Strategic Management of Artificial Watering Points for Biodiversity Conservation

Total Page:16

File Type:pdf, Size:1020Kb

Strategic Management of Artificial Watering Points for Biodiversity Conservation Strategic Management of Artificial Watering Points for Biodiversity Conservation Rebecca Montague-Drake Bachelor of Science (Resource and Environmental Management) Hons A Thesis submitted for the Degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences The University of New South Wales, Australia 2004 Certificate of Originality I hereby declare that this submission is my own work and to the best of my knowledge it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at The University of New South Wales or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at The University of New South Wales or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. Rebecca Montague-Drake July 2004 Abstract Since pastoralism began in Australia’s rangelands, the number of artificial watering points (AWPs) has increased dramatically, such that today, few areas of rangeland are further than 10 km from water. This increased availability of water has caused many ecological impacts. Unfortunately, such impacts are poorly understood in the context of an Australian conservation reserve, thus hindering strategic management. This study examined the spatial distribution of vertebrate (kangaroos, small mammals, lizards and avifauna) and vegetative variables around open AWPs as well as AWPs that have been closed since pastoralism (sheep-grazing) ceased nearly thirty years ago in Sturt National Park, arid New South Wales. The study also examined vertebrate use of AWPs, with a particular emphasis on kangaroos and avifauna. The study revealed that most variables showed few differences in spatial distribution with distance from open and closed AWPs, thus suggesting that the observed piospheric impacts were primarily attributable to historical sheep-grazing. Indeed, piospheric patterns were weak suggesting some recovery over the last thirty years. That kangaroos did not exhibit water-focused grazing is no surprise, since despite their regular use of AWPs, particularly during hot, dry times, the current spatial arrangement of AWPs facilitates regular travel to, and from, such resources allowing kangaroos, like much other fauna, to distribute themselves in relation to food and shelter preferences rather than in relation to water supply. In contrast, the majority of avifaunal groups (excluding ground-dwelling species) were clustered around open AWPs, often irrespective of season, because of food and water requirements. Such spatial concentrations of avifauna are thought to cause a range of interspecific effects. Experimental AWP closure and GIS modelling showed that whilst closure of AWPs will increase the average distance to water, which will have key benefits, the majority of areas in Sturt National Park would still be accessible to most water- dependent species even if all unused AWPs were closed. Strategic retention of AWPs to replace water sources lost since European settlement, aid threatened and migratory species’ conservation and enhance nature-based tourism opportunities is thus recommended and an example of a strategic management and monitoring plan outlined. i Acknowledgements I would firstly like to greatly thank my supervisor, Dr David Croft, for all of his varied assistance. I would especially like to thank him for his constructive feedback, statistical advice, sourcing of funding and equipment, design of specialised computer programs and his field assistance, particularly his time spent collaring kangaroos and installing the remote data units. I would also especially like to thank him for entrusting this project to me. The experience has not only greatly increased my understanding of ecology, but has left me with wonderful memories of my time in Sturt National Park. I would also very much like to thank the NSW National Parks and Wildlife Service, Tibooburra Area, for their generous in-kind support and especially for allowing me to work in Sturt National Park and stay at Olive Downs Homestead. I would particularly like to thank Lars Kogge, John Jackson, Ingrid Witte, Dan Hough and Anne-Maree Smith for their varied assistance over the study and great friendship. In particular, I would like to thank the Tibooburra Area for diesel, use of the tractor for pitfall digging, mechanical assistance, personnel hours and use of office facilities. I would sincerely like to thank the many volunteers (a.k.a. the “Germans”), for their assistance, friendship and laughs in the field and Dr Udo Ganslosser for organising volunteers. Without such assistants, the project would not have been as comprehensive. I would also like to thank staff at the University of NSW, in particular Paul Adams (Fowlers Gap Research Station) for assistance with, and use of, the good ol’ Navara, Jan de Naardi and Frank Hemmings (John T. Waterhouse Herbarium) for helping to identify plant specimens and Assoc. Prof. Paul Adam for his varied support. I also would like to thank the NSW National Parks and Wildlife Service Kangaroo Management Program for financial and other support and the NSW National Parks and Wildlife Service, Threatened Species Unit, Dubbo for pitfall funding. I would also like to thank the people of Tibooburra for their many kindnesses over the study, particularly John and Mavis Jackson and Caroline and Wayne Betts. I wish to heartily thank Anke Frank and Amanda