Temperature Dependence of Neutron Cross-Sections

Total Page:16

File Type:pdf, Size:1020Kb

Temperature Dependence of Neutron Cross-Sections TEMPERATURE DEPENDENCE OF Lattice heterogeneity is treated with special reference to the NEUTRON CROSS-SECTIONS AND simplifications needed to replace a unit cell by a homogeneous mixture with RESONANCE INTEGRALS, AND SAFETY PROBLEMS an equivalent effective background cross section involving the Dancoff factor. The limitations of using the Bell factor to preserve the one W. ROTHENSTEIN term equivalence relations between homogeneous mixtures and isolated Tedinion, fuel lumps are discussed, as well as the empirical dependence of Haifa, Israel the Bell factor on the Dancoff factor. ABSTRACT Ill) Multigroup spectrum calculations at epithermal energies are discussed mainly with reference to the MUFT and GAM procedures for homogeneous The material covered in the lectures consists of the followin" topics: mixtures. I) A description is given of the bssic nuclear data needed for resonance absorption calculations with particular referenc. to commonly used The direct application of the Nordheim Integral Transport calculation rer.onance formalisms and the resonance parameter files in the basic of effective resonance integrals in the MUFT code is described, data libraries. Doppler Broadening techniques are discussed together together with its artificial separation of the shielding calculation with the construction of detailed temperature dependent resonance near the resonance peaks and the unshielded wing corrections, and cross section tabulations for use in accurate resonance absorption the use of smoothly varying corrections to the simple Breit Wignîr calculations. resonance shapes. A method is described for the modification of the approximate resonance integrals to correlate the resulting epithermal 113 The resonance shielding problem is treated fcr homogeneous mixtures to thermal absorption rates for reactor lattice unit cells with of a resonance absorber in infinite moderating media with hydrogen experiment. moderation only, moderation by a heavier nuclide, and moderation by mixtures of nuclides. The use of resonance shielding factors in the GAM and WIMS multigroup The narrow resonance approximation (NR), the infinite mass epithermal spectrum calculations is discussed. In the former the approximation (IM), and the X parameter of the intermediate resonance shielding factors refer to the group cross sections and group dependent approximation (IR) are defined. lattice disadvantage factors must be applied. The WIMS code uses The construction of group effective resonance integral or shielded cross effective resonance integrals which must be translated into group cross section tabulations is described for individual resonance nuclides sections with due regard to average flux depressions in each resonance mixed homogeneously with moderating materials characterized by a single group. The approximations encountered in defining the effective fuel background cross section. disadvantage factors and flux depressions are emphasised. 207 The method used in the LATREP code for handling fuel clusters is Lecture 1 treated briefly. Introduction IV) Detailed resonance reaction rate calculations in lattice unit cells Direct utilisation-of.basic nuclear data libraries for reactor analysis using Doppler broadened resonance cross section tabulations are is restricted to simple systems or special problems. Among these, Monte Carlo discussed with full allowance for all resonance interference phenomena. calculations for Benchmark Analysis, and the validation of nuclear data and The One dimensional OZMA code whicu treats this problem by integr reactor design cedes , may be mentioned. Such calculations cannot be applied transport or 3 transport theory on an ultrafine energy mesh is to the stjdy of the behaviour of large reactor cores containing fuel assemblies det-cribed with special reference to the rapid calculation of the of different types, undergoing burn-up at different rates, and containing sis'", elastic slowing down sources, as well as P. scattering in the S a variety of structural and control materials. Here core analysis must be option. broken up into several subprograms which lead in the final instance to the calculation of the detailed flux and power distributions in the entire re:ctor The methods of studying the effects of such detailed transport calcu- throughout the complete fuel cycle. lations in the resolved resonance region on standard multigroup reactor analysis are described. Ihe final determination of the flux and power distribution is in itself a problem of considerable complexity requiring two- or three-dimensional cal- Results of lattice analysis studies with accurately calculated reson- culations, usually of the diffusion type. Little emphasis can be placed on the ance reaction rates are given for a