Potential for Ribes Cultivation in North America
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Ribes Growers' Guide
RIBES GROWERS’ GUIDE (2013) Table Of Contents Introduction 2 Black currants Varieties 3 Planting 6 Preparation 6 Site Requirements 6 Spacing 6 Pruning 7 Hand Pruning 7 Mechanical Pruning 8 Fertilizer 8 Weed Control 9 Pests 9 Aphids 10 Currant Borer 10 Currant Fruit Fly 10 Mites 10 Anthracnose, Leaf Spot 10 Powdery Mildew 11 White Pine Blister Rust 11 Viruses 11 Water Management 12 Red Currants Varieties 13 Red Varieties 13 White Varieties 14 Planting 14 Spacing 14 Pruning 15 Bush Form 15 Cordons 15 Pests 16 Aphids 16 Sawfly 16 Gooseberries Varieties 16 Planting 16 Pruning 16 1 Introduction This is the sixteenth annual McGinnis Berry Crops guide to production of Ribes plant varieties. The purpose of the guide is to provide the necessary information about variety selection, planting requirements, and plant care that growers will need to make informed decisions. This guide will look at blackcurrants, red currants (including white and pink, which are of the same species as reds), and gooseberries. While not all varieties are included in this guide, we cover those that seem to have the most potential for the North American market. Common varieties such as Pixwell, Oregon Champion, Colossal (gooseberries), Consort, Ben Nevis, Crandall, Ben Lomond, Ben Alder (black currants) have been surpassed by the introduction of varieties that combine higher yields, better disease resistance and superior fruit qualities. In future editions of this guide we will discuss new and relevant varieties as they are made available, as well as updated information on yields, pests, and information from the plant trials that will be taking place across North America. -
Phylogenetic Analysis of the ''ECE'' (CYC TB1) Clade Reveals
Phylogenetic analysis of the ‘‘ECE’’ (CYC͞TB1) clade reveals duplications predating the core eudicots Dianella G. Howarth† and Michael J. Donoghue† Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520-8106 Contributed by Michael J. Donoghue, April 7, 2006 Flower symmetry is of special interest in understanding angio- expression patterns in floral meristems (15, 20, 24), and, at least sperm evolution and ecology. Evidence from the Antirrhineae in Antirrhinum, a fully radial and ventralized flower (a peloric (snapdragon and relatives) indicates that several TCP gene-family form) is produced only in CYC͞DICH double mutants (15, 17). transcription factors, especially CYCLOIDEA (CYC) and DICHO- Although there is partial redundancy in function, they do differ TOMA (DICH), play a role in specifying dorsal identity in the corolla slightly in the timing of expression (20). Additionally, CYC and and androecium of monosymmetric (bilateral) flowers. Studies of DICH both inhibit stamen growth in A. majus, with expression rosid and asterid angiosperms suggest that orthologous TCP genes in stamen primordia resulting in abortion (15, 20). may be important in dorsal identity, but there has been no broad The TCP gene family is diverse, with a complement of 24 phylogenetic context to determine copy number or orthology. copies found in Arabidopsis (refs. 8 and 25, as well as Fig. 1A). Here, we compare published data from rosids and asterids with This family includes the PCF genes, first described in rice, which newly collected data from ranunculids, caryophyllids, Saxifragales, control cell growth. The PCF subfamily are easily distinguished and Asterales to ascertain the phylogenetic placement of major from members of the other subfamily, CYC͞TB1, by differences duplications in the ‘‘ECE’’ (CYC͞TB1) clade of TCP transcription in the length and sequence of the TCP domain (26). -
Download This Article in PDF Format
