One Health Approach to Leishmaniases: Understanding the Disease Dynamics Through Diagnostic Tools

Total Page:16

File Type:pdf, Size:1020Kb

One Health Approach to Leishmaniases: Understanding the Disease Dynamics Through Diagnostic Tools pathogens Review One Health Approach to Leishmaniases: Understanding the Disease Dynamics through Diagnostic Tools Ahyun Hong 1, Ricardo Andrade Zampieri 1 , Jeffrey Jon Shaw 2, Lucile Maria Floeter-Winter 1 and Maria Fernanda Laranjeira-Silva 1,* 1 Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; [email protected] (A.H.); [email protected] (R.A.Z.); [email protected] (L.M.F.-W.) 2 Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; jeff[email protected] * Correspondence: [email protected] Received: 28 July 2020; Accepted: 21 September 2020; Published: 1 October 2020 Abstract: Leishmaniases are zoonotic vector-borne diseases caused by protozoan parasites of the genus Leishmania that affect millions of people around the globe. There are various clinical manifestations, ranging from self-healing cutaneous lesions to potentially fatal visceral leishmaniasis, all of which are associated with different Leishmania species. Transmission of these parasites is complex due to the varying ecological relationships between human and/or animal reservoir hosts, parasites, and sand fly vectors. Moreover, vector-borne diseases like leishmaniases are intricately linked to environmental changes and socioeconomic risk factors, advocating the importance of the One Health approach to control these diseases. The development of an accurate, fast, and cost-effective diagnostic tool for leishmaniases is a priority, and the implementation of various control measures such as animal sentinel surveillance systems is needed to better detect, prevent, and respond to the (re-)emergence of leishmaniases. Keywords: Leishmania; protozoan parasite; epidemiology; environment; diagnosis 1. Introduction Leishmaniases are vector-borne diseases caused by protozoan parasites of the genus Leishmania and are transmitted amongst mammalian hosts by phlebotomine sandflies. They are endemic in 98 countries and are estimated to affect over 350 million people around the globe [1,2]. The diseases can be categorized into two types according to the primary reservoir hosts of the human infection: zoonosis and anthroponosis. Zoonosis refers to an infectious disease of animals that can be transmitted to humans, and anthroponosis refers to a naturally occurring infectious disease among humans [3,4]. The majority of the Leishmania species are involved in zoonotic transmission. Infected animal reservoir hosts are often introduced into the human population and spillover events result in zoonotic diseases (Figure1). Twenty-two Leishmania species belonging to the subgenera L. (Leishmania), L. (Mundinia), and L.(Viannia)[5] are found in humans. Among these, just two L. (L.) donovani and L. (L.) tropica are associated with an anthroponotic cycle (Table1). However, infections of both species have been reported in livestock animals in Nepal [6,7], and in hyraxes and dogs in the Mediterranean Basin and several countries in Africa [8]. Pathogens 2020, 9, 809; doi:10.3390/pathogens9100809 www.mdpi.com/journal/pathogens Pathogens 2020, 9, 809 2 of 24 Pathogens 2020, 9, x FOR PEER REVIEW 3 of 23 FigureFigure 1. 