number of problems. neutron energy variable in such analyses; the nuclear characteristics which vary from location to location throughout the core must be represented by para- . Temperature variation of effective resonance integrals for isolated meters covering very wide energy bands. Multi-dimensional few group diffusion fuel rods. and transport codes usually handle about two to four energy groups. Doppler reactivity coefficients of typical BWR sad PWR unit cells and their variation with fuel depletion. One is therefore faced with the problem of collapsing the vast amount of . Analysis of some thermal reactor lattice benchmarks information contained in basic nuclear data libraries into very few groups . Analysis of some D.,0 moderated fuel clusters. without losing its essential content. Computer codes which perform this task Comparison of multigroup cross sections, cell fluxes and disad- must be applied on a routine basis and very rapidly, since they have to supply vantage factors calculated for a UO,/K2O lattice benchmark in the the local parameters representing the different parts of the reactor Lore. resolved resonsice region by detailed transport calculations and They must be updated periodically as the fuel gets depleted. by standard very rapid multigrcup methods for identical group reaction rates. Local few group data in the reactor core are averages over regions covered A final discussion follows to indicate how accurate resonance reaction by the mesh cells used in the determination of the flux and power maps for the rate calculations may be used to validate or correct simple resonance entire reactor. They must, in general, eliminate the internal heterogeneity of shielding algorithms. the fuel assemblies, in addition to being few group averages of the basic nuclear data. Thus, the preparation of the broad group data is in itself a procédure requiring space and energy dependent solutions of the neutron transport equation. Fuel assembly of a PWR Even at this level, i.e., for a local solution of the transport equation o o with 35x15 fuel rod unit in a relatively small region, usually with simple gcomptry, direct utilisation o o cells except the loca- of the basic neutron cross section libraries is impracticable. The purpose of o o o o tions indicated by the calculation is to obtain a space energy dependent solution for the neutron circles which contain flux which can be used for Jiomogenisatioi. of a fuel assembly, or part of it, o poison rods or and for collapse of the energy deper-ic 'ce into very few groups. The numerous instrumentation. few group parameters which must be supplied for the different fuel assemblies o o o o in the entire reactor core make it essential to use a multigroup, rather than o o point cross section, procedure to solve the transport equation in each assembly o o and subregion within it. The solutions of the transport equation are usually obtained in about one hundred to two hundred fine energy groups. The hetero- geneity of the fuel assemblies may be simple or more complicated. The basic geometry is the unit cell consisting of fuel, clad and associated coolant or moderator in an infinite regular array of similar cells, the fuel being in the form of i-ods or plates. The arrays may also be more complicated, for example, in fuel assemblies containing some burnable poison or control rods in addition to the fuel rods themselves. In heavy water moderated reactors, the basic cell is a cluster of fuel rods in the coolant, together with the external moderator Moderator outer associated with it. These types of systems, shown in Fig. 1, have a double boundary for one heterogeneity, in the first case for the poison rods interspersed between the, fuel cluster. fuel, in the second for the rods within the cluster, and for the array of complete clusters separated by the moderator. Heterogeneous analysis of fuel assemblies by multigroup methods for the Fuel rod cluster preparation of homogenised few group parameters refers in the first instance in D.O nraderator. to regular arrays of fuel rods or plates in an infinite lattice since unit cells of these geometries can be handled quite simply. In the present course such arrays will be the principal ones discussed, although some attention will also be paid to systems with double heterogeneity. In the unit cell codes used, in practice several tens of fine energy groups cover the thermal energy region from about 10 to about 1 eV, and a similar number of fine groups span the epithermal energy region, in which there is neutron down-scattering only, from abnut 1 eV to about 10 Mi-V. Fig. 1 Assemblies Kith more than one type of heterogeneity 209 The preparation of few group parameters representing the nuclear charac- spectrum at high energies, a 1/1". flux in the slowing down region,
Recommended publications
  • Neutron-Induced Fission Cross Section of 240,242Pu up to En = 3 Mev