E3S Web of Conferences 254, 02009 (2021) https://doi.org/10.1051/e3sconf/202125402009 FARBA 2021 Use of SSR markers to study genetic polymorphism in members of the Ribes L. genus from the VNIISPK collection Anna Pavlenko*, Maria Dolzhikova, Anna Pikunova, and Annastasiya Bakhotskaya Russian Research Institute of Fruit Crop Breeding (VNIISPK), Zhilina, Orel, Russian Federation Abstract. This study was the first time in Russia to carry out a large-scale (127 samples) assessment of the diverse gene pool of black currant and red currant, the study of intervarietal polymorphism between varieties of the Ribes L. genus from the VNIISPK collection. A cluster analysis of the genetic similarity of black currant varieties (53 varieties), red currant (73 varieties) and one gooseberry variety was performed using 14 SSR markers. Based on the data obtained, a dendrogram was built, in which a number of clusters with high bootstrap support (BS, %) were distinguished. At BS>50%, the coefficients of pairwise genetic similarity between varieties varied from 0.4 to 0.91. The studied representatives of the Ribes genus merged into two main clusters of red currant and black currant. The blackcurrant cluster was joined by gooseberries. The SSR analysis method allows to reveal broad perspectives in the field of identifying varieties affiliation to species. 1 Introduction Currant became known to people quite a long time ago. The first records of black currant were made in the 17th century in the United States by herbalists who drew attention to the medicinal properties of the shrub's fruits and leaves [1]. In wildlife conditions, all Ribes L. -
583–584 Angiosperms 583 *Eudicots and Ceratophyllales
583 583 > 583–584 Angiosperms These schedules are extensively revised, having been prepared with little reference to earlier editions. 583 *Eudicots and Ceratophyllales Subdivisions are added for eudicots and Ceratophyllales together, for eudicots alone Class here angiosperms (flowering plants), core eudicots For monocots, basal angiosperms, Chloranthales, magnoliids, see 584 See Manual at 583–585 vs. 600; also at 583–584; also at 583 vs. 582.13 .176 98 Mangrove swamp ecology Number built according to instructions under 583–588 Class here comprehensive works on mangroves For mangroves of a specific order or family, see the order or family, e.g., mangroves of family Combretaceae 583.73 .2 *Ceratophyllales Class here Ceratophyllaceae Class here hornworts > 583.3–583.9 Eudicots Class comprehensive works in 583 .3 *Ranunculales, Sabiaceae, Proteales, Trochodendrales, Buxales .34 *Ranunculales Including Berberidaceae, Eupteleaceae, Menispermaceae, Ranunculaceae Including aconites, anemones, barberries, buttercups, Christmas roses, clematises, columbines, delphiniums, hellebores, larkspurs, lesser celandine, mandrake, mayapple, mayflower, monkshoods, moonseeds, wolfsbanes For Fumariaceae, Papaveraceae, Pteridophyllaceae, see 583.35 See also 583.9593 for mandrakes of family Solanaceae .35 *Fumariaceae, Papaveraceae, Pteridophyllaceae Including bleeding hearts, bloodroot, celandines, Dutchman’s breeches, fumitories, poppies See also 583.34 for lesser celandine .37 *Sabiaceae * *Add as instructed under 583–588 1 583 Dewey Decimal Classification -
1 EPC Exhibit 138-19.2 May 15, 2015 the LIBRARY of CONGRESS
EPC Exhibit 138-19.2 May 15, 2015 THE LIBRARY OF CONGRESS Dewey Section To: Jonathan Furner, Chair Decimal Classification Editorial Policy Committee Cc: Members of the Decimal Classification Editorial Policy Committee Karl E. Debus-López, Chief, U.S. Programs, Law, and Literature Division From: Rebecca Green, Assistant Editor Dewey Decimal Classification OCLC Online Computer Library Center, Inc. Via: Michael Panzer, Editor in Chief Dewey Decimal Classification OCLC Online Computer Library Center, Inc Re: 583–584 Angiosperms [Note: In this exhibit, • “APG III” refers to the taxonomy of angiosperms in: Angiosperm Phylogeny Group. