Supp Space Mod Chapter 3.Qxd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soyuz TMA-11 / Expedition 16 Manuel De La Mission
Soyuz TMA-11 / Expedition 16 Manuel de la mission SOYUZ TMA-11 – EXPEDITION 16 Par Philippe VOLVERT SOMMAIRE I. Présentation des équipages II. Présentation de la mission III. Présentation du vaisseau Soyuz IV. Précédents équipages de l’ISS V. Chronologie de lancement VI. Procédures d’amarrage VII. Procédures de retour VIII. Horaires IX. Sources A noter que toutes les heures présentes dans ce dossier sont en heure GMT. I. PRESENTATION DES EQUIPAGES Equipage Expedition 15 Fyodor YURCHIKHIN (commandant ISS) Lieu et Lieu et date de naissance : 03/01/1959 ; Batumi (Géorgie) Statut familial : Marié et 2 enfants Etudes : Graduat d’économie à la Moscow Service State University Statut professionnel: Ingénieur et travaille depuis 1993 chez RKKE Roskosmos : Sélectionné le 28/07/1997 (RKKE-13) Précédents vols : STS-112 (07/10/2002 au 18/10/2002), totalisant 10 jours 19h58 Oleg KOTOV(ingénieur de bord) Lieu et date de naissance : 27/10/1965 ; Simferopol (Ukraine) Statut familial : Marié et 2 enfants Etudes : Doctorat en médecine obtenu à la Sergei M. Kirov Military Medicine Academy Statut professionnel: Colonel, Russian Air Force et travaille au centre d’entraînement des cosmonautes, le TsPK Roskosmos : Sélectionné le 09/02/1996 (RKKE-12) Précédents vols : - Clayton Conrad ANDERSON (Ingénieur de vol ISS) Lieu et date de naissance : 23/02/1959 ; Omaha (Nebraska) Statut familial : Marié et 2 enfants Etudes : Promu bachelier en physique à Hastings College, maîtrise en ingénierie aérospatiale à la Iowa State University Statut professionnel: Directeur du centre des opérations de secours à la Nasa Nasa : Sélectionné le 04/06/1998 (Groupe) Précédents vols : - Equipage Expedition 16 / Soyuz TM-11 Peggy A. -
Expedition 11, Space Tourist Back on Earth 11 October 2005
Expedition 11, Space Tourist Back on Earth 11 October 2005 The Soyuz TMA spacecraft undocked from the station at 5:49 p.m. EDT. Its re-entry was flawless. It brought the three men aboard to a landing about 53 miles northeast of Arkalyk after 179 days and 23 minutes in space for the E11 crew. The recovery team reached the capsule in minutes. Krikalev and Phillips will spend several weeks in Star City, near Moscow, for debriefing and medical examinations. They launched from the Baikonur Cosmodrome in Kazakhstan last April 14. During their increment they performed a spacewalk, continued station maintenance and did scientific experiments. While aboard the station, Krikalev became the world's most experienced spacefarer. On Aug. 16 The Expedition 11 landed back on Earth Monday his cumulative time in space passed the record of at 9:09 p.m. EDT after undocking from the 747 days, 14 hours and 14 minutes set by international space station at 5:49 p.m. EDT. Cosmonaut Sergei Avdeyev. Krikalev previously Commander Sergei Krikalev, Flight Engineer John had completed two long-duration spaceflights Phillips and Spaceflight Participant US millionaire aboard the Mir space station, served as a member businessman Greg Olsen boarded a Soyuz TMA-6 of the Expedition 1 crew of the space station and Monday afternoon for re-entry in Kazakhstan. flown two space shuttle missions. The station's new crewmembers arrived at the By Monday's landing, Krikalev's cumulative time in station on Oct. 3. Expedition 12 Commander Bill space had reached 803 days and 9 hours and 39 McArthur and Flight Engineer Valery Tokarev will minutes. -
XXIX Congress Report XXIX Planetary Congress • Austria • 2016 Photos: OEWF
