A Measure and Integral Over Unbounded Sets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Boundedness in Linear Topological Spaces
BOUNDEDNESS IN LINEAR TOPOLOGICAL SPACES BY S. SIMONS Introduction. Throughout this paper we use the symbol X for a (real or complex) linear space, and the symbol F to represent the basic field in question. We write R+ for the set of positive (i.e., ^ 0) real numbers. We use the term linear topological space with its usual meaning (not necessarily Tx), but we exclude the case where the space has the indiscrete topology (see [1, 3.3, pp. 123-127]). A linear topological space is said to be a locally bounded space if there is a bounded neighbourhood of 0—which comes to the same thing as saying that there is a neighbourhood U of 0 such that the sets {(1/n) U} (n = 1,2,—) form a base at 0. In §1 we give a necessary and sufficient condition, in terms of invariant pseudo- metrics, for a linear topological space to be locally bounded. In §2 we discuss the relationship of our results with other results known on the subject. In §3 we introduce two ways of classifying the locally bounded spaces into types in such a way that each type contains exactly one of the F spaces (0 < p ^ 1), and show that these two methods of classification turn out to be identical. Also in §3 we prove a metrization theorem for locally bounded spaces, which is related to the normal metrization theorem for uniform spaces, but which uses a different induction procedure. In §4 we introduce a large class of linear topological spaces which includes the locally convex spaces and the locally bounded spaces, and for which one of the more important results on boundedness in locally convex spaces is valid. -
Measure, Integral and Probability
Marek Capinski´ and Ekkehard Kopp Measure, Integral and Probability Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest To our children; grandchildren: Piotr, Maciej, Jan, Anna; Luk asz Anna, Emily Preface The central concepts in this book are Lebesgue measure and the Lebesgue integral. Their role as standard fare in UK undergraduate mathematics courses is not wholly secure; yet they provide the principal model for the development of the abstract measure spaces which underpin modern probability theory, while the Lebesgue function spaces remain the main source of examples on which to test the methods of functional analysis and its many applications, such as Fourier analysis and the theory of partial differential equations. It follows that not only budding analysts have need of a clear understanding of the construction and properties of measures and integrals, but also that those who wish to contribute seriously to the applications of analytical methods in a wide variety of areas of mathematics, physics, electronics, engineering and, most recently, finance, need to study the underlying theory with some care. We have found remarkably few texts in the current literature which aim explicitly to provide for these needs, at a level accessible to current under- graduates. There are many good books on modern probability theory, and increasingly they recognize the need for a strong grounding in the tools we develop in this book, but all too often the treatment is either too advanced for an undergraduate audience or else somewhat perfunctory. We hope therefore that the current text will not be regarded as one which fills a much-needed gap in the literature! One fundamental decision in developing a treatment of integration is whether to begin with measures or integrals, i.e. -
The Axiom of Choice and Its Implications
THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial. -
1 Definition
Math 125B, Winter 2015. Multidimensional integration: definitions and main theorems 1 Definition A(closed) rectangle R ⊆ Rn is a set of the form R = [a1; b1] × · · · × [an; bn] = f(x1; : : : ; xn): a1 ≤ x1 ≤ b1; : : : ; an ≤ x1 ≤ bng: Here ak ≤ bk, for k = 1; : : : ; n. The (n-dimensional) volume of R is Vol(R) = Voln(R) = (b1 − a1) ··· (bn − an): We say that the rectangle is nondegenerate if Vol(R) > 0. A partition P of R is induced by partition of each of the n intervals in each dimension. We identify the partition with the resulting set of closed subrectangles of R. Assume R ⊆ Rn and f : R ! R is a bounded function. Then we define upper sum of f with respect to a partition P, and upper integral of f on R, X Z U(f; P) = sup f · Vol(B); (U) f = inf U(f; P); P B2P B R and analogously lower sum of f with respect to a partition P, and lower integral of f on R, X Z L(f; P) = inf f · Vol(B); (L) f = sup L(f; P): B P B2P R R R RWe callR f integrable on R if (U) R f = (L) R f and in this case denote the common value by R f = R f(x) dx. As in one-dimensional case, f is integrable on R if and only if Cauchy condition is satisfied. The Cauchy condition states that, for every ϵ > 0, there exists a partition P so that U(f; P) − L(f; P) < ϵ. -
(Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding. -
Measure Theory and Probability
Measure theory and probability Alexander Grigoryan University of Bielefeld Lecture Notes, October 2007 - February 2008 Contents 1 Construction of measures 3 1.1Introductionandexamples........................... 3 1.2 σ-additive measures ............................... 5 1.3 An example of using probability theory . .................. 7 1.4Extensionofmeasurefromsemi-ringtoaring................ 8 1.5 Extension of measure to a σ-algebra...................... 11 1.5.1 σ-rings and σ-algebras......................... 11 1.5.2 Outermeasure............................. 13 1.5.3 Symmetric difference.......................... 14 1.5.4 Measurable sets . ............................ 16 1.6 σ-finitemeasures................................ 20 1.7Nullsets..................................... 23 1.8 Lebesgue measure in Rn ............................ 25 1.8.1 Productmeasure............................ 25 1.8.2 Construction of measure in Rn. .................... 26 1.9 Probability spaces ................................ 28 1.10 Independence . ................................. 29 2 Integration 38 2.1 Measurable functions.............................. 38 2.2Sequencesofmeasurablefunctions....................... 42 2.3 The Lebesgue integral for finitemeasures................... 47 2.3.1 Simplefunctions............................ 47 2.3.2 Positivemeasurablefunctions..................... 49 2.3.3 Integrablefunctions........................... 52 2.4Integrationoversubsets............................ 56 2.5 The Lebesgue integral for σ-finitemeasure................. -