Bilton for their friendship, without which, my experiences in far western NSW would not have been the same. I would especially like to thank Anke for her untiring field assistance and enthusiasm. I would also like to thank my parents for their interest, love and understanding and for kindling my passion for nature. Finally, but especially, I would like to lovingly thank my partner, Josh Bean, who has been an unfailing source of support in every aspect of my project, and to whom words can not express my immense gratitude. This project was funded by a federal government ‘Strategic Partnerships in Research and Training’ (SPIRT) grant with the Western Directorate of the NSW National Parks and Wildlife Service and an Australian Postgraduate Award scholarship. ii Table of Contents Abstract .......................................................................................................................... i Acknowledgments......................................................................................................... ii Table of Contents .........................................................................................................iii List of Tables .............................................................................................................viii List of Figures ............................................................................................................... x List of Plates................................................................................................................ xii List of Commonly Used Abbreviations .....................................................................xiii Chapter 1 Introduction............................................................................................... 1 1.1 Study Rationale ....................................................................................................... 1 1.2 A Brief History of Pastoralism in the Rangelands.................................................. 3 1.3 Changes in the Rangelands since European Settlement.......................................... 4 1.4 Twentieth Century Management of the Rangelands............................................... 9 1.5 Impacts of Artificial Watering Points ................................................................... 10 1.5.1 Background.................................................................................................. 10 1.5.2 Temporal Distribution around AWPs.......................................................... 10 1.5.3 Spatial Distribution around Open AWPs .................................................... 13 1.5.4 Spatial Distribution around Closed AWPs.................................................. 24 1.6 Faunal Use of AWPs............................................................................................. 26 1.6.1 Introduction ................................................................................................. 26 1.6.2 Kangaroo Use of AWPs .............................................................................. 26 1.6.3 Small Mammal Use of AWPs .................................................................... 29 1.6.4 Herpetofaunal Use of AWPs ....................................................................... 29 1.6.5 Avifaunal Use of AWPs .............................................................................. 30 1.7 Strategic Management of AWPs........................................................................... 32 1.8 Scope of the Thesis .............................................................................................. 33 1.9 Structure of the Thesis .......................................................................................... 34
Recommended publications
  • Lake Pinaroo Ramsar Site
    Ecological character description: Lake Pinaroo Ramsar site Ecological character description: Lake Pinaroo Ramsar site Disclaimer The Department of Environment and Climate Change NSW (DECC) has compiled the Ecological character description: Lake Pinaroo Ramsar site in good faith, exercising all due care and attention. DECC does not accept responsibility for any inaccurate or incomplete information supplied by third parties. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. Readers should seek appropriate advice about the suitability of the information to their needs. © State of New South Wales and Department of Environment and Climate Change DECC is pleased to allow the reproduction of material from this publication on the condition that the source, publisher and authorship are appropriately acknowledged. Published by: Department of Environment and Climate Change NSW 59–61 Goulburn Street, Sydney PO Box A290, Sydney South 1232 Phone: 131555 (NSW only – publications and information requests) (02) 9995 5000 (switchboard) Fax: (02) 9995 5999 TTY: (02) 9211 4723 Email: [email protected] Website: www.environment.nsw.gov.au DECC 2008/275 ISBN 978 1 74122 839 7 June 2008 Printed on environmentally sustainable paper Cover photos Inset upper: Lake Pinaroo in flood, 1976 (DECC) Aerial: Lake Pinaroo in flood, March 1976 (DECC) Inset lower left: Blue-billed duck (R. Kingsford) Inset lower middle: Red-necked avocet (C. Herbert) Inset lower right: Red-capped plover (C. Herbert) Summary An ecological character description has been defined as ‘the combination of the ecosystem components, processes, benefits and services that characterise a wetland at a given point in time’.
