An Audible Demonstration of the Speed of Sound in Bubbly Liquids Preston S

Total Page:16

File Type:pdf, Size:1020Kb

An Audible Demonstration of the Speed of Sound in Bubbly Liquids Preston S An audible demonstration of the speed of sound in bubbly liquids Preston S. Wilson and Ronald A. Roy Citation: American Journal of Physics 76, 975 (2008); doi: 10.1119/1.2907773 View online: http://dx.doi.org/10.1119/1.2907773 View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/76/10?ver=pdfcov Published by the American Association of Physics Teachers Articles you may be interested in Correction: “Bubbles that Change the Speed of Sound” (Phys. Teach.50, Nov. 2012)page 459 Phys. Teach. 51, 72 (2013); 10.1119/1.4775519 Bubbles that Change the Speed of Sound Phys. Teach. 50, 458 (2012); 10.1119/1.4758141 Interaction between acoustic and non-acoustic mode in a bubbly liquid AIP Conf. Proc. 1433, 531 (2012); 10.1063/1.3703243 A mechanism stimulating sound production from air bubbles released from a nozzle J. Acoust. Soc. Am. 123, EL126 (2008); 10.1121/1.2908198 Sound–ultrasound interaction in bubbly fluids: Theory and possible applications Phys. Fluids 13, 3582 (2001); 10.1063/1.1416502 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.83.205.78 On: Mon, 11 May 2015 21:48:30 APPARATUS AND DEMONSTRATION NOTES Frank L. H. Wolfs, Editor Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 This department welcomes brief communications reporting new demonstrations, laboratory equip- ment, techniques, or materials of interest to teachers of physics. Notes on new applications of older apparatus, measurements supplementing data supplied by manufacturers, information which, while not new, is not generally known, procurement information, and news about apparatus under development may be suitable for publication in this section. Neither the American Journal of Physics nor the Editors assume responsibility for the correctness of the information presented. Manuscripts should be submitted using the web-based system that can be accessed via the American Journal of Physics home page, http://www.kzoo.edu/ajp/ and will be forwarded to the ADN editor for consideration. An audible demonstration of the speed of sound in bubbly liquids ͒ Preston S. Wilsona Mechanical Engineering Department and Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78712-0292 Ronald A. Roy Department of Aerospace and Mechanical Engineering, Boston University, Boston, Massachusetts 02215 ͑Received 5 January 2007; accepted 18 March 2008͒ The speed of sound in a bubbly liquid is strongly dependent upon the volume fraction of the gas phase, the bubble size distribution, and the frequency of the acoustic excitation. At sufficiently low frequencies, the speed of sound depends primarily on the gas volume fraction. This effect can be audibly demonstrated using a one-dimensional acoustic waveguide, in which the flow rate of air bubbles injected into a water-filled tube is varied by the user. The normal modes of the waveguide are excited by the sound of the bubbles being injected into the tube. As the flow rate is varied, the speed of sound varies as well, and hence, the resonance frequencies shift. This can be clearly heard through the use of an amplified hydrophone and the user can create aesthetically pleasing and even musical sounds. In addition, the apparatus can be used to verify a simple mathematical model known as Wood’s equation that relates the speed of sound of a bubbly liquid to its void fraction. © 2008 American Association of Physics Teachers. ͓DOI: 10.1119/1.2907773͔ I. INTRODUCTION a drinking glass filled with a “frothy liquid” produces a dull sound. Perhaps inspired by his former laboratory assistant,2 The interaction of sound and bubbles has been studied in Rayleigh published a paper in 1917 that described the sound 3 modern science for almost 100 years and has been part of produced by water boiling in a tea kettle. In 1933, Minnaert human consciousness for many hundreds of years, perhaps studied the sounds produced by running water, such as the 4 longer. It is a scientifically interesting and complex phenom- flowing stream and the crashing of ocean waves. The latter enon with a long and diverse history, yet our understanding two studies both introduced relationships between the size of of the phenomenon is still incomplete. Part of the intrigue a bubble and its period of oscillation with water as the host comes from the fact that minute parameter changes in a bub- medium, but Rayleigh considered steam bubbles while Min- bly fluid can have large and unexpected effects. For example, naert considered air bubbles. consider a column of water contained within a rigid tube. The acoustics of bubbly liquids now has a number of im- The addition of just a small number of bubbles, representing portant practical applications. These include a variety of in- as little as 0.1% by volume, can transform the once simple dustrial processes utilizing multiphase flow,5 microfluidic medium into