-value = 0. 02), while granulocytes cell levels increased (p-value = 0.04) among participants diagnosed with cancer compared to those who remained cancer-free (cancer-free vs. cancer-present: 0.03 ± 0.02 vs. 0.003 ± 0.005 for CD8+ T-cells; 0.52 ± 0. 14 vs. 0.66 ± 0.09 for granulocytes). Epigenome-wide analysis identified three CpGs with suggestive p-values ≤10− 5 for differential methylation between cancer-free and cancer-present groups, including a CpG located in MTA3, agene linked with metastasis. At a lenient statistical threshold (p-value ≤3×10− 5), the top 10 cancer-associated CpGs included a site near RPTOR that is involved in the mTOR pathway, and the candidate tumor suppressor genes REC8, KCNQ1,andZSWIM5.
    [Show full text]
  • Supplementary Information
    Supplementary Information PathwayMatcher: multi-omics pathway mapping and proteoform network generation Luis Francisco Hernández Sánchez1,2,3, Bram Burger4,5, Carlos Horro4,5, Antonio Fabregat3, Stefan Johansson1,2, Pål Rasmus Njølstad1,6, Harald Barsnes4,5, Henning Hermjakob3,7, and Marc Vaudel1,2,* 1 K.G. Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway 2 Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway 3 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom 4 Proteomics Unit, Department of Biomedicine, University of Bergen, Bergen, Norway 5 Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway 6 Department of Pediatrics, Haukeland University Hospital, Bergen, Norway 7 Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing, China * To whom correspondence should be addressed Abstract Mapping biomedical data to functional knowledge is an essential task in biomedicine and can be achieved by querying gene or protein identifiers in pathway knowledgebases. Here, we demonstrate that including fine-granularity information such as post-translational modifications greatly increases the specificity of the analysis. We present PathwayMatcher (github.com/PathwayAnalysisPlatform/PathwayMatcher), a bioinformatic application for mapping multi-omics data to pathways and show how this enables the
    [Show full text]
  • Inherited Neuropathies
    407 Inherited Neuropathies Vera Fridman, MD1 M. M. Reilly, MD, FRCP, FRCPI2 1 Department of Neurology, Neuromuscular Diagnostic Center, Address for correspondence Vera Fridman, MD, Neuromuscular Massachusetts General Hospital, Boston, Massachusetts Diagnostic Center, Massachusetts General Hospital, Boston, 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology Massachusetts, 165 Cambridge St. Boston, MA 02114 and The National Hospital for Neurology and Neurosurgery, Queen (e-mail: [email protected]). Square, London, United Kingdom Semin Neurol 2015;35:407–423. Abstract Hereditary neuropathies (HNs) are among the most common inherited neurologic Keywords disorders and are diverse both clinically and genetically. Recent genetic advances have ► hereditary contributed to a rapid expansion of identifiable causes of HN and have broadened the neuropathy phenotypic spectrum associated with many of the causative mutations. The underlying ► Charcot-Marie-Tooth molecular pathways of disease have also been better delineated, leading to the promise disease for potential treatments. This chapter reviews the clinical and biological aspects of the ► hereditary sensory common causes of HN and addresses the challenges of approaching the diagnostic and motor workup of these conditions in a rapidly evolving genetic landscape. neuropathy ► hereditary sensory and autonomic neuropathy Hereditary neuropathies (HN) are among the most common Select forms of HN also involve cranial nerves and respiratory inherited neurologic diseases, with a prevalence of 1 in 2,500 function. Nevertheless, in the majority of patients with HN individuals.1,2 They encompass a clinically heterogeneous set there is no shortening of life expectancy. of disorders and vary greatly in severity, spanning a spectrum Historically, hereditary neuropathies have been classified from mildly symptomatic forms to those resulting in severe based on the primary site of nerve pathology (myelin vs.
    [Show full text]