1.The The transmission transmission cycles cycles ofof zoonoticzoonotic leishmaniases. Sylvatic Sylvatic leishmaniases leishmaniases can can spill spill over over into into humanshumans living living in in proximity proximity to to forest forest focifoci ofof transmission,transmission, mainly due due to to deforestation deforestation or or other other factors factors affaffectingecting the the ecological ecological balance. balance. AsAs depicteddepicted by arrows, sand sand fly fly vectors, vectors, whose whose primary primary forests forests are are theirtheir natural natural breeding breeding sites, sites, adapt adapt toto peri-domesticperi-domestic and domestic domestic environments environments and and eventually eventually invade invade denselydensely populated populated urban urban environments environments (modified(modified fromfrom [[9]).9]). Table 1. Clinical manifestations, reservoir host, and geographical distribution of Leishmania species Leishmaniases present a broad spectrum of clinical manifestations, ranging from self-healing (modified from [1]). localized or multiple cutaneous lesions to mucosal lesions and potentially fatal visceral forms. These different formsSpecies are often associated Clinical Manifestation with a particul Reservoirar species Host or subgenus, nonetheless, Country/Region they are not unique to a species [10]. In most cases, cutaneous leishmaniasis (CL)VL: skin West and lesions Central are Asia, self-healing China, The Indian and subcontinent, The Mediterranean Basin, leave permanentL. (L.) donovani scars. However,AVL, PKDL, some CL species Humancan lead to moreEast Africa; severe CL: The pathologies Mediterranean Basin; such ML: as North Africa; PKDL: The Indian subcontinent, East mucocutaneous (MCL), diffuse (DCL), or disseminated (DL) cutaneous andleishmaniases. North Africa Visceral VL: Central and West Asia, China, leishmaniasis (VL), also known as kala-azar, is Human,the most Dog, Fox,severe Jackal, form of leishmaniases and can be fatal The Mediterranean Basin, Africa; CL: L. (L.) infantum AVL, ZVL, CL Badger, Rodent, Cat, unless treated. Common clinical signs include non-tender splenomegaly,The Mediterranean Basin, with West Asia,or China,without Opossum West Africa hepatomegaly, and individuals with pre-existing health conditionsWest and may Central develop Asia, The Indian post-kala-azar subcontinent, L. (L.) major ZCL Rodent dermal leishmaniasis (PKDL) consequent to the treatment [1]. The Mediterranean Basin, Africa Central, South and West Asia, The Mediterranean Eurasia (Old World) Due toL. the (L.) tropicacomplex relationshipACL, ZCLAVL between Human,human, HyraxHuman animal hosts, parasites,Basin, and East Africasand fly vectors, the transmission of Leishmania spp. is intricate. Moreover, vector-borne diseasesWest Asiaare influenced by L. (L.) killicki CL Unknown The Mediterranean Basin environmentalL. (L.) aethiopicachanges and socioeconomicZCL, DCL, ML factors Hyrax, su Rodentch as poorCL: housing East Africa (Ethiopiaand sanitary and Kenya); conditions, ML: Ethiopia L. (M.) orientalis CL, DL, VL Unknown Thailand malnutrition,L. (L.) infantum or population chagasi movement.ZVL, CL Anthropogeni Dog, Cat, Fox,c Opossumfactors tend to South reorient and Central the America, composition Mexico and behavior ofL. sand (L.) mexicana fly vectors. ToZCL, date, MCL, there DCL are at Rodent,least Opossum50 different sand fly species Americas known to transmit L. (L.) pifanol DCL Unknown Venezuela leishmaniases.L. (L.) venezuelensis In general, each sandCL fly species has Unknown its preferred ecological Venezuelaniche and transmits a L. (L.) garnhami ZCL Unknown Central America, Venezuela certain LeishmaniaL. (L.) amazonensis species (reviewedZCL, DCL, CLin [11]). Furthermore, Rodent zoonotic leishmaniases South America have a broad Dog, Horse, Donkey, mammalianL. (V.) reservoir braziliensis diversityZCL, in MCL, different DL parts of the world [12].South The and sylvatic Central America, transmission Mexico is Mule, Rodent, Opossum affected byL. the (L.) waltoniwildlife populationDCL in and around human Unknown settlements. Divergent Dominican species Republic of sylvatic, Sloth, Anteater, domestic, L.and (V.) guyanesissynanthropic animalsZCL, MCL have been reported as reservoir hostsSouth for Americavarious Leishmania Opossum Dog, Sloth, Opossum, species aroundL. (V.) panamensis the globe—rodents,ZCL, MCL