a highly dispersive and nonlinear one, with a manipulation,6 and the design of nuclear reactor containment speed of sound less than 20% of the speed of sound in the systems.7 In the ocean, various acoustic techniques are used host medium. That corresponds to a 4 parts in 5 change in in conjunction with oceanic bubble populations to make the speed of sound for a 1 part in 10 000 change in the measurements relevant to meteorology, chemical oceanogra- density. It is the added compressibility of the gas phase that phy, marine fluid dynamics, and marine biology.8 By shroud- causes the reduction of the speed of sound. ing propellers and hulls with man-made bubble screens, un- The early scientific work on the acoustics of bubbles was wanted noise produced by ships and submarines is reduced.9 motivated primarily by the desire to understand certain man- Bubbles are used in medical applications to enhance ultra- made and natural curiosities. In 1910, a paper was published sound imaging,10 hemostasis,11 and therapy.12 by Mallock1 that sought to explain the fact that when struck, Both theory and measurement reveal that for acoustic ex- 975 Am. J. Phys. 76 ͑10͒, October 2008 http://aapt.org/ajp © 2008 American Association of Physics Teachers 975 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.83.205.78 On: Mon, 11 May 2015 21:48:30 citation frequencies that are close to the individual bubble If the bubble radius is perturbed, equilibrium is lost and resonance frequency, the acoustic attenuation within a bub- oscillations occur. The alternating compression and expan- bly liquid is measured in tens of decibels per centimeter, and sion of the bubble is due to the transfer of energy between that the sound speed can vary from as little as 20 m/stoas the inertia provided by the surrounding liquid and the com- much as 10 000 m/s, which is supersonic relative to bubble- pressibility of the gas inside the bubble. For the frequency free water. In the littoral ocean environment, this behavior is range between 100 and 1200 Hz and a bubble size of about a dominant obstacle for effective sonar operation because 1 mm, it is sufficient to assume lossless conditions within the bubbles and bubble clouds are produced in abundance by bubble, but dissipative effects are important in other 20 breaking waves. The acoustic contrast provided by bubbly regimes. At a hydrostatic pressure Pϱ, the compressibility liquid causes sound to be scattered from bubble clouds, and of the gas inside the bubble leads to an effective stiffness 21 hence naval sonar and mine hunting operations are hindered. 12␲¯a␯Pϱ. The bubble behaves acoustically like a pulsating Bubbles are also a source of ambient noise in the ocean. sphere and radiates sound uniformly in all directions. Since Rain drops, spray from breaking waves, and even snow can the bubble size is always much smaller than the resulting entrain bubbles when they impact the ocean surface. The acoustic wavelength, the low frequency limiting value of the impact deforms the ocean surface and creates an air cavity. acoustic radiation reactance can be used to define an effec- 3 When this cavity closes, a bubble is formed and a second tive mass, known as the radiation mass 4␲¯a ␳ᐉ, where ␳ᐉ is impact that occurs when the air cavity closes causes the the liquid density. The bubble’s resonance frequency is then 13–15 bubble to oscillate and radiate sound. Breaking waves given by the square root of the stiffness to mass ratio, or produce clouds composed of large numbers of bubbles that 1 3␯Pϱ oscillate collectively and radiate sound. These bubble clouds ␻ ͱ ͑ / ͒ ͑ ͒ 0 = radians sec . 2 are responsible for part of the ambient noise in the ocean ¯a ␳ᐉ 16 below about 1000 Hz. 4 The physics of bubble acoustics has been the subject of This relation was first derived by Minnaert in 1933, al- previous “Apparatus and Demonstration Notes” within this though via a different methodology. Minnaert considered journal,17–19 but the apparatus described here complements bubbles in the size range between 3 and 6 mm, and con- and expands upon the previous work. The apparatus consists cluded that the period of oscillation would be small com- of a transparent PVC pipe about 0.5 m in length. Air bubbles pared to the time required for the heat of compression to be are injected at the bottom of the water-filled tube and a hy- conducted away. The bubble was considered to be undergo- ␯ drophone is used to detect the resulting sounds.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Using the Partial Wave Method for Wave Structure Calculation and the Conceptual Interpretation of Elastodynamic Guided Waves