    Neutron-induced fission cross section of 240;242Pu Paula Salvador-Castineira~ Supervisors: Dr. Franz-Josef Hambsch Dr. Carme Pretel Doctoral dissertation PhD in Nuclear Engineering and Ionizing Radiation Barcelona, September 2014 Curs acadèmic: Acta de qualificació de tesi doctoral Nom i cognoms Programa de doctorat Unitat estructural responsable del programa Resolució del Tribunal Reunit el Tribunal designat a l'efecte, el doctorand / la doctoranda exposa el tema de la seva tesi doctoral titulada __________________________________________________________________________________________ _________________________________________________________________________________________. Acabada la lectura i després de donar resposta a les qüestions formulades pels membres titulars del tribunal, aquest atorga la qualificació: NO APTE APROVAT NOTABLE EXCEL·LENT (Nom, cognoms i signatura) (Nom, cognoms i signatura) President/a Secretari/ària (Nom, cognoms i signatura) (Nom, cognoms i signatura) (Nom, cognoms i signatura) Vocal Vocal Vocal ______________________, _______ d'/de __________________ de _______________ El resultat de l’escrutini dels vots emesos pels membres titulars del tribunal, efectuat per l’Escola de Doctorat, a instància de la Comissió de Doctorat de la UPC, atorga la MENCIÓ CUM LAUDE: SÍ NO (Nom, cognoms i signatura) (Nom, cognoms i signatura) President de la Comissió Permanent de l’Escola de Doctorat Secretària de la Comissió Permanent de l’Escola de Doctorat Barcelona, _______ d'/de ____________________ de _________ Universitat Politecnica`
    [Show full text]
  • Neutron Capture Cross Sections of Cadmium Isotopes
    Neutron Capture Cross Sections of Cadmium Isotopes By Allison Gicking A thesis submitted to Oregon State University In partial fulfillment of the requirements for the degree of Bachelor of Science Presented June 8, 2011 Commencement June 17, 2012 Abstract The neutron capture cross sections of 106Cd, 108Cd, 110Cd, 112Cd, 114Cd and 116Cd were determined in the present project. Four different OSU TRIGA reactor facilities were used to produce redundancy in the results and to measure the thermal cross section and resonance integral separately. When the present values were compared with previously measured values, the differences were mostly due to the kind of detector used or whether or not the samples were natural cadmium. Some of the isotopes did not have any previously measured values, and in that case, new information about the cross sections of those cadmium isotopes has been provided. Table of Contents I. Introduction………………………………………………………………….…….…1 II. Theory………………………………………………………………………...…...…3 1. Neutron Capture…………………………………………………….….……3 2. Resonance Integral vs. Effective Thermal Cross Section…………...………5 3. Derivation of the Activity Equations…………………………………....…..8 III. Methods………………………………………………………….................…...…...12 1. Irradiation of the Samples………………………………………….….....…12 2. Sample Preparation and Parameters………………..………...………..……16 3. Efficiency Calibration of Detectors…………………………..………....…..18 4. Data Analysis…………………………………...…….………………...…..19 5. Absorption by 113Cd……………………………………...……...….………20 IV. Results………………………………………………….……………..……….…….22
    [Show full text]
  • EVALUATION of NEUTRON CROSS SECTIONS for Cm-242, -243, -244
    XA0100537 -67- UDC 539.172 EVALUATION OF NEUTRON CROSS SECTIONS FOR Cm-242, -243, -244 A.I. Blokhin, A.S. Badikov, A.V. Ignatyuk, V.P. Lunev, V.N. Manokhin, G. Ya. Tertychny, K.I. Zolotarev Institute of Physics and Power Engineering, Obninsk, Russia EVALUATION OF NEUTRON CROSS SECTIONS FOR Cm-242, -243, -244. The work is devoted to the analysis of available experimental and evaluated data on the neutron cross sections for Cm-242, Cm-243, Cm-244. A comparison of experimental data with the results of theoretical calculations and the evaluations of the most important cross sections were performed. As a result the new version of complete files of evaluated neutron cross sections for Cm-242, Cm-243, Cm- 244 were performed. These files were included into the BROND-3 library the formations of which is under development in Russian Nuclear Data Center. For curium isotopes there are considerably less experimental data than for americium isotopes. The measurements of the total and radiative capture cross sections are restricted to the neutron resonance region and only the fission cross sections were measured in the fast neutron energy region. That is why all the neutron cross section evaluations are mainly based on the analysis of the available measured fission cross sections and on the statistical calculations of other cross sections. For Cm-245 and Cm-246 the new experimental fission cross sections, obtained in the framework of the Project [18] agree good enough with the available experimental data and the new cross section evaluations made by Minsk's group in 1996 [1, 2].