    [Show full text]
  • Birding Nsw Birding
    Birding NSW Newsletter Page 1 birding NewsletterNewsletter NSWNSW FieldField OrnithologistsOrnithologists ClubClub IncInc nsw IssueIssue 287287 JuneJune -- JulyJuly 20182018 President’s Report I am pleased to inform you that Ross Crates, who is doing We had 30 surveyors, some of whom were new. One of important work on the endangered Regent Honeyeater, the strengths of the survey is that while some surveyors will receive the money from this year’s NSW Twitchathon cannot attend every survey, there are enough new people fund-raising event. This decision was made at the recent that there is a pool of about 30 surveyors for each event. Bird Interest Group network (BIGnet) meeting at Sydney Most surveyors saw Superb Parrots in March. Olympic Park. At this meeting, it was also agreed At the club meetings in April and May, we were fortunate unanimously that in future, all BIGnet clubs would have to have had two superb lectures from the National Parks an equal opportunity to submit proposals annually for and Wildlife Service branch of the Office of Environment funding support from the Twitchathon in NSW, replacing and Heritage, one by Principal Scientist Nicholas Carlile the previous protocol of alternating annual decision- on Gould’s Petrels, and another by Ranger Martin Smith making between NSW clubs and BirdLife Southern NSW. on the Little Tern and other shorebirds. Both speakers Allan Richards led a highly successful campout to Ingelba were obviously highly committed to their work and to the near Walcha on the Easter Long Weekend. One of the National Parks and Wildlife Service. At a time of major highlights was great views of platypuses.
    [Show full text]
  • Sturt National Park
    Plan of Management Sturt National Park © 2018 State of NSW and the Office of Environment and Heritage With the exception of photographs, the State of NSW and the Office of Environment and Heritage (OEH) are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. OEH has compiled this publication in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage that may occur to any person or organisation taking action or not on the basis of this publication. All content in this publication is owned by OEH and is protected by Crown Copyright. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) , subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons . OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2018. This plan of management was adopted by the Minister for the Environment on 23 January 2018. Acknowledgments OEH acknowledges that Sturt is in the traditional Country of the Wangkumara and Malyangapa people. This plan of management was prepared by staff of the NSW National Parks and Wildlife Service (NPWS), part of OEH.
    [Show full text]
  • Management of the Terrestrial Small Mammal and Lizard Communities in the Dune System Of
    Management of the terrestrial small mammal and lizard communities in the dune system of Sturt National Park, Australia: Historic and contemporary effects of pastoralism and fox predation Ulrike Sabine Klöcker (Dipl. – Biol., Rheinische Friedrich-Wilhelms Universität Bonn, Germany) Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences The University of New South Wales, Sydney, Australia 2009 Abstract This thesis addressed three issues related to the management and conservation of small terrestrial vertebrates in the arid zone. The study site was an amalgamation of pastoral properties forming the now protected area of Sturt National Park in far-western New South Wales, Australia. Thus firstly, it assessed recovery from disturbance accrued through more than a century of Sheep grazing. Vegetation parameters, Fox, Cat and Rabbit abundance, and the small vertebrate communities were compared, with distance to watering points used as a surrogate for grazing intensity. Secondly, the impacts of small-scale but intensive combined Fox and Rabbit control on small vertebrates were investigated. Thirdly, the ecology of the rare Dusky Hopping Mouse (Notomys fuscus) was used as an exemplar to illustrate and discuss some of the complexities related to the conservation of small terrestrial vertebrates, with a particular focus on desert rodents. Thirty-five years after the removal of livestock and the closure of watering points, areas that were historically heavily disturbed are now nearly indistinguishable from nearby relatively undisturbed areas, despite uncontrolled native herbivore (kangaroo) abundance. Rainfall patterns, rather than grazing history, were responsible for the observed variation between individual sites and may overlay potential residual grazing effects.