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161 (2): 105–121. • “LAPG” refers to the numbered list of angiosperm families in Haston et al. (2009). The Linear Angiosperm Phylogeny Group (LAPG) III: a linear sequence of the families in APG III. Botanical Journal of the Linnean Society 161 (2), 128–131.] This exhibit is the culmination of work over several years, following from these previous exhibits: • EPC Exhibit 135-17.1 Angiosperms, a request from Magdalena Svanberg that we (a) give consideration to the Angiosperm Phylogeny Group’s 2009 classification for flowering plants (APG III) and (b) revise the DDC where appropriate; • EPC Exhibit 135-17.1.1, 583–584 Angiosperms: Discussion paper, which explored issues and options in the possible accommodation of APG III in the DDC; • EPC Exhibit 136-19.1, a preprint of a paper presented at the 2013 SIG/CR Classification Research Workshop, which addressed issues raised during the discussion of EPC Exhibit 135- 17.1.1. -
Index of Botanist Names Associated with the Flora of Putnam Park Frederick Warren King
Index of Botanist Names Associated with the Flora of Putnam Park Frederick Warren King Standard abbreviation form refers to how the botanist’s name may appear in the citation of a species. For a number of the botanists who appear below, they are the authorities or co- authorities for the names of many additional species. The focus in this list is on flowers that appear in Putnam Park. Andrews, Henry Cranke (c. 1759 – 1830). English botanist, botanical artist, and engraver. He is the authority for Scilla siberica, Siberian Squill. Standard abbreviation form: Andrews Aiton, William (1731–1793). He was a Scottish botanist, appointed director of Royal Botanic Gardens, Kew in 1759. He is the authority for Solidago nemoralis, Vaccinium angustifolium, Viola pubescens, and Viola sagittate. He is the former authority for Actaea rubra and Clintonia borealis. Standard abbreviation form: Aiton Aiton, William Townsend (1766 – 1849). English botanist, son of William Aiton. He is the authority for Barbarea vulgaris, Winter Cress. Standard abbreviation form: W.T. Aiton Al-Shehbaz, Ihsan Ali (b. 1939). Iraqi born American botanist, Senior Curator at the Missouri Botanical Garden. Co-authority for Arabidopsis lyrate, Lyre-leaved Rock Cress and Boechera grahamii, Spreading-pod Rock Cress, and authority for Boechera laevigata, Smooth Rock Cress. Standard abbreviation form: Al-Shehbaz Avé-Lallemant, Julius Léopold Eduard (1803 – 1867). German botanist, co-authority for Thalictrum dasycarpum, Tall Meadow Rue. The genus Lallemantia is named in his honor. Standard abbreviation form: Avé-Lall. Barnhart, John Hendley (1871 – 1949). Was an American botanist and non-practicing MD. He is the authority for Ratibida pinnata. -
In Vitro Tetraploid Induction of the Blackcurrant (Ribes Nigrum L.) and Preliminary Phenotypic Observations
ISSN 1392-3196 Zemdirbyste-Agriculture Vol. 106, No. 2 (2019) 151 ISSN 1392-3196 / e-ISSN 2335-8947 Zemdirbyste-Agriculture, vol. 106, No. 2 (2019), p. 151–158 DOI 10.13080/z-a.2019.106.020 In vitro tetraploid induction of the blackcurrant (Ribes nigrum L.) and preliminary phenotypic observations Małgorzata PODWYSZYŃSKA, Stanisław PLUTA Research Institute of Horticulture Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland E-mail: [email protected] Abstract The aim of this study was to develop an in vitro polyploidisation method for the breeding of new improved cultivars of blackcurrant (Ribes nigrum L.). The Polish blackcurrant cultivars ‘Gofert’ and ‘Polares’ were used for the experiments. For polyploidisation, shoot explants were incubated for six days in the dark on a modified Murashige and Skoog medium supplemented with 4.5 µM 6-benzylaminopurine (BAP), 0.3 µM gibberellic acid (GA3) and 0.5 µM indole-3-acetic acid (IAA), containing one of the following antimitotic agents: colchicine, trifluralin, oryzalin or