foxes, dogs, cats, primates, hyraxes,South and and bats Central are America among those Tamandua maintainingL. the (V.) shawi transmission of LeishmaniaZCL [1] (Figure Sloth, Primate 1). Leishmania species may Brazil infect a distinct mammalianL. host, (V.) nai yet,ffi in the northeastZCL region of Brazil, Armadillo a mosaic of different Brazil,sylvatic French and Guiana synanthropic Americas (New World) L. (V.) lainsoni ZCL Rodent South America rodents appearL. (V.) lindenbergi to be reservoirs ZCLof L. (V.) braziliensis Unknown [12]. Events such as deforestation Brazil due to L. (V.) peruviana ZCL, MCL Dog, Opossum, Rodent Peru urbanizationL. (M.) martiniquensiscan create new breedingCL habitats for Unknown vectors, which can lead French to Guiana spillovers across ecosystemEndotrypanum boundaries colombiensis [13,14]. WiZCLth over 60% of human Sloth infectious diseases Colombia, Venezuela, being Panamazoonotic [15], recognizingACL, anthroponotic the interdependence cutaneous leishmaniasis; and connections AVL, anthroponoticbetween humans, visceral animals, leishmaniasis; and the CL, environment cutaneous thatleishmaniasis; the hosts and DL, vectors disseminated inhabit cutaneous is indisputably leishmaniasis; essential. DCL, di Hence,ffuse (anergic) adopting cutaneous a ‘One leishmaniasis; Health’ approach MCL, mucocutaneous leishmaniasis; ML, mucosal leishmaniasis; PKDL, post-kala-azar dermal leishmaniasis; VL, visceral becomesleishmaniasis; imperative ZCL, zoonotic to control cutaneous leishmaniases. leishmaniasis; ZVL, zoonotic visceral leishmaniasis. Pathogens 2020, 9, 809 3 of 24 Leishmaniases present a broad spectrum of clinical manifestations, ranging from self-healing localized or multiple cutaneous lesions to mucosal lesions and potentially fatal visceral forms. These different forms are often associated with a particular species or subgenus, nonetheless, they are not unique to a species [10]. In most cases, cutaneous
Recommended publications
  • Vectorborne Transmission of Leishmania Infantum from Hounds, United States
    Vectorborne Transmission of Leishmania infantum from Hounds, United States Robert G. Schaut, Maricela Robles-Murguia, and Missouri (total range 21 states) (12). During 2010–2013, Rachel Juelsgaard, Kevin J. Esch, we assessed whether L. infantum circulating among hunting Lyric C. Bartholomay, Marcelo Ramalho-Ortigao, dogs in the United States can fully develop within sandflies Christine A. Petersen and be transmitted to a susceptible vertebrate host. Leishmaniasis is a zoonotic disease caused by predomi- The Study nantly vectorborne Leishmania spp. In the United States, A total of 300 laboratory-reared female Lu. longipalpis canine visceral leishmaniasis is common among hounds, sandflies were allowed to feed on 2 hounds naturally in- and L. infantum vertical transmission among hounds has been confirmed. We found thatL. infantum from hounds re- fected with L. infantum, strain MCAN/US/2001/FOXY- mains infective in sandflies, underscoring the risk for human MO1 or a closely related strain. During 2007–2011, the exposure by vectorborne transmission. hounds had been tested for infection with Leishmania spp. by ELISA, PCR, and Dual Path Platform Test (Chembio Diagnostic Systems, Inc. Medford, NY, USA (Table 1). L. eishmaniasis is endemic to 98 countries (1). Canids are infantum development in these sandflies was assessed by Lthe reservoir for zoonotic human visceral leishmani- dissecting flies starting at 72 hours after feeding and every asis (VL) (2), and canine VL was detected in the United other day thereafter. Migration and attachment of parasites States in 1980 (3). Subsequent investigation demonstrated to the stomodeal valve of the sandfly and formation of a that many US hounds were infected with Leishmania infan- gel-like plug were evident at 10 days after feeding (Figure tum (4).