    [Show full text]
  • Fowlers Gap Biodiversity Checklist Reptiles
    Fowlers Gap Biodiversity Checklist ow if there are so many lizards then they should make tasty N meals for someone. Many of the lizard-eaters come from their Reptiles own kind, especially the snake-like legless lizards and the snakes themselves. The former are completely harmless to people but the latter should be left alone and assumed to be venomous. Even so it odern reptiles are at the most diverse in the tropics and the is quite safe to watch a snake from a distance but some like the Md rylands of the world. The Australian arid zone has some of the Mulga Snake can be curious and this could get a little most diverse reptile communities found anywhere. In and around a disconcerting! single tussock of spinifex in the western deserts you could find 18 species of lizards. Fowlers Gap does not have any spinifex but even he most common lizards that you will encounter are the large so you do not have to go far to see reptiles in the warmer weather. Tand ubiquitous Shingleback and Central Bearded Dragon. The diversity here is as astonishing as anywhere. Imagine finding six They both have a tendency to use roads for passage, warming up or species of geckos ranging from 50-85 mm long, all within the same for display. So please slow your vehicle down and then take evasive genus. Or think about a similar diversity of striped skinks from 45-75 action to spare them from becoming a road casualty. The mm long! How do all these lizards make a living in such a dry and Shingleback is often seen alone but actually is monogamous and seemingly unproductive landscape? pairs for life.
    [Show full text]
  • White-Throated Nightjar Eurostopodus Mystacalis: Diurnal Over-Sea Migration in a Nocturnal Bird
    32 AUSTRALIAN FIELD ORNITHOLOGY 2011, 28, 32–37 White-throated Nightjar Eurostopodus mystacalis: Diurnal Over-sea Migration in a Nocturnal Bird MIKE CARTER1 and BEN BRIGHT2 130 Canadian Bay Road, Mount Eliza, Victoria 3930 (Email: [email protected]) 2P.O. Box 643, Weipa, Queensland 4874 Summary A White-throated Nightjar Eurostopodus mystacalis was photographed flying low above the sea in the Gulf of Carpentaria, Queensland, at ~1600 h on 25 August 2010. Sightings of Nightjars behaving similarly in the same area in the days before obtaining the conclusive photographs suggest that they were on southerly migration, returning from their wintering sojourn in New Guinea to their breeding grounds in Australia. Other relevant sightings are given, and the significance of this behaviour is discussed. The evidence Observations in 2010 At 0900 h on 21 August 2010, whilst conducting a fishing charter by boat in the Gulf of Carpentaria off the western coast of Cape York, Queensland, BB observed an unusual bird flying low over the sea. Although his view was sufficient to excite curiosity, it did not enable identification. Twice on 23 August 2010, the skipper of a companion vessel, who had been alerted to the sighting, had similar experiences. Then at 1600 h on 25 August 2010, BB saw ‘the bird’ again. In order to determine its identity, he followed it, which necessitated his boat reaching speeds of 20–25 knots. During the pursuit, which lasted 10–15 minutes, he obtained over 15 photographs and a video recording. He formed the opinion that the bird was a nightjar, most probably a White-throated Nightjar Eurostopodus mystacalis.
    [Show full text]
  • Roosting in Exposed Microsites by a Nocturnal Bird, the Rufous-Cheeked Nightjar
    bioRxiv preprint doi: https://doi.org/10.1101/206300; this version posted October 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Roosting in exposed microsites by a nocturnal bird, the rufous-cheeked nightjar: 2 implications for water balance under current and future climate conditions 3 4 Ryan S. O’Connor 5 DST-NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology and 6 Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa. 7 Email: [email protected] 8 9 R. Mark Brigham 10 Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada. 11 Email: [email protected]. 12 13 Andrew E. McKechnie* 14 DST-NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology and 15 Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa. 16 South African Research Chair in Conservation Physiology, National Zoological Gardens of 17 South Africa, P.O. Box 754, Pretoria 0001, South Africa. 18 Email: [email protected]. 19 20 * Author for correspondence 1 bioRxiv preprint doi: https://doi.org/10.1101/206300; this version posted October 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • OF the TOWNSVILLE REGION LAKE ROSS the Beautiful Lake Ross Stores Over 200,000 Megalitres of Water and Supplies up to 80% of Townsville’S Drinking Water