amiprophos methyl. The strongest phytotoxic effects of antimitotic agents were observed for trifluralin (all the explants died). Tetraploids were obtained for both cultivars: 21 for ‘Gofert’ and 12 for ‘Polares’, respectively. The higher efficiencies of tetraploid induction were recorded with oryzalin (5 mg L-1), 26.3% and 28.6% for ‘Gofert’ and ‘Polares’, respectively; 25.9% with colchicine (125 mg L-1) for ‘Polares’ and 9.3% with amiprophos methyl (5 mg L-1) for ‘Gofert’. In addition, only six (2.4%) homogeneous ‘Gofert’ tetraploids were selected directly. Instead, the high percentage (30.1%) of mixoploids was detected in this cultivar. -
PLANTS of the FLORISSANT FOSSIL BEDS NATIONAL MONUMENT Mary E
PLANTS OF THE FLORISSANT FOSSIL BEDS NATIONAL MONUMENT Mary E. Edwards & William A. Weber Bulletin No. 2 Pikes Peak Research Station Colorado Outdoor Education Center Florissant, CO 80816 1990 PIKES PEAK RESEARCH STATION COLORADO OUTDOOR EDUCATION CENTER FLORISSANT, COLORADO 80816 Roger A. Sanborn Boyce A. Drummond Director Director COEC PPRS Pikes Peak Research Station is a nonprofit organization dedicated to promoting the understanding of the natural world through research and education. Actively engaged in interdis ciplinary research on the ecosystems of the Pikes Peak region, PPRS is a part of Colorado Outdoor Education Center, a pioneer in nature programs for all ages since 1962. COVER ILLUSTRATION Mariposa Lily Calochortus Gunnisonii PLANTS OF THE FLORISSANT FOSSIL BEDS NATIONAL MONUMENT Mary E. Edwards and William A. Weber Bulletin No. 2 Pikes Peak Research Station Colorado Outdoor Education Center Florissant, CO 80816 1990 TABLE OF CONTENTS PREFACE ........ iii MAP ......... iv INTRODUCTION ....... 1 THE FLORISSANT FOSSIL BEDS .... 2 CHECK LIST OF VASCULAR PLANTS . .9 REFERENCES 2 3 ii PREFACE Plants manage the business of life from a fixed spot. What animals achieve by active movement plants must accomplish by adaptive form. The feather-like stigmas of a grass flower filter the air for floating pollen; a dandelion with tiny paratroopers establishes a new beachhead; and a mountain mahogany seed drills itself by hygroscopic movement through the leaf litter on an arid hillside. These examples illustrate plant-life's shrewd mastery of the environment. Plants are highly sensitive to their surroundings. From their small fortresses they must endure the coldest temperatures, the strongest winds, the longest drought, fire, and the attacks of predators. -
Checklist of the Washington Baltimore Area
Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part I Ferns, Fern Allies, Gymnosperms, and Dicotyledons by Stanwyn G. Shetler and Sylvia Stone Orli Department of Botany National Museum of Natural History 2000 Department of Botany, National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 ii iii PREFACE The better part of a century has elapsed since A. S. Hitchcock and Paul C. Standley published their succinct manual in 1919 for the identification of the vascular flora in the Washington, DC, area. A comparable new manual has long been needed. As with their work, such a manual should be produced through a collaborative effort of the region’s botanists and other experts. The Annotated Checklist is offered as a first step, in the hope that it will spark and facilitate that effort. In preparing this checklist, Shetler has been responsible for the taxonomy and nomenclature and Orli for the database. We have chosen to distribute the first part in preliminary form, so that it can be used, criticized, and revised while it is current and the second part (Monocotyledons) is still in progress. Additions, corrections, and comments are welcome. We hope that our checklist will stimulate a new wave of fieldwork to check on the current status of the local flora relative to what is reported here. When Part II is finished, the two parts will be combined into a single publication. We also maintain a Web site for the Flora of the Washington-Baltimore Area, and the database can be searched there (http://www.nmnh.si.edu/botany/projects/dcflora). -