    [Show full text]
  • Leishmania Tropica–Induced Cutaneous and Presumptive Concomitant Viscerotropic Leishmaniasis with Prolonged Incubation
    OBSERVATION Leishmania tropica–Induced Cutaneous and Presumptive Concomitant Viscerotropic Leishmaniasis With Prolonged Incubation Francesca Weiss, BS; Nicholas Vogenthaler, MD, MPH; Carlos Franco-Paredes, MD; Sareeta R. S. Parker, MD Background: Leishmaniasis includes a spectrum of dis- studies were highly suggestive of concomitant visceral eases caused by protozoan parasites belonging to the ge- involvement. The patient was treated with a 28-day course nus Leishmania. The disease is traditionally classified into of intravenous pentavalent antimonial compound so- visceral, cutaneous, or mucocutaneous leishmaniasis, de- dium stibogluconate with complete resolution of her sys- pending on clinical characteristics as well as the species temic signs and symptoms and improvement of her pre- involved. Leishmania tropica is one of the causative agents tibial ulcerations. of cutaneous leishmaniasis, with a typical incubation pe- riod of weeks to months. Conclusions: This is an exceptional case in that our pa- tient presented with disease after an incubation period Observation: We describe a 17-year-old Afghani girl of years rather than the more typical weeks to months. who had lived in the United States for 4 years and who In addition, this patient had confirmed cutaneous in- presented with a 6-month history of pretibial ulcer- volvement, as well as strong evidence of viscerotropic dis- ations, 9.1-kg weight loss, abdominal pain, spleno- ease caused by L tropica, a species that characteristically megaly, and extreme fatigue. Histopathologic examina- displays dermotropism, not viscerotropism. tion and culture with isoenzyme electrophoresis speciation of her skin lesions confirmed the presence of L tropica. In addition, results of serum laboratory and serological Arch Dermatol.
    [Show full text]
  • Regulatory Mechanisms of Leishmania Aquaglyceroporin AQP1 Mansi Sharma Florida International University, [email protected]
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-6-2015 Regulatory mechanisms of Leishmania Aquaglyceroporin AQP1 Mansi Sharma Florida International University, [email protected] DOI: 10.25148/etd.FIDC000197 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Parasitology Commons Recommended Citation Sharma, Mansi, "Regulatory mechanisms of Leishmania Aquaglyceroporin AQP1" (2015). FIU Electronic Theses and Dissertations. 2300. https://digitalcommons.fiu.edu/etd/2300 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida REGULATORY MECHANISMS OF LEISHMANIA AQUAGLYCEROPORIN AQP1 A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Mansi Sharma 2015 To: Dean Michael R. Heithaus College of Arts and Sciences This dissertation, written by Mansi Sharma, and entitled, Regulatory Mechanisms of Leishmania Aquaglyceroporin AQP1, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Lidia Kos _____________________________________ Kathleen
    [Show full text]
  • Visceral Leishmaniasis (Kala-Azar) and Malaria Coinfection in an Immigrant in the State of Terengganu, Malaysia: a Case Report
    Journal of Microbiology, Immunology and Infection (2011) 44,72e76 available at www.sciencedirect.com journal homepage: www.e-jmii.com CASE REPORT Visceral leishmaniasis (kala-azar) and malaria coinfection in an immigrant in the state of Terengganu, Malaysia: A case report Ahmad Kashfi Ab Rahman a,*, Fatimah Haslina Abdullah b a Infectious Disease Clinic, Department of Medicine, Hospital Sultanah Nur Zahirah, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Malaysia b Microbiology Unit, Department of Pathology, Hospital Sultanah Nur Zahirah, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Malaysia Received 28 April 2009; received in revised form 30 July 2009; accepted 30 November 2009 KEYWORDS Malaria is endemic in Malaysia. Leishmaniasis is a protozoan infection rarely reported in Amphotericin B; Malaysia. Here, a 24-year-old Nepalese man who presented with prolonged fever and he- Coinfection; patosplenomegaly is reported. Blood film examination confirmed a Plasmodium vivax ma- Leishmaniasis; laria infection. Despite being adequately treated for malaria, his fever persisted. Bone Malaria; marrow examination showed presence of Leishman-Donovan complex. He was success- Treatment fully treated with prolonged course of amphotericin B. The case highlights the impor- tance of awareness among the treating physicians of this disease occurring in a foreign national from an endemic region when he presents with fever and hepatosplenomegaly. Coinfection with malaria can occur although it is rare. It can cause significant delay of the diagnosis of leishmaniasis. Copyright ª 2011, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. All rights reserved. Introduction leishmaniasis is not. Malaysia is considered free of endemic Leishmania species although few species of Malaysian sandflies have been described, possibly because the sand- Malaysia is a tropical country and located in the region of 1,3 Southeast Asia.