    BIRDS OF THE TOWNSVILLE REGION LAKE ROSS The beautiful Lake Ross stores over 200,000 megalitres of water and supplies up to 80% of Townsville’s drinking water. The Ross River Dam wall stretches 8.3km across the Ross River floodplain, providing additional flood mitigation benefit to downstream communities. The Dam’s extensive shallow margins and fringing woodlands provide habitat for over 200 species of birds. At times, the number of Australian Pelicans, Black Swans, Eurasian Coots and Hardhead ducks can run into the thousands – a magic sight to behold. The Dam is also the breeding area for the White-bellied Sea-Eagle and the Osprey. The park around the Dam and the base of the spillway are ideal habitat for bush birds. The borrow pits across the road from the dam also support a wide variety of water birds for some months after each wet season. Lake Ross and the borrow pits are located at the end of Riverway Drive, about 14km past Thuringowa Central. Birds likely to be seen include: Australasian Darter, Little Pied Cormorant, Australian Pelican, White-faced Heron, Little Egret, Eastern Great Egret, Intermediate Egret, Australian White Ibis, Royal Spoonbill, Black Kite, White-bellied Sea-Eagle, Australian Bustard, Rainbow Lorikeet, Pale-headed Rosella, Blue-winged Kookaburra, Rainbow Bee-eater, Helmeted Friarbird, Yellow Honeyeater, Brown Honeyeater, Spangled Drongo, White-bellied Cuckoo-shrike, Pied Butcherbird, Great Bowerbird, Nutmeg Mannikin, Olive-backed Sunbird. White-faced Heron ROSS RIVER The Ross River winds its way through Townsville from Ross Dam to the mouth of the river near the Townsville Port.
    [Show full text]
  • (Marcr) 2010 - 2011
    Cairn Hill Magnetite-Copper-Gold Project Mining and Rehabilitation Compliance Report (MARCR) 2010 - 2011 26 July 2011 Reference No. Cairn Hill ML 6303 MARCR 2010-2011 Rev1 Document / Project Summary Information Mine Owner Termite Resources NL Mine Operator Termite Resources NL Primary Contact Person Simon Parsons, General Manager – Cairn Hill Contact Details Level 2, 16 Vardon Avenue, Adelaide 5000 Tel: +61 8 8227 0277 Fax: +61 8 8232 6740 Email: [email protected] Name of Mining Operation Cairn Hill Commodity Mined Magnetite-Copper-Gold Document Title Cairn Hill Magnetite – Copper – Gold Mining Project Mining and Rehabilitation Compliance Report (MARCR) 2010 – 2011 ML Granted 17 April 2008 ML Number ML 6303 Recipient: Mr Hans Bailiht – Principal Mining Regulator (Metallic & Uranium), Inspector of Mines Mining Regulation & Rehabilitation Branch Primary Industries and Resources South Australia GPO Box 1671 ADELAIDE SA 5001 Author: A Woidt – Termite Resources NL Reviewer: S Staines – Termite Resources NL Approved by: S Parsons – Termite Resources NL Date: 26 July 2011 Distribution: PIRSA (3 hard copies, 1 electronic copy), Termite Resources NL (2 hard copies, 1 electronic copy), IMX Resources (1 hard copy, 1 electronic copy) Cairn Hill ML 6303 MARCR 2010-2011 Rev1 i Contents 1 Introduction ....................................................................................................................................................... 1 1.1 General ...................................................................................................................................................
    [Show full text]
  • Torpor in Australian Birds
    52(Supplement): 405–408, 2006 Acta Zoologica Sinica S22-4 Torpor in Australian birds Fritz GEISER1*, Gerhard KÖRTNER1, Tracy A. MADDOCKS1, R. Mark BRIGHAM2 1. Dept. of Zoology, BBMS, University of New England, Armidale, NSW 2351, Australia; *[email protected] 2. Dept. of Biology, University of Regina, Regina, SK S4S 0A2, Canada; [email protected] Abstract Energy-conserving torpor is characterized by pronounced reductions in body temperature and metabolic rate and, in Australian birds, is known to occur in the Caprimulgiformes (spotted nightjar, Australian owlet-nightjar, tawny frogmouth), Apodiformes (white-throated needletail) and the Passeriformes (dusky woodswallow). Anecdotal evidence suggests that it also may occur in the white-fronted honeyeater, crimson chat, banded whiteface, red-capped robin, white-backed swallow, mistletoebird, and perhaps welcome swallow. Daily torpor (bouts lasting for several hours) appears to be the most common pattern, although anecdotal evidence indicates that white-backed swallows can undergo prolonged torpor. Diurnal birds enter torpor only during the night but nocturnal birds may use it by the day and/or night, and often in more than one bout/day. Body temperatures fall from ~38–41°C during activity to ~29°C during torpor in spotted nightjars, tawny frogmouths, dusky woodswallows and white-throated needletails, and to ~22°C in Australian owlet-nightjars. In the spotted nightjar, a reduction in Tb by ~10°C resulted in a 75% reduction in metabolic rate, emphasizing energy conservation potential. Since torpor is likely to be more crucial for the survival of small birds, a detailed understanding of its use is important, not only for physiolo- gists but also ecologists and wildlife managers.