    applied sciences Article Using the Partial Wave Method for Wave Structure Calculation and the Conceptual Interpretation of Elastodynamic Guided Waves Christopher Hakoda and Cliff J. Lissenden * Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; [email protected] * Correspondence: [email protected] Received: 8 May 2018; Accepted: 8 June 2018; Published: 12 June 2018 Featured Application: Shortcut to wave-structure calculation for elastodynamic guided waves and prediction of acoustic leakage behavior. Abstract: The partial-wave method takes advantage of the Christoffel equation’s generality to represent waves within a waveguide. More specifically, the partial-wave method is well known for its usefulness when calculating dispersion curves for multilayered and/or anisotropic plates. That is, it is a vital component of the transfer-matrix method and the global-matrix method, which are used for dispersion curve calculation. The literature suggests that the method is also exceptionally useful for conceptual interpretation, but gives very few examples or instruction on how this can be done. In this paper, we expand on this topic of conceptual interpretation by addressing Rayleigh waves, Stoneley waves, shear horizontal waves, and Lamb waves. We demonstrate that all of these guided waves can be described using the partial-wave method, which establishes a common foundation on which many elastodynamic guided waves can be compared, translated, and interpreted. For Lamb waves specifically, we identify the characteristics of guided wave modes that have not been formally discussed in the literature. Additionally, we use what is demonstrated in the body of the paper to investigate the leaky characteristics of Lamb waves, which eventually leads to finding a correlation between oblique bulk wave propagation in the waveguide and the transmission amplitude ratios found in the literature.
    [Show full text]
  • Laplace and the Speed of Sound
    Laplace and the Speed of Sound By Bernard S. Finn * OR A CENTURY and a quarter after Isaac Newton initially posed the problem in the Principia, there was a very apparent discrepancy of almost 20 per cent between theoretical and experimental values of the speed of sound. To remedy such an intolerable situation, some, like New- ton, optimistically framed additional hypotheses to make up the difference; others, like J. L. Lagrange, pessimistically confessed the inability of con- temporary science to produce a reasonable explanation. A study of the development of various solutions to this problem provides some interesting insights into the history of science. This is especially true in the case of Pierre Simon, Marquis de Laplace, who got qualitatively to the nub of the matter immediately, but whose quantitative explanation performed some rather spectacular gyrations over the course of two decades and rested at times on both theoretical and experimental grounds which would later be called incorrect. Estimates of the speed of sound based on direct observation existed well before the Newtonian calculation. Francis Bacon suggested that one man stand in a tower and signal with a bell and a light. His companion, some distance away, would observe the time lapse between the two signals, and the speed of sound could be calculated.' We are probably safe in assuming that Bacon never carried out his own experiment. Marin Mersenne, and later Joshua Walker and Newton, obtained respectable results by deter- mining how far they had to stand from a wall in order to obtain an echo in a second or half second of time.
    [Show full text]
  • Introduction to Physical Chemistry – Lecture 5 Supplement: Derivation of the Speed of Sound in Air
    Introduction to Physical Chemistry – Lecture 5 Supplement: Derivation of the Speed of Sound in Air I. LECTURE OVERVIEW We can combine the results of Lecture 5 with some basic techniques in fluid mechanics to derive the speed of sound in air. For the purposes of the derivation, we will assume that air is an ideal gas. II. DERIVATION OF THE SPEED OF SOUND IN AN IDEAL GAS Consider a sound wave that is produced in an ideal gas, say air. This sound may be produced by a variety of methods (clapping, explosions, speech, etc.). The central point to note is that the sound wave is defined by a local compression and then expansion of the gas as the wave FIG. 2: An imaginary cross-sectional tube running from one passes by. A sound wave has a well-defined velocity v, side of the sound wave to the other. whose value as a function of various properties of the gas (P , T , etc.) we wish to determine. Imagine that our cross-sectional area is the opening of So, consider a sound wave travelling with velocity v, a tube that exits behind the sound wave, where the air as illustrated in Figure 1. From the perspective of the density is ρ + dρ, and velocity is v + dv. Since there is sound wave, the sound wave is still, and the air ahead of no mass accumulation inside the tube, then applying the it is travelling with velocity v. We assume that the air principle of conservation of mass we have, has temperature T and P , and that, as it passes through the sound wave, its velocity changes to v + dv, and its ρAv = (ρ + dρ)A(v + dv) ⇒ temperature and pressure change slightly as well, to T + ρv = ρv + vdρ + ρdv + dvdρ ⇒ dT and P + dP , respectively (see Figure 1).