    [Show full text]
  • Cutaneous Leishmaniasis Due to Leishmania (Viannia) Panamensis in Two Travelers Successfully Treated with Miltefosine
    Am. J. Trop. Med. Hyg., 103(3), 2020, pp. 1081–1084 doi:10.4269/ajtmh.20-0086 Copyright © 2020 by The American Society of Tropical Medicine and Hygiene Case Report: Cutaneous Leishmaniasis due to Leishmania (Viannia) panamensis in Two Travelers Successfully Treated with Miltefosine S. Mann,1* T. Phupitakphol,1 B. Davis,2 S. Newman,3 J. A. Suarez,4 A. Henao-Mart´ınez,1 and C. Franco-Paredes1,5 1Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado; 2Division of Pathology, University of Colorado School of Medicine, Aurora, Colorado; 3Division of Dermatology, University of Colorado School of Medicine, Aurora, Colorado; 4Gorgas Memorial Institute of Tropical Medicine, Panama ´ City, Panama; ´ 5Hospital Infantil de Mexico, ´ Federico Gomez, ´ Mexico ´ City, Mexico ´ Abstract. We present two cases of Leishmania (V) panamensis in returning travelers from Central America suc- cessfully treated with miltefosine. The couple presented with ulcerative skin lesions nonresponsive to antibiotics. Skin biopsy with polymerase chain reaction (PCR) revealed L. (V) panamensis. To prevent the development of mucosal disease and avoid the inconvenience of parental therapy, we treated both patients with oral miltefosine. We suggest that milte- fosine represents an important therapeutic alternative in the treatment of cutaneous lesions caused by L. panamensis and in preventing mucosal involvement. A 31-old-man and a 30-year-old woman traveled to Costa Because of the presence of a thick fibrous scar at the ul- Rica for their honeymoon. They visited many regions of this cerative lesion border, we recommended a short course of country and participated in hiking, rafting, and camping.
    [Show full text]
  • Leishmania\) Martiniquensis N. Sp. \(Kinetoplastida: Trypanosomatidae\
    Parasite 2014, 21, 12 Ó N. Desbois et al., published by EDP Sciences, 2014 DOI: 10.1051/parasite/2014011 urn:lsid:zoobank.org:pub:31F25656-8804-4944-A568-6DB4F52D2217 Available online at: www.parasite-journal.org SHORT NOTE OPEN ACCESS Leishmania (Leishmania) martiniquensis n. sp. (Kinetoplastida: Trypanosomatidae), description of the parasite responsible for cutaneous leishmaniasis in Martinique Island (French West Indies) Nicole Desbois1, Francine Pratlong2, Danie`le Quist3, and Jean-Pierre Dedet2,* 1 CHU de la Martinique, Hoˆpital Pierre-Zobda-Quitman, Poˆle de Biologie de territoire-Pathologie, Unite´de Parasitologie-Mycologie, BP 632, 97261 Fort-de-France Cedex, Martinique, France 2 Universite´Montpellier 1 et CHRU de Montpellier, Centre National de re´fe´rence des leishmanioses, UMR « MIVEGEC » (CNRS 5290, IRD 224, UM1, UM2), De´partement de Parasitologie-Mycologie (Professeur Patrick Bastien), 39 avenue Charles Flahault, 34295 Montpellier Cedex 5, France 3 CHU de la Martinique, Hoˆpital Pierre-Zobda-Quitman, Service de dermatologie, Poˆle de Me´decine-Spe´cialite´s me´dicales, BP 632, 97261 Fort-de-France Cedex, Martinique, France Received 21 November 2013, Accepted 19 February 2014, Published online 14 March 2014 Abstract – The parasite responsible for autochthonous cutaneous leishmaniasis in Martinique island (French West Indies) was first isolated in 1995; its taxonomical position was established only in 2002, but it remained unnamed. In the present paper, the authors name this parasite Leishmania (Leishmania) martiniquensis Desbois, Pratlong & Dedet n. sp. and describe the type strain of this taxon, including its biological characteristics, biochemical and molecular identification, and pathogenicity. This parasite, clearly distinct from all other Euleishmania, and placed at the base of the Leishmania phylogenetic tree, is included in the subgenus Leishmania.