    [Show full text]
  • A Biological Survey of the Murray Mallee South Australia
    A BIOLOGICAL SURVEY OF THE MURRAY MALLEE SOUTH AUSTRALIA Editors J. N. Foulkes J. S. Gillen Biological Survey and Research Section Heritage and Biodiversity Division Department for Environment and Heritage, South Australia 2000 The Biological Survey of the Murray Mallee, South Australia was carried out with the assistance of funds made available by the Commonwealth of Australia under the National Estate Grants Programs and the State Government of South Australia. The views and opinions expressed in this report are those of the authors and do not necessarily represent the views or policies of the Australian Heritage Commission or the State Government of South Australia. This report may be cited as: Foulkes, J. N. and Gillen, J. S. (Eds.) (2000). A Biological Survey of the Murray Mallee, South Australia (Biological Survey and Research, Department for Environment and Heritage and Geographic Analysis and Research Unit, Department for Transport, Urban Planning and the Arts). Copies of the report may be accessed in the library: Environment Australia Department for Human Services, Housing, GPO Box 636 or Environment and Planning Library CANBERRA ACT 2601 1st Floor, Roma Mitchell House 136 North Terrace, ADELAIDE SA 5000 EDITORS J. N. Foulkes and J. S. Gillen Biological Survey and Research Section, Heritage and Biodiversity Branch, Department for Environment and Heritage, GPO Box 1047 ADELAIDE SA 5001 AUTHORS D. M. Armstrong, J. N. Foulkes, Biological Survey and Research Section, Heritage and Biodiversity Branch, Department for Environment and Heritage, GPO Box 1047 ADELAIDE SA 5001. S. Carruthers, F. Smith, S. Kinnear, Geographic Analysis and Research Unit, Planning SA, Department for Transport, Urban Planning and the Arts, GPO Box 1815, ADELAIDE SA 5001.
    [Show full text]
  • Nanya Station, Western New South Wales Vegetation, Flora and Fauna
    NANYA STATION, WESTERN NEW SOUTH WALES VEGETATION, FLORA AND FAUNA Prepared by Martin E. Westbrooke, Centre for Environmental Management, University of Ballarat Nanya Station, owned and managed by the University of Ballarat was purchased with assistance from the Department of Environment and Heritage. Ongoing management is supported by the Lower Murray Darling Catchment Management Authority FOREWORD 1 FOREWORD This booklet has been prepared as an introduction for visitors to Nanya. Nanya is managed for conservation, research and teaching and affords protection to highly significant environments including two endangered communities and seventeen endangered or vulnerable species. On your visit, please respect these values. NANYA STATION Nanya Station is located in the Scotia country of far western New South Wales and consists of the Nanya Western Lands Pastoral Lease 3281 – Perpetual Leasehold Lot 1244 in Deposited Plan 762778, Parish of Winnebaga, County of Tara. Nanya Homestead complex 2 BACKGROUND The Scotia region has one of the shortest stock grazing histories of western NSW. Along with five other properties, Nanya was created as a pastoral lease in 1927. Previously the area was part of the large Lake Victoria lease and stock grazing occurred only in wet years (Withers 1989). The original lease was taken up by Gordon Cummings in 1927. He first dug a dam near the southeast corner of the property. A larger ground tank and homestead at the site of the present complex was later established. An area around the homestead was cleared and cropped to provide feed for the horses used in digging the earth tanks. The ruins of the original building are located between the shearing shed and Homestead Tank.
    [Show full text]