Botanical Name: Ribes Aureum, Common Name: Golden Currant SHRUB RHI-Bees AR-Ee-Uhm
Botanical Name: Ribes aureum, Common Name: Golden Currant SHRUB RHI-bees AR-ee-uhm Spring Summer Fall Winter Family: Grossulariaceae Soil: Adaptable, dry to moderate, found in many Origin: Western inland regions to Canada soil types, near streams, clay and Climate Zone: USDA 2-7,Sunset A2-3,1-12,14-23 Exposure: Sun, tolerates shade Mature Height: 3-6 feet Water Requirements: Low, drought tolerant Mature Width: 3-6 feet WUCOLS Water Needs: L L L L L / Plant Type: Deciduous Description: Easy, attractive, useful native. May Growth Habit: Upright, arching shrub not fruit after warm winters. Moderate water for Growth Rate: Moderate best berries. Berries provide color for dye. Also Flower Color/Details: Bright golden flowers, spicy referred to as Clove Currant. Ribes genus are fragrance, tubular flowering clusters hosts for the fungus white pine blister rust, may Flower Season: Spring, March through June be banned if white pines grow in your area Bark: Gray to red-brown, no spines or thorns Maintenance: Prune only to maintain shape. Light Fruit: Yellow berries in summer, turning to red mulch, no need to fertilize. Overwatering causes then black, April through August spreading by underground runners. Foliage: Light green leaves are deeply lobed and toothed at edges, hairy underside Use: Woodland, wildlife and native gardens Floral: Branches of berries in arrangements Wildlife/Beneficials: Flower nectar feeds pollinators; leaves feed butterfly larvae; berries feed songbirds, squirrels; shrub shelters birds. Deer Resistant: Yes Fire Resistant: Yes Medicinal Uses/Edible: Edible berries Adverse Factors: Host for white pine blister rust #1 Nursery Container © 2013 EcoLandscape California. -
Anticandidal Effect of Berry Juices and Extracts from Ribes Species
Cent. Eur. J. Biol. • 4(1) • 2009 • 86–89 DOI: 10.2478/s11535-008-0056-z Central European Journal of Biology Anticandidal effect of berry juices and extracts from Ribes species Communication Judit Krisch1*, Lilla Ördögh2, László Galgóczy2, Tamás Papp2, Csaba Vágvölgyi2 1Institute of Food Engineering, Faculty of Engineering, University of Szeged, H-6725 Szeged, Hungary 2Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary Received 25 September 2008; Accepted 3 November 2008 Abstract: The biological activities of fruit juices and pomace (skin, seeds) extracts from blackcurrant (Ribes nigrum), gooseberry (Ribes uva-crispa) and their hybrid plant (jostaberry, Ribes x nidigrolaria) were evaluated against the most frequently isolated twelve hu- man pathogenic Candida species by broth dilution tests. The phenolic content of juice, water and methanol extracts were measured and the relationship with antifungal activity was assessed. Growth of the most Candida species was inhibited, with the exception of C. albicans, C. krusei, C. lusitaniae and C. pulcherrima. R. nigrum, with the highest phenol content, was observed to have the highest anticandidal activity, indicating a positive correlation between phenol content and antifungal activity. Keywords: Candida species • Ribes • Antifungal activity • Total phenolics © Versita Warsaw and Springer-Verlag Berlin Heidelberg. 1. Introduction (quercetin, isoquercitrin, myricetin and kaempferol) [4,5], anthocyanins and proanthocyanidins [6-9]; anthocyanins being the dominant group in dark Ribes species. The Infections caused by Candida species are widespread use of R. nigrum and R. uva-crispa properties for throughout the world. Although C. albicans is the most medicinal purposes has been documented throughout common Candida species encountered as a cause of history.