    [Show full text]
  • Relevance of Epidemiological Surveillance in Travelers: an Imported Case of Leishmania Tropica in Mexico
    CASE REPORT http://doi.org/10.1590/S1678-9946202062041 Relevance of epidemiological surveillance in travelers: an imported case of Leishmania tropica in Mexico Edith Araceli Fernández-Figueroa 1,2, Sokani Sánchez-Montes 2, Haydee Miranda-Ortíz 3, Alfredo Mendoza-Vargas 3, Rocely Cervantes-Sarabia4, Roberto Alejandro Cárdenas-Ovando 5, Adriana Ruiz-Remigio4, Ingeborg Becker 2,4 ABSTRACT We report the case of a patient with cutaneous leishmaniasis who showed a rapidly progressing ulcerative lesion after traveling to multiple countries where different Leishmania species are endemic. Diagnosis of Leishmania tropica, an exotic species in Mexico was established by using serological and molecular tools. KEYWORDS: Leishmania tropica. Molecular epidemiology. Local cutaneous leishmaniasis. Travel medicine. 1Instituto Nacional de Medicina Genómica, Departamento de Genómica Poblacional, Genómica Computacional e Integrativa, Ciudad de México, Mexico INTRODUCTION 2Universidad Nacional Autónoma de México, Facultad de Medicina, Unidad de Human cutaneous leishmaniasis is a zoonotic emerging tropical disease caused Investigación en Medicina Experimental, by 20 species of flagellated protozoa of the genus Leishmania, generating 150,000 Centro de Medicina Tropical, Ciudad de new human cases per year, that are distributed across 98 countries throughout the Old México, Mexico World and the New World1-3. Most of the Old World cases are caused by Leishmania 3Instituto Nacional de Medicina Genómica, aethiopica, Leishmania infantum, Leishmania major and Leishmania
    [Show full text]
  • Download the Abstract Book
    1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing.
    [Show full text]
  • Survey of Antibodies to Trypanosoma Cruzi and Leishmania Spp. in Gray and Red Fox Populations from North Carolina and Virginia Author(S): Alexa C
    Survey of Antibodies to Trypanosoma cruzi and Leishmania spp. in Gray and Red Fox Populations From North Carolina and Virginia Author(s): Alexa C. Rosypal , Shanesha Tripp , Samantha Lewis , Joy Francis , Michael K. Stoskopf , R. Scott Larsen , and David S. Lindsay Source: Journal of Parasitology, 96(6):1230-1231. 2010. Published By: American Society of Parasitologists DOI: http://dx.doi.org/10.1645/GE-2600.1 URL: http://www.bioone.org/doi/full/10.1645/GE-2600.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. J. Parasitol., 96(6), 2010, pp. 1230–1231 F American Society of Parasitologists 2010 Survey of Antibodies to Trypanosoma cruzi and Leishmania spp. in Gray and Red Fox Populations From North Carolina and Virginia Alexa C. Rosypal, Shanesha Tripp, Samantha Lewis, Joy Francis, Michael K. Stoskopf*, R. Scott Larsen*, and David S.
    [Show full text]
  • Characterization of a Leishmania Tropica Antigen That Detects Immune Responses in Desert Storm Viscerotropic Leishmaniasis Patients
    Proc. Natl. Acad. Sci. USA Vol. 92, pp 7981-7985, August 1995 Medical Sciences Characterization of a Leishmania tropica antigen that detects immune responses in Desert Storm viscerotropic leishmaniasis patients (parasite/diagnosis/repetitive epitope/subclass) DAVIN C. DILLON*t, CRAIG H. DAY*, JACQUELINE A. WHITTLE*, ALAN J. MAGILLt, AND STEVEN G. REED*t§ *Infectious Disease Research Institute, Seattle, WA 98104; and tWalter Reed Army Institute of Research, Washington, DC 20307 Communicated by Paul B. Beeson, Redmond, WA, April 5, 1995 ABSTRACT A chronic debilitating parasitic infection, An alternative diagnostic strategy is to identify and apply viscerotropic leishmaniasis (VTL), has been described in immunodominant recombinant antigens to increase assay sen- Operation Desert Storm veterans. Diagnosis of this disease, sitivity and specificity. We report herein the cloning, expres- caused by Leishmania tropica, has been difficult due to low or sion, and evaluation of an immunodominant L. tropica anti- absent specific immune responses in traditional assays. We genT capable ofboth specific antibody detection and elicitation report the cloning and characterization of two genomic frag- of interferon y (IFN-y) production in peripheral blood mono- ments encoding portions of a single 210-kDa L. tropica protein nuclear cells (PBMCs) from VTL patients. These results useful for the diagnosis ofVTL in U.S. military personnel. The demonstrate the danger of relying on crude immunological recombinant proteins encoded by these fragments, recombi- assays for the diagnosis of subtle, albeit serious, VTL in Desert nant (r) Lt-1 and rLt-2, contain a 33-amino acid repeat that Storm patients. reacts with sera from Desert Storm VTL patients and with sera from L.