XXIX Congress Report XXIX Planetary Congress • Austria • 2016 Photos: OEWF 1 John-David Bartoe, 2 Alexander Ivanchenkov, 3 Ulrich Walter, 4 Gerhard Thiele, 5 Georgi Iva- nov, 6 Yuri Gidzenko, 7 Bertalan Farkas, 8 Kevin Ford, 9 Pavel Vinogradov, 10 Charlie Walker, 11 Kimiya Yui, 12 Anatoli Artsebarskii, 13 Shannon Lucid, 14 Reinhold Ewald, 15 Claudie Haigneré, 16 Joe Acaba, 17 Ernst Messerschmid, 18 Jan Davis, 19 Franz Viehbock, 20 Loren Shriver, 21 Miroslaw Hermaszewski. 22 Sultan bin Salman al-Saud, 23 Yang Liwei, 24 Richard Garriott, 25 Mark Brown, 26 Carl Walz, 27 Bill McArthur, 28 Owen Garriott, 29 Anna Fisher, 30 George Zam- ka, 31 Rick Hieb, 32 Jerry Ross, 33 Alexander Volkov, 34 André Kuipers, 35 Jean-Pierre Haign- eré, 36 Toktar Aubakirov, 37 Kay Hire, 38 Michael Fincke, 39 John Fabian, 40 Pedro Duque, 41 Michael Foreman, 42 Sergei Avdeev, 43 Vladimir Kovolyonok, 44 Alexandar Aleksandrov, 45 Alexander Alexandrov, 46 Drew Feustel, 47 Dumitru Prunariu, 48 Alexei Leonov, 49 Rusty Sch- weickart, 50 Klaus-Dietrich Flade, 51 Anton Shkaplerov, 52 Alexander Samokutyaev, 53 Sergei Krikalev, 54 Viktor Savinykh, 55 Soichi Noguchi, 56 Bonnie Dunbar, 57 Vladimir Aksyonov, 58 Scott Altman, 59 Yuri Baturin, 60 Susan Helms, 61 Ulf Merbold, 62 Stephanie Wilson, 63 Chiaki Mukai, 64 Charlie Camarda, 65 Julie Payette, 66 Dick Richards, 67 Yuri Usachev, 68 Michael Lo- pez-Alegria, 69 Jim Voss, 70 Rex Walheim, 71 Oleg Atkov, 72 Bobby Satcher, 73 Valeri Tokarev, 74 Sandy Magnus, 75 Bo Bobko, 76 Helen Sharman, 77 Susan Kilrain, 78 Pam Melroy, 79 Janet Kavandi, 80 Tony Antonelli, 81 Sergei Zalyotin, 82 Frank De Winne, 83 Alexander Balandin, 84 Sheikh Muszaphar, 85 Christer Fuglesang, 86 Nikolai Budarin, 87 Salizhan Sharipov, 88 Vladimir Titov, 89 Bill Readdy, 90 Bruce McCandless II, 91 Vyacheslav Zudov, 92 Brian Duffy, 93 Randy Bresnik, 94 Oleg Artemiev XXIX Planetary Congress • Austria • 2016 One hundred and four astronauts and cosmonauts from 21 nations gathered Oc- tober 3-7, 2016 in Vienna, Austria for the XXIX Planetary Congress of the Associa- tion of Space Explorers. -
E. Michael Fincke (Colonel, U.S
National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 April 2021 E. Michael Fincke (Colonel, U.S. Air Force, Ret.) NASA Astronaut Summary: E. Michael Fincke was selected as an astronaut by NASA in 1996. The Pennsylvania native is the veteran of three spaceflights, Expedition 9 in 2004, Expedition 18 in 2009, and STS-134 in 2011. For Expedition 9, Fincke served as Science Officer and Flight Engineer during his six-month stay onboard the International Space Station. While there, he performed four spacewalks. For Expedition 18, Fincke served as Commander, where he and his crew prepared the station for future six-person crews. For STS-134, he served as Mission Specialist and completed three spacewalks. Col. Fincke has logged more than a year in orbit, with nine space walks. After working with NASA’s Commercial Crew Program to develop and bring two new crewed spacecraft online, the Space-X Crew Dragon and the Boeing CST-100 Starliner, Fincke was selected to serve as the Joint Operations Commander on the first crewed experimental test flight of the Starliner. Riding on the Atlas V launch vehicle, this will be Mike’s third rocket and spacecraft combination to orbit. He is currently preparing for his fourth spaceflight, scheduled to launch to the International Space Station later this year. Personal Data: Born March 14, 1967, in Pittsburgh, Pennsylvania, but considers Emsworth, Pennsylvania, to be his hometown. Married to the former Renita Saikia of Houston, Texas. They have three children. In addition to time with his family, Col. Fincke enjoys travel, geology, astronomy, learning new languages and reading. -
Protostar II Mission Overview
THE VEHICLE THE SATELLITE PROTON HISTORY PROTON DESCRIPTION Lead designer was Vladimir Chelomei, who designed it TOTAL HEIGHT with the intention of creating both a powerful rocket for 58.2 m (191 ft) military payloads and a high-performance ICBM. The program was changed, and the rocket was developed GRoss LIFT-OFF exclusively for launching spacecraft. WEIGHT 705,000 kg First named UR-500, but adopted the name (1,554,000 lb) “Proton,” which also was the name of the first PROPELLANT three payloads launched. UDMH and NTO Proton launched Russian interplanetary mis- INITIAL LAUNCH sions to the Moon, Venus, Mars, and Hal- 16 July 1965 ley’s Comet. Proton-1 Spacecraft Proton launched the Salyut space sta- PAYLOAD FAIRINGS tions, the Mir core segment and both There are multiple payload fairing designs presently the Zarya (Dawn) and Zvezda (Star) mod- qualified for flight, including ules for today’s International Space Station. standard commercial payload fairings developed specifically to First commercial Proton launch — 9 April 1996. meet