    [Show full text]
  • Testing of Evaluated Transactinium Isotope Neutron Data and Remaining Data Requirements
    Testing of Evaluated Transactinium Isotope Neutron Data and Remaining Data Requirements H. Kiisters Nuclear Research Center Karlsruhe Institute of Neutron Physics and Nuclear Engineering 1. Introduction The first international meeting on transactinium isotope nuclear data, held in Karlsruhe in 1975 /l/, mainly dealt with neutron cross-sections and other nuclear properties as e.g. decay constants of minor actinide isotopes, abbreviated in this paper to MINACs. For the plutonium and the thorium fuel cycle, the MINAC isotopes are 230Th up to 244C, with the exception of the main nuclei 232Th, 233U, 235U, 23aU, 23gPu, 240Pu and 241Pu (sometimes the higher Pu isotopes are incorrectly counted as MINACs; for special interests the curium isotopes beyond mass number 244 are also included in the MINAC list). Minor actinide isotopes are understood to be of "minor importance" in thermal and fast reactor design. This minor importance is regarded with respect to the influence of these nuclei on the reactivity balance or the neutron spectrum of a nuclear plant. However, the MINACs can be of prime importance in the out-of-pile stages of the nuclear fuel cycle, especially in determini% the decay heat and the neutron as well as alpha, beta and gamma radiation of spent nuclear fuel after discharge from the reactor. These aspects are essential for designing safe transport casks and inter- mediate storage facilities, reprocessing units and waste disposal sites. The intensive discussion on the nuclear data aspects of MINACs originated from the predicted expansion of nuclear energy after the first oil crisis in 1973. Reprocessing units of sizes up to 1500 to/yr throughput were dis- cussed, recycling of Pu in thermal reactors was, and in some countries is considered as a serious strategy besides the introduction of Pu into fast ~breeder reactors; also U-recycling came into the discussion.
    [Show full text]
  • AN34 Application Note Experiment 17 Neutron Activation Analysis
    ® ORTEC AN34 Experiment 17 Neutron Activation Analysis (Slow Neutrons) Equipment Needed from ORTEC colorimetric, spectrographic, or mass spectroscopy, its sensitivity is usually shown to be better by a factor of 10 than that of other • 113 Scintillation Preamplifier methods. Activation analysis is used extensively in such fields as • 266 Photomultiplier Tube Base geology, medicine, agriculture, electronics, metallurgy, • 4006 or 4001A/4002D Bin and Power Supply criminology, and the petroleum industry. • 556 High Voltage Power Supply • 575A Amplifier The Neutron Source • 905-3 2-in. x 2-in. or 905-4 3-in. x 3-in. NaI(Tl) Detector and PM This experiment is described using 1 Ci of Am-Be for the Tube neutron source, with the source located in the center of a • Easy-MCA 2k System including a USB cable, a suitable PC paraffin howitzer. The samples are irradiated at a point ~4 cm and MAESTRO-32 software (other ORTEC MCAs may be from the source by the neutrons whose energies have been substituted) moderated by the paraffin between that point and the source. • Coaxial Cables and Adapters: Any of the commonly found isotopic neutron sources can be • One C-24-1/2 RG-62A/U 93-Ω coaxial cable with BNC plugs used for this experiment. on both ends, 15-cm (1/2-ft) length. Neutron Activation Equations Ω • One C-24-12 RG-62A/U 93- coaxial cable with BNC plugs Assume that the sample has been activated in the howitzer. At on both ends, 3.7-m (12-ft) length. the instant when the activation has been terminated, (tc = 0), the • Two C-24-4 RG-62A/U 93-Ω coaxial cables with BNC plugs activity of the sample is given by the following expression: on both ends, 1.2-m (4-ft) length.