    [Show full text]
  • The Physics of Sound 1
    The Physics of Sound 1 The Physics of Sound Sound lies at the very center of speech communication. A sound wave is both the end product of the speech production mechanism and the primary source of raw material used by the listener to recover the speaker's message. Because of the central role played by sound in speech communication, it is important to have a good understanding of how sound is produced, modified, and measured. The purpose of this chapter will be to review some basic principles underlying the physics of sound, with a particular focus on two ideas that play an especially important role in both speech and hearing: the concept of the spectrum and acoustic filtering. The speech production mechanism is a kind of assembly line that operates by generating some relatively simple sounds consisting of various combinations of buzzes, hisses, and pops, and then filtering those sounds by making a number of fine adjustments to the tongue, lips, jaw, soft palate, and other articulators. We will also see that a crucial step at the receiving end occurs when the ear breaks this complex sound into its individual frequency components in much the same way that a prism breaks white light into components of different optical frequencies. Before getting into these ideas it is first necessary to cover the basic principles of vibration and sound propagation. Sound and Vibration A sound wave is an air pressure disturbance that results from vibration. The vibration can come from a tuning fork, a guitar string, the column of air in an organ pipe, the head (or rim) of a snare drum, steam escaping from a radiator, the reed on a clarinet, the diaphragm of a loudspeaker, the vocal cords, or virtually anything that vibrates in a frequency range that is audible to a listener (roughly 20 to 20,000 cycles per second for humans).
    [Show full text]
  • Directivity Patterns of Laser-Generated Sound in Solids: Effects of Optical and Thermal Parameters
    Directivity patterns of laser-generated sound in solids: Effects of optical and thermal parameters Victor V. Krylov Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK Abstract In the present paper, directivity patterns of laser-generated sound in solids are investigated theoretically. Two main approaches to the calculation of directivity patterns of laser- generated sound are discussed for the most important case of thermo-optical regime of generation. The first approach, which is widely used in practice, is based on the simple modelling of the equivalent thermo-optical source as a mechanical dipole comprising two horizontal forces applied to the surface in opposite directions. The second approach is based on the rigorous theory that takes into account all acoustical, optical and thermal parameters of a solid material and all geometrical and physical parameters of a laser beam. Directivity patterns of laser-generated bulk longitudinal and shear elastic waves, as well as the amplitudes of generated Rayleigh surface waves, are calculated for different values of physical and geometrical parameters and compared with the directivity patterns calculated in case of dipole-source representation. It is demonstrated that the simple approach using a dipole-source representation of laser-generated sound is rather limited, especially for description of generated longitudinal acoustic waves. A practical criterion is established to define the conditions under which the dipole-source representation gives predictions with acceptable errors. It is shown that, for radiation in the normal direction to the surface, the amplitudes of longitudinal waves are especially sensitive to the values of thermal parameters and of the acoustic reflection coefficient from a free solid surface.