the needs of our customers. First commercial Proton M Breeze M launch BREEZE M UPPER STAGE — 30 December 2002 The Breeze M is powered by one pump-fed Mission Overview gimbaled main engine that develops thrust of 20 kN (4,500 lbf). It is composed of a central core and an auxilliary propellant tank which is jettisoned in flight SATELLITE OPERATOR following depletion. The Breeze M control system includes an SES on-board computer, a three-axis gyro stabilized platform, and a www.ses.com navigation system. The quantity of propellant carried is dependent SATELLITE MANUFACTURER on specific mission requirements and is varied to maximize mission Experience ILS: Achieve Your Mission performance. -
Everything You Need to Know About the International Space Station Science Fair 2021
Everything you Need to Know About the International Space Station Science Fair 2021 By: J. R. Montessori Academy at Spring Valley 8th Grade Focus Question What is the International Space Station, how was it built, what do the crewmates do there? Introduction The year was 1998 the date was November the 20th and the whole world was buzzing with anticipation. Today was the day that the first piece of the ISS, the Zarya, would be launched. On October 4, 1957, the US was in the midst of the Cold War which started in 1947 and tension hung in the air between the US and the Soviet Union. The Soviets had just launched the Sputnik 1, a Russian artificial satellite. The US was shocked that the Russians had reached the stars before the US did. Only a month later the Russians launched yet another rocket called the Sputnik 2 and this time it carried a dog named Laika. It wasn't until 1958 that the US finally got their own rocket; Explorer 1, launched. In 1969 Buzz Aldrin and Neil Armstrong became the first men on the moon and the US had won the space race. Statement My model will show what the International Space Station will look like in scale. Why is THe ISS Important? What is the purpose of the ISS? The ISS is a laboratory to conduct experiments. Why do we need a laboratory in space when we already have thousands here on Earth? Well, in space things are very different. That includes the gravity (there is none) the oxygen we breathe (it's artificial aboard the ISS so the air the astro/cosmonauts breath is recycled), so naturally experiment results will also be very different. -
IAF-01-T.1.O1 Progress on the International Space Station
https://ntrs.nasa.gov/search.jsp?R=20150020985 2019-08-31T05:38:38+00:00Z IAF-01-T.1.O1 Progress on the International Space Station - We're Part Way up the Mountain John-David F. Bartoe and Thomas Holloway NASA Johnson Space Center, Houston, Texas, USA The first phase of the International Space Station construction has been completed, and research has begun. Russian, U.S., and Canadian hardware is on orbit, ard Italian logistics modules have visited often. With the delivery of the U.S. Laboratory, Destiny, significant research capability is in place, and dozens of U.S. and Russian experiments have been conducted. Crew members have been on orbit continuously since November 2000. Several "bumps in the road" have occurred along the way, and each has been systematically overcome. Enormous amounts of hardware and software are being developed by the International Space Station partners and participants around the world and are largely on schedule for launch. Significant progress has been made in the testing of completed elements at launch sites in the United States and Kazakhstan. Over 250,000 kg of flight hardware have been delivered to the Kennedy Space Center and integrated testing of several elements wired together has progressed extremely well. Mission control centers are fully functioning in Houston, Moscow, and Canada, and operations centers Darmstadt, Tsukuba, Turino, and Huntsville will be going on line as they are required. Extensive coordination efforts continue among the space agencies of the five partners and two participants, involving 16 nations. All of them continue to face their own challenges and have achieved significant successes. -
The International Space Station and the Space Shuttle