    [Show full text]
  • Neutron Cross Section Evaluation of U-238
    FIESTA2017 FIssion ExperimentS and Theoretical Advances Neutron Cross Section Evaluation of U-238 Hyeong Il Kim Nuclear Data Center Korea Atomic Energy Research Institute 2017. 9. 18 Table of Contents 1 Introduction 2 Nuclear Data Evaluation 3 Results 4 Summary Introduction Overview Introduction Nuclear Data Evaluation Analyzing the measured physical quanties + Combing them with theoretical predictions => Extract the true values of such quanties DataBase ENDF Library (Compact format) Processed to Pointwised or Groupwised Libraries Application Inputs for various simulation codes (MCNP, Geant4, PHITS, DRAGON, DANTSYS, DORT ··· ) FIESTA2017, Eldorado Hotel, Santa Fe, NM H. I. Kim 1 Introduction Overview Nuclear data activities An example of nuclear data eval. for 235U Applications FIESTA2017, Eldorado Hotel, Santa Fe, NM H. I. Kim 2 Introduction Overview Uranium Abundances of natural uranium 234U: 0.0054 % 235U: 0.7204 % 238U: 99.2742 % U-238 Fuel of nuclear reactor LWR: 95 ∼ 97 %, HWR: 98 ∼ 99 % Well evaluated but Continuoulsy updated Current version: ENDF/B-VII.1, JENDL-4.0, JEFF-3.2,CENDL-3.1,RUSFOND-2010,... Preliminary: ENDF/B-VIII-b4, JEFF33T4 FIESTA2017, Eldorado Hotel, Santa Fe, NM H. I. Kim 3 Nuclear Data Evaluation Cross section Cross sections for U-238 FIESTA2017, Eldorado Hotel, Santa Fe, NM H. I. Kim 4 Nuclear Data Evaluation Cross section Cross Sections Cross Sections Cross Section: function of the kinetic energy of the particle a ZZ 2 d σ(Ea; Eb; Ω) σ(Ea) = dEbdΩ dEbdΩ Differential Cross Section: Distributions of an emitted particle for anlge or energy dσ(Ea; Eb) dσ(Ea; Ω) dEb dΩ Double-Differential Cross Section (DDX): Distributions of an emitted particle for anlge and energy 2 d σ(Ea; Eb; Ω) dEbdΩ FIESTA2017, Eldorado Hotel, Santa Fe, NM H.
    [Show full text]
  • Lecture 5 — Wave and Particle Beams
    Lecture 5 — Wave and particle beams. 1 What can we learn from scattering experiments • The crystal structure, i.e., the position of the atoms in the crystal averaged over a large number of unit cells and over time. This information is extracted from Bragg diffraction. • The deviation from perfect periodicity. All real crystals have a finite size and all atoms are subject to thermal motion (at zero temperature, to zero-point motion). The general con- sequence of these deviations from perfect periodicity is that the scattering will no longer occur exactly at the RL points (δ functions), but will be “spread out”. Finite-size effects and fluctuations of the lattice parameters produce peak broadening without altering the integrated cross section (amount of “scattering power”) of the Bragg peaks. Fluctuation in the atomic positions (e.g., due to thermal motion) or in the scattering amplitude of the individual atomic sites (e.g., due to substitutions of one atomic species with another), give rise to a selective reduction of the intensity of certain Bragg peaks by the so-called Debye- Waller factor, and to the appearance of intensity elsewhere in reciprocal space (diffuse scattering). • The case of liquids and glasses. Here, crystalline order is absent, and so are Bragg diffraction peaks, so that all the scattering is “diffuse”. Nonetheless, scattering of X-rays and neutrons from liquids and glasses is exploited to extract radial distribution functions — in essence, the probability of finding a certain atomic species at a given distance from another species. • The magnetic structure. Neutron possess a dipole moment and are strongly affected by the presence of internal magnetic fields in the crystals, generated by the magnetic moments of unpaired electrons.