    [Show full text]
  • FORMULAS for CALCULATING the SPEED of SOUND Revision G
    FORMULAS FOR CALCULATING THE SPEED OF SOUND Revision G By Tom Irvine Email: [email protected] July 13, 2000 Introduction A sound wave is a longitudinal wave, which alternately pushes and pulls the material through which it propagates. The amplitude disturbance is thus parallel to the direction of propagation. Sound waves can propagate through the air, water, Earth, wood, metal rods, stretched strings, and any other physical substance. The purpose of this tutorial is to give formulas for calculating the speed of sound. Separate formulas are derived for a gas, liquid, and solid. General Formula for Fluids and Gases The speed of sound c is given by B c = (1) r o where B is the adiabatic bulk modulus, ro is the equilibrium mass density. Equation (1) is taken from equation (5.13) in Reference 1. The characteristics of the substance determine the appropriate formula for the bulk modulus. Gas or Fluid The bulk modulus is essentially a measure of stress divided by strain. The adiabatic bulk modulus B is defined in terms of hydrostatic pressure P and volume V as DP B = (2) - DV / V Equation (2) is taken from Table 2.1 in Reference 2. 1 An adiabatic process is one in which no energy transfer as heat occurs across the boundaries of the system. An alternate adiabatic bulk modulus equation is given in equation (5.5) in Reference 1. æ ¶P ö B = ro ç ÷ (3) è ¶r ø r o Note that æ ¶P ö P ç ÷ = g (4) è ¶r ø r where g is the ratio of specific heats.
    [Show full text]
  • Speed of Sound in a System Approaching Thermodynamic Equilibrium
    Proceedings of the DAE-BRNS Symp. on Nucl. Phys. 61 (2016) 842 Speed of Sound in a System Approaching Thermodynamic Equilibrium Arvind Khuntia1, Pragati Sahoo1, Prakhar Garg1, Raghunath Sahoo1∗, and Jean Cleymans2 1Discipline of Physics, School of Basic Science, Indian Institute of Technology Indore, Khandwa Road, Simrol, M.P. 453552, India 2UCT-CERN Research Centre and Department of Physics, University of Cape Town, Rondebosch 7701, South Africa Introduction uses Experimental high energy collisions at 1 fT (E) ≡ : (1) RHIC and LHC give an opportunity to study E−µ the space-time evolution of the created hot expq T ± 1 and dense matter known as QGP at high ini- tial energy density and temperature. As the where the function expq(x) is defined as initial pressure is very high, the system un- ( dergo expansion with decreasing temperature [1 + (q − 1)x]1=(q−1) if x > 0 exp (x) ≡ and energy density till the occurrence of the fi- q [1 + (1 − q)x]1=(1−q) if x ≤ 0 nal kinetic freeze-out. This change in pressure with energy density is related to the speed of (2) sound inside the system. The QGP formed and, in the limit where q ! 1 it re- in heavy ion collisions evolves from the initial duces to the standard exponential; QGP phase to a hadronic phase via a possi- limq!1 expq(x) ! exp(x). In the present con- ble mixed phase. The speed of sound reduces text we have taken µ = 0, therefore x ≡ E=T to zero on the phase boundary in a first or- is always positive.
    [Show full text]
  • Acoustics: the Study of Sound Waves
    Acoustics: the study of sound waves Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us. As an object vibrates, it sets the surrounding air in motion, sending alternating waves of compression and rarefaction radiating outward from the object. Sound information is transmitted by the amplitude and frequency of the vibrations, where amplitude is experienced as loudness and frequency as pitch. The familiar movement of an instrument string is a transverse wave, where the movement is perpendicular to the direction of travel (See Figure 1). Sound waves are longitudinal waves of compression and rarefaction in which the air molecules move back and forth parallel to the direction of wave travel centered on an average position, resulting in no net movement of the molecules. When these waves strike another object, they cause that object to vibrate by exerting a force on them. Examples of transverse waves: vibrating strings water surface waves electromagnetic waves seismic S waves Examples of longitudinal waves: waves in springs sound waves tsunami waves seismic P waves Figure 1: Transverse and longitudinal waves The forces that alternatively compress and stretch the spring are similar to the forces that propagate through the air as gas molecules bounce together. (Springs are even used to simulate reverberation, particularly in guitar amplifiers.) Air molecules are in constant motion as a result of the thermal energy we think of as heat. (Room temperature is hundreds of degrees above absolute zero, the temperature at which all motion stops.) At rest, there is an average distance between molecules although they are all actively bouncing off each other.