Order Code RL33568 The International Space Station and the Space Shuttle Updated November 9, 2007 Carl E. Behrens Specialist in Energy Policy Resources, Science, and Industry Division The International Space Station and the Space Shuttle Summary The International Space Station (ISS) program began in 1993, with Russia joining the United States, Europe, Japan, and Canada. Crews have occupied ISS on a 4-6 month rotating basis since November 2000. The U.S. Space Shuttle, which first flew in April 1981, has been the major vehicle taking crews and cargo back and forth to ISS, but the shuttle system has encountered difficulties since the Columbia disaster in 2003. Russian Soyuz spacecraft are also used to take crews to and from ISS, and Russian Progress spacecraft deliver cargo, but cannot return anything to Earth, since they are not designed to survive reentry into the Earth’s atmosphere. A Soyuz is always attached to the station as a lifeboat in case of an emergency. President Bush, prompted in part by the Columbia tragedy, made a major space policy address on January 14, 2004, directing NASA to focus its activities on returning humans to the Moon and someday sending them to Mars. Included in this “Vision for Space Exploration” is a plan to retire the space shuttle in 2010. The President said the United States would fulfill its commitments to its space station partners, but the details of how to accomplish that without the shuttle were not announced. The shuttle Discovery was launched on July 4, 2006, and returned safely to Earth on July 17. -
International Space Station Skyrockets Into 21St
ALUMINUM EXTRUSION SHOWCASE AEROSPACE— International Space Station Skyrockets into 21st Century A Safe Hand-Hold in Space INTERNATIONAL SPACE STATION SKYROCKETS INTO 21ST CENTURY: EXTRUDED ALUMINUM TRUSS STRUCTURES LINK STATION MODULES TOGETHER IN THE MOST COMPLEX SCIENTIFIC VENTURE IN HISTORY page 1 Innovation launches into orbit, thanks to aluminum industry manufacturers who are supplying extruded aluminum tubing for the truss structures that link together the International Space Station (ISS). Boeing Company engineers are working with extruders on a massive scale during construction and assembly of the newest extruded truss sections: Starboard segments S3, S4, S6, and Portside segments P3, P4 and P5, scheduled to begin launching in Spring, 2005. Truss section P6, launched in November 2000, supports the current ISS configuration. A marvel of science and aerospace engineering, this vast ISS program is truly flourishing thanks to aluminum extruders across the globe. The ISS is the most complex international scientific venture in history. Its crews are conducting With Earth on the horizon, the International Space Station, as seen research to support space exploration, and are from aboard the Space Shuttle providing a stable environment for scientific, tech- Discovery. nological and commercial research. Building the ISS involves more than 100,000 space agency and contractor personnel from 16 countries, including more than 10,000 first to fourth-tier suppliers—truly an example of international cooperation. The Port Side P6 truss segment hangs suspended from a crane, moving through the Space Station Processing Facility, on its way to launch on the Space Shuttle Endeavour. The P6 MORE comprises Solar Array Wing-3 and the Integrated Electronic Assembly, installed on the ISS in November 2000. -
Spaceflight Now STS-98/ISS Stage 5A Quick-Look Data
STS-98/ISS Stage 5A Quick-Look Data Spaceflight Now spaceflightnow.com Position ISS-1 (Soyuz Up/STS Down) Family DOB STS-98 Hardware and Flight Data Commander William Shepherd, 51 Married/0 07/26/49 STS Mission STS-98/ISS-5A (102nd flt) STS-27, 41, 52, Soyuz TM-31 Orbiter Atlantis/OV-104 (23) Soyuz Pilot Yuri Gidzenko, 38 Married/2 03/26/62 Payload Destiny laboratory module Soyuz TM-22, TM-31 Launch 02/07 06:13 PM Engineer Sergei Krikalev, 42 Married/1 08/27/58 Pad/MLP/FR LC-39A/MLP-2/LCC-2 Soyuz TM-7, TM-12, STS-60, STS-88, TM-31 Prime TAL Zaragoza, Spain Landing 12:53:08 PM 02.18.01 Position STS-98 ISS-5A Family DOB Landing Site KSC, Runway 15/33 Duration 10/18:40 Commander Mr. Kenneth Cockrell, 50 Single/2 04/09/50 STS-56, 69, 80 Atlantis 172/13:51:51 Pilot/IV Mr. Mark Polansky, 44 Single/0 