    [Show full text]
  • Moderator Design for Accelerator Based Neutron Radiography and Tomography Systems
    Moderator Design For Accelerator Based Neutron Radiography and Tomography Systems by Donald B. Puffer Submitted to the Department of Nuclear Engineering in partial ful- fillment of the requirements for the degree of Master of Science in Nuclear Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY August 1994 © Massachusetts Institute of Technology, 1994. All Rights Reserved. A uthor ..................................... .................... .................................................. Department of Nuclear Engineering August 19, 1994 Certified by •., - 7/7' ....... " PiiaRsr Sciei < o Dr. Richard Lanza SPrincipal Research Scie Department of Nuclear Engineering Thesis Supervisor R ead by .... ...... .... .......... .... .................................................................. Dr. Jacquelyn Yanch / Professor of Nuclear Engineering Thesis Reader A ccepted by ............................... ........... ..... ............................................... Dr. Allen Henry rs., -Chairman, Committee on Graduate Students Department of Nuclear Engineering o V 16 1994 Moderator Design For Accelerator Based Neutron Radiography and Tomography Systems by Donald B. Puffer Submitted to the Department of Nuclear Engineering on August 19, 1994, in partial fulfillment of the requirements for the degree of Master of Science in Nuclear Engineering Abstract MIT is in the initial phase of developing a small accelerator based neutron imaging system. The system includes a radiofrequency quadrupole (RFQ) accelerator--producing neutrons by the
    [Show full text]
  • 3.22 Measurement of Neutron Spallation Cross Sections
    JAERI-Conf 96-008 3.22 Measurement of Neutron Spallation Cross Sections E.Kim,T.Nakamura,A.Konno(CYRIC,Tohoku Univ.),M.Imamura,N.Nakao T.Shibata(INS,Univ.of Tokyo),Y.Uwamino,N.Nakanishi(Institute of Physical and Chemical Research),Su.Tanaka,H.Nakashiman, Sh.Tanaka,(JAERI) Neutron spallation cross sections of l2C(n,2n)"C and 2O9Bi(n,xn)2IOxBi were measured in the quasi-monoencrgetic p-Li neutron fileds in the energy range of 20McV to 210MeV which have been established at four AVF cyclotron facilities of 1)INS of Univ. of Tokyo, 2)TIARA of JAERI, 3)CYRIC of Tohoku Univ., and 4)RIKEN. Our experimental data were compared with other experimental data and the ENDF/B-VI high energy file data. 1. Introduction At present, a demand for neutron reaction data is world-wide increasing from the viewpoints of intense neutron source of material study, induced radioactivity and shielding design of high energy accelerators. Nevertheless, neutron reaction data in the energy range above 20MeV are very poor and no evaluated data file exists at present mainly due to very limited number of facilities having quasi-monoenergetic neutron fields. In this study, we measured the neutron spallation cross sections of I2C, 27A1,59Co and 209Bi which has been and will be used for high energy neutron spectrometry, by using quasi-monoenergetic p-Li reutrons in the energy range of 20MeV to 210MeV. 2.Experiment The experiments were performed at four cyclotron facilities of 1 institute for Nuclear Study ( INS ),University of Tokyo for 20 to 40 McV, 2)Cyclotron and Radioisotopc Center (CYRIC),Tohoku University for 20 to 40 MeV, 3)Takasaki Research Establishment, Japan Atomic Energy Reserch Institute (TIARA) for 40 to 90MeV and 4)Institute of Physical and Chemical Research (RIKEN) for 80 to 210MeV.