    [Show full text]
  • History of Kala-Azar Is Older Than the Dated Records
    Professor C. P. Thakur, MD, FRCP (London & Edin.) Emeritus Professor of Medicine, Patna Medical College Member of Parliament, Former Union Minister of Health, Government of India Chairman, Balaji Utthan Sansthan, Uma Complex, Fraser Road – Patna-800 001, Bihar. Tel.: +91-0612-2221797, Fax:+91-0612-2239423 Email: [email protected], [email protected], [email protected] Website: www.bus.org.in “History of kala-azar is older than the dated records. In those days malaria was very common and some epidemics of kala-azar were passed as toxic malaria. Twining writing in 1835 described a condition that he called “endemic cachexia of the tropical counties that are subject to paludal exhalations”. The disease remained unrecognized for a faily long time but the searching nature of human mind could come to a final diagnosis, though many aspects of the disease are still unexplored” • Leishmaniasis Cachexial Fever • Internal Catechetic fever leishmaniasis Dum-Dum Fever • Visceral Burdwan Fever leishmaniasis Sirkari Disease • General Sahib’s disease leishmaniasis Kala-dukh • Kala-azar of Kala-jwar adults Kala-hazar • Indian kala-azar Assam fever • Black Fever Leishman-Donovan Disease • Black Sickness Infantile Kala-azar (Nicolle) • Tropical leishmaniasis Infantile leishmaniasis • Tropical cachexia Mediterranean Kala-azar • Tropical Kala-azar Mediterranean leishmaniasis • Tropical Febrile splenic Anaemia (Fede) Splenomegaly Anaemia infantum a leishmania • Non-malarial (Pianese) remittent fever Leishmania anaemia (Jemme • Malaria Cachexia (in error)
    [Show full text]
  • Leishmaniasis Gap Analysis Report and Action Plan
    30 December 2015 Leishmaniasis Gap Analysis Report and Action Plan Strengthening the Epidemiologial Surveillance, Diagnosis and Treatment of Visceral and Cutaneous Leishmaniasis in Albania, Jordan and Pakistan Connecting Organisations for Regional Disease Key Contributors: Surveillance (CORDS) Immeuble le Bonnel 20, Rue de la Villette 69328 LYON Dr Syed M. Mursalin EDEX 03, FRANCE Dr Sami Adel Sheikh Ali Tel. +33 (0)4 26 68 50 14 Email: [email protected] Dr James Crilly SIRET No 78948176900014 Dr Silvia Bino Published 30 December 2015 Editor: Ashley M. Bersani MPH, CPH List of Acronyms ACL Anthroponotic Cutaneous Leishmaniasis AIDS Acquired Immunodeficiency Syndrome CanL Canine Leishmaniasis CL Cutaneous Leishmaniasis CORDS Connecting Organisations for Regional Disease Surveillance DALY Disability-Adjusted Life Year DNDi Drugs for Neglected Diseases initiative IMC International Medical Corps IRC International Rescue Committee LHW Lady Health Worker MECIDS Middle East Consortium on Infectious Disease Surveillance ML Mucocutaneous Leishmaniasis MoA Ministry of Agriculture MoE Ministry of Education MoH Ministry of Health MoT Ministry of Tourism MSF Médecins Sans Frontières/Doctors Without Borders ND Neglected Disease NGO Non-governmental Organisation NTD Neglected Tropical Disease PCR Polymerase Chain Reaction PKDL Post Kala-Azar Dermal Leishmaniasis POHA Pak (Pakistan) One Health Alliance PZDD Parasitic and Zoonotic Diseases Department RDT Rapid Diagnostic Test SECID Southeast European Centre for Surveillance and Control of Infectious
    [Show full text]