06/02/56 STS Program 881/06:59:19 Rookie MS1/EV2 Navy Cmdr. Robert Curbeam, 38 Married/2 03/05/62 MECO Ha/Hp 194 X 46 statute miles STS-85 OMS Ha/Hp 201 X 121 MS2/RMS/FE Ms. Marsha Ivins, 49 Single/0 04/15/51 ISS Ha/Hp 235 X 229 (varies) STS-32, 46, 62, 81 Period 92.3 minutes MS3/EV1 Thomas Jones, Ph.D., 46 Single/0 01/22/55 Inclination 51.6 degrees STS-59, 68, 80 Velocity 17,169 mph EOM Miles 4.5 million STS/Payload Weights at Launch/Landing STS-98 Mission Patch EOM Orbits 170 (land on 171) STS System at Launch 4.5 million lbs SSMEs (2A) 2052/2044/2047 STS and Payload at Launch 254,694 lbs ET/SRB ET-106/BI105-RSRM 77 STS and Payload at Landing 198,909 lbs Software OI-28 Destiny Laboratory Module 32,000 lbs Left OMS LP-03/27/F3 Lab Dimensions 14 -
Expedition 8 MISSION OVERVIEW
Expedition 8 MISSION OVERVIEW To Improve Life Here, Science Comes to the Forefront To Extend Life to There, To Find Life Beyond. Experiments from earlier expeditions will Education Payload Operations (EPO) remain aboard the International Space include three educational activities that That is NASAs vision. Station (ISS), continuing to benefit from will focus on demonstrating science, long-term exposure to microgavity, and mathematics, technology, engineering or Michael Foale, additional studies in the life and physical geography principles. Expedition 8 Commander, NASA ISS sciences and space technology development Group Activation Packs -- YEAST will Science Officer: will be added. evaluate the role of individual genes in the When we look back fifty years to this time, we Most of the research complement for response of yeast to space flight conditions. wont remember the experiments that were Expedition 8 will be carried out with The results of this research could help performed, we wont remember the assembly scientific research facilities and samples clarify how mammalian cells grow under that was done, we may barely remember any already on board the Space Station. microgravity conditions and determine if individuals. What we will know was that countries Additional experiments are being evaluated genes are altered. came together to do the first joint international and prepared to take advantage of the Synchronized Position Hold, Engage, project, and we will know that that was the seed limited cargo space on the Soyuz or Reorient, Experimental Satellites that started us off to the moon and Mars. Progress vehicles. The research agenda for (SPHERES) will allow scientists to study the expedition remains flexible. -
Expedition 11 Opening the Door for Return to Flight
EXPEDITION 11 OPENING THE DOOR FOR RETURN TO FLIGHT When the crew of STS-114, the mission that The Expedition 11 crew of Krikalev, the will return the Space Shuttle to fl ight, arrives expedition and Soyuz Commander, and at the International Space Station, Russian Phillips, the Flight Engineer and ISS Science Cosmonaut Sergei Krikalev and American Offi cer, began their six-month mission to the Astronaut John Phillips, will be ready to ISS with a lift-off April 15, 2005, aboard a welcome them onboard the orbiting outpost. Soyuz spacecraft launched from the Baikonur Cosmodrome in Kazakhstan. Once they arrived at the Space Station, the new team replaced the Expedition 10 crew of Leroy Chiao and Salizhan Sharipov, who had been aboard the ISS since Oct. 15, 2004. Joining the Expedition 11 crew aboard Soyuz TMA-6 was European Space Agency Astronaut Roberto Vittori, an Italian Air Force pilot. He spent eight days on the Station, conducting a variety of experiments before returning home with Chiao and Sharipov. During the Expedition 11 mission, 15 scientifi c investigations are planned, most of which United Space Alliance Training Team member Oscar focus on how the human body changes and Koehler, left, assists Cosmonaut Sergei Krikalev, adapts to the microgravity environment of Orbiting 221 miles above the Earth, the International Space Station is seen with the Port One truss and right, and astronaut John Phillips as they participate space. Starboard One truss in place. in a training session in the Johnson Space Center’s Virtual Reality Lab. This type of computer training The ISS experiments are part of a step-by-step and beyond.