    [Show full text]
  • Fast Neutron Cross Sections of 2L*°Pu; Measured Results and a Comparison
    Fast Neutron Cross Sections of 2l*°Pu; Measured Results and a Comparison with an Evaluated File À. B. Smith, P. P. Lambropoulos and J. F. Whalen Argonne National Laboratory Argonne, Illinois Abstract Fast neutron total cross sections and elastic- and inelaetic-scatter- ing cross sections of 2**°Pu are reported. The total cross sections are measured from neutron energies of 0.1 to 1.5 MeV in increments of *»* 25 keV. The elastic-scattering cross sections are measured at ^ 50 keV intervals from incident neutron energies of 0.3 to 1.5 MeV. The inelastic neutron excitation cross sections of states at 4 2 + 5 , 140 + 10, 300 + 2 0 , 600 + 20 and 900 + 50 keV are measured. The experimental results are discussed in the context of the optical, compound-nucleus and direct-reaction nuclear models including the effects of resonance width fluctuations and the fission process. The measured results are critically compared with the corresponding quantities in the evaluated nuclear data file ENDF/2. I. INTRODUCTORY REMARK The isotope 2t*°Pu is a major constituent of many fast-breeding reactors wherein the plutonium fuel may consist of £ 20 percent 2lf0Pu.^ Therefore fast neutron interactions with this isotope are a considera­ tion in the neutronic design of these systems. Despite this applied importance the experimental microscopic fast neutron cross sections of 2*°Pu are relatively unknown and a number of requests for measured in- 2 ' formation are outstanding. Major reliance continues to be placed upon evaluated data sets based largely on nuclear-model estimates. The fission neutron cross section of 2tfl*Pu has been reasonably well 3 4 5 measured.
    [Show full text]
  • Nuclear Data Development at the European Spallation Source
    Nuclear data development at the European Spallation Source Jose Ignacio Marquez Damian a;∗, Douglas D. DiJulio a, and Günter Muhrer a, a Spallation Physics Group, European Spallation Source ERIC, Lund, Sweden Abstract. Transport calculations for neutronic design require accurate nuclear data and validated computational tools. In the Spallation Physics Group, at the European Spallation Source, we perform shielding and neutron beam calculations to help the deployment of the instrument suite for the current high brilliance (top) moderator, as well for the design of the high intensity bottom moderator, currently under study for the facility. This work includes providing the best available nuclear data in addition to improving models and tools when necessary. In this paper we present the status of these activities, which include a set of thermal scattering kernels for moderator, reflector, and structural materials, the development of new kernels for beryllium considering crystallite size effects, nanodiamonds, liquid hydrogen and deuterium based on path integral molecular dynamics, and the use of the software package NCrystal to assist the development of nuclear data in the framework of the new HighNESS project. Keywords: thermal scattering, neutron, nuclear data libraries 1. Introduction Neutronic calculations for the simulation and development of moderators and reflectors at spallation neutron sources, such as the European Spallation Source (ESS) [1], currently under construction in Lund, Sweden, require accurate models for the interaction of thermal and cold neutrons with matter in order to get the best possible estimates for the performance of the facility. For this reason, we have launched several activities at the ESS to produce updated and revised libraries for Monte-Carlo simulations.
    [Show full text]
  • Neutron Total Cross Section Measurements of Gold and Tantalum at the Nelbe Photoneutron Source
    Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source Roland Hannaske*, Zoltan Elekes, Roland Beyer, Arnd Junghans1, Daniel Bemmerer, Evert Birgersson2, Anna Ferrari, Eckart Grosse*, Mathias Kempe*, Toni Kögler*, Michele Marta3, Ralph Massarczyk*, Andrija Matic4, Georg Schramm*, Ronald Schwengner, and Andreas Wagner Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstr. 400, 01328 Dresden, Germany Abstract Neutron total cross sections of 197Au and natTa have been measured at the nELBE photoneutron source in the energy range from 0.1 – 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent time structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and background conditions than found at other neutron sources. 1 Introduction Experimental neutron total cross sections as a function of neutron energy are a fundamental data set for the evaluation of nuclear data libraries. With increasing neutron energy the compound nucleus resonances cannot be resolved anymore and will start to overlap. In the energy range of fast neutrons, which is especially important for innovative nuclear applications, like accelerator driven systems for the transmutation of nuclear waste, the neutron total cross section can be described by optical model calculations (e.g. [1, 2]) where the range below 5 MeV shows a large sensitivity on the optical model parameters. The neutron total cross section of 197Au in the energy range from 5 – 200 keV is an item in the OECD NEA Nuclear Data High Priority Request list as 197Au(n,) is an activation standard in dosimetric applications [3].
    [Show full text]