    [Show full text]
  • St. Dom's Is Proud to Recognize Our Alumni Who Are Achieving
    Ronald Roy, Ph.D. ‘75 A Journey through Science St. Dom’s is proud to recognize our alumni who are achieving greatness in their personal and professional lives. Our graduates have done many noteworthy things. Among them is Prof. Ronald Roy, a member of the class of 1975. Having recently been named the next Head of the Department of Engineering Science at Oxford University only scratches the surface of his list of accomplishments in the realm of science. Fortifying this honor is the fact that Oxford engineering is ranked #1 in the world, and Ron is the first ever American to be selected to fill this post. In pursuit of a career in science, Ron attended the University of Maine and earned a B.S. in engineering physics in 1981. Having not quenched his thirst for knowledge, Ron went on to earn a Master of Science degree in Physics at the University of Mississippi (1983), a Master of Philosophy degree (1985) and a Ph.D. (1987) at the Yale University School of Engineering and Applied Science. He was also conferred an M.A. degree at the University of Oxford by special resolution in 2006. After a lengthy career as a student of engineering, it seems natural that Ron then began imparting his vast knowledge to young engineers. He served as Professor and Chairman of the Department of Mechanical Engineering at Boston University and as a Senior Physicist at the Applied Physics Laboratory and an Associate Research Professor of Bioengineering, both at the University of Washington. In addition, Ron held a stint on the research staff at the National Center for Physical Acoustics at the University of Mississippi.
    [Show full text]
  • Chapter 12: Physics of Ultrasound
    Chapter 12: Physics of Ultrasound Slide set of 54 slides based on the Chapter authored by J.C. Lacefield of the IAEA publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for Teachers and Students Objective: To familiarize students with Physics or Ultrasound, commonly used in diagnostic imaging modality. Slide set prepared by E.Okuno (S. Paulo, Brazil, Institute of Physics of S. Paulo University) IAEA International Atomic Energy Agency Chapter 12. TABLE OF CONTENTS 12.1. Introduction 12.2. Ultrasonic Plane Waves 12.3. Ultrasonic Properties of Biological Tissue 12.4. Ultrasonic Transduction 12.5. Doppler Physics 12.6. Biological Effects of Ultrasound IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,2 12.1. INTRODUCTION • Ultrasound is the most commonly used diagnostic imaging modality, accounting for approximately 25% of all imaging examinations performed worldwide nowadays • Ultrasound is an acoustic wave with frequencies greater than the maximum frequency audible to humans, which is 20 kHz IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,3 12.1. INTRODUCTION • Diagnostic imaging is generally performed using ultrasound in the frequency range from 2 to 15 MHz • The choice of frequency is dictated by a trade-off between spatial resolution and penetration depth, since higher frequency waves can be focused more tightly but are attenuated more rapidly by tissue The information in an ultrasonic image is influenced by the physical processes underlying propagation, reflection and attenuation of ultrasound waves in tissue IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,4 12.1.
    [Show full text]
  • Speed of Sound in Water by a Direct Method 1 Martin Greenspan and Carroll E
    Journal of Rese arch of the National Bureau of Standards Vol. 59, No.4, October 1957 Research Paper 2795 Speed of Sound in Water by a Direct Method 1 Martin Greenspan and Carroll E. Tschiegg The speed of sound in distilled water wa,s m easured over the temperature ra nge 0° to 100° C with an accuracy of 1 part in 30,000. The results are given as a fifth-degree poly­ nomial and in tables. The water was contained in a cylindrical tank of fix ed length, termi­ nated at each end by a plane transducer, and the end-to-end time of flight of a pulse of sound was determined from a measurement of t he pulse-repetition frequency required to set the successive echoes into t im e coincidence. 1. Introduction as the two pulses have different shapes, the accurac.,' with which the coincidence could be set would be The speed of sound in water, c, is a physical very poor. Instead, the oscillator is run at about property of fundamental interest; it, together with half this frequency and the coincidence to be set is the density, determines the adiabatie compressibility, that among the first received pulses corresponding to and eventually the ratio of specific heats. The vari­ a particular electrical pulse, the first echo correspond­ ation with temperature is anomalous; water is the ing to the electrical pulse next preceding, and so on . only pure liquid for which it is known that the speed Figure 1 illustrates the uccessive signals correspond­ of sound does not decrcase monotonically with ing to three electrical input pul es.
    [Show full text]