The Radon-Nikodym Theorem
The Radon-Nikodym Theorem Yongheng Zhang Theorem 1 (Johann Radon-Otton Nikodym). Let (X; B; µ) be a σ-finite measure space and let ν be a measure defined on B such that ν µ. Then there is a unique nonnegative measurable function f up to sets of µ-measure zero such that Z ν(E) = fdµ, E for every E 2 B. f is called the Radon-Nikodym derivative of ν with respect to µ and it is often dν denoted by [ dµ ]. The assumption that the measure µ is σ-finite is crucial in the theorem (but we don't have this requirement directly for ν). Consider the following two examples in which the µ's are not σ-finite. Example 1. Let (R; M; ν) be the Lebesgue measure space. Let µ be the counting measure on M. So µ is not σ-finite. For any E 2 M, if µ(E) = 0, then E = ; and hence ν(E) = 0. This shows ν µ. Do we have the associated Radon-Nikodym derivative? Never. Suppose we have it and call it R R f, then for each x 2 R, 0 = ν(fxg) = fxg fdµ = fxg fχfxgdµ = f(x)µ(fxg) = f(x). Hence, f = 0. R This means for every E 2 M, ν(E) = E 0dµ = 0, which contradicts that ν is the Lebesgue measure. Example 2. ν is still the same measure above but we let µ to be defined by µ(;) = 0 and µ(A) = 1 if A 6= ;. Clearly, µ is not σ-finite and ν µ. -
Delta Functions and Distributions
When functions have no value(s): Delta functions and distributions Steven G. Johnson, MIT course 18.303 notes Created October 2010, updated March 8, 2017. Abstract x = 0. That is, one would like the function δ(x) = 0 for all x 6= 0, but with R δ(x)dx = 1 for any in- These notes give a brief introduction to the mo- tegration region that includes x = 0; this concept tivations, concepts, and properties of distributions, is called a “Dirac delta function” or simply a “delta which generalize the notion of functions f(x) to al- function.” δ(x) is usually the simplest right-hand- low derivatives of discontinuities, “delta” functions, side for which to solve differential equations, yielding and other nice things. This generalization is in- a Green’s function. It is also the simplest way to creasingly important the more you work with linear consider physical effects that are concentrated within PDEs, as we do in 18.303. For example, Green’s func- very small volumes or times, for which you don’t ac- tions are extremely cumbersome if one does not al- tually want to worry about the microscopic details low delta functions. Moreover, solving PDEs with in this volume—for example, think of the concepts of functions that are not classically differentiable is of a “point charge,” a “point mass,” a force plucking a great practical importance (e.g. a plucked string with string at “one point,” a “kick” that “suddenly” imparts a triangle shape is not twice differentiable, making some momentum to an object, and so on. -
A Representation of Partially Ordered Preferences Teddy Seidenfeld
A Representation of Partially Ordered Preferences Teddy Seidenfeld; Mark J. Schervish; Joseph B. Kadane The Annals of Statistics, Vol. 23, No. 6. (Dec., 1995), pp. 2168-2217. Stable URL: http://links.jstor.org/sici?sici=0090-5364%28199512%2923%3A6%3C2168%3AAROPOP%3E2.0.CO%3B2-C The Annals of Statistics is currently published by Institute of Mathematical Statistics. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ims.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Mar 4 10:44:11 2008 The Annals of Statistics 1995, Vol. -
Harmonic Analysis Meets Geometric Measure Theory
Geometry of Measures: Harmonic Analysis meets Geometric Measure Theory T. Toro ∗ 1 Introduction One of the central questions in Geometric Measure Theory is the extend to which the regularity of a measure determines the geometry of its support. This type of question was initially studied by Besicovitch, and then pursued by many authors among others Marstrand, Mattila and Preiss. These authors focused their attention on the extend to which the behavior of the density ratio of a m given Radon measure µ in R with respect to Hausdorff measure determines the regularity of the µ(B(x;r)) m support of the measure, i.e. what information does the quantity rs for x 2 R , r > 0 and s > 0 encode. In the context of the study of minimizers of area, perimeter and similar functionals the correct density ratio is monotone, the density exists and its behavior is the key to study the regularity and structure of these minimizers. This question has also been studied in the context of Complex Analysis. In this case, the Radon measure of interest is the harmonic measure. The general question is to what extend the structure of the boundary of a domain can be fully understood in terms of the behavior of the harmonic measure. Some of the first authors to study this question were Carleson, Jones, Wolff and Makarov. The goal of this paper is to present two very different type of problems, and the unifying techniques that lead to a resolution of both. In Section 2 we look at the history of the question initially studied by Besicovitch in dimension 2, as well as some of its offsprings. -
Compact and Totally Bounded Metric Spaces
Appendix A Compact and Totally Bounded Metric Spaces Definition A.0.1 (Diameter of a set) The diameter of a subset E in a metric space (X, d) is the quantity diam(E) = sup d(x, y). x,y∈E ♦ Definition A.0.2 (Bounded and totally bounded sets)A subset E in a metric space (X, d) is said to be 1. bounded, if there exists a number M such that E ⊆ B(x, M) for every x ∈ E, where B(x, M) is the ball centred at x of radius M. Equivalently, d(x1, x2) ≤ M for every x1, x2 ∈ E and some M ∈ R; > { ,..., } 2. totally bounded, if for any 0 there exists a finite subset x1 xn of X ( , ) = ,..., = such that the (open or closed) balls B xi , i 1 n cover E, i.e. E n ( , ) i=1 B xi . ♦ Clearly a set is bounded if its diameter is finite. We will see later that a bounded set may not be totally bounded. Now we prove the converse is always true. Proposition A.0.1 (Total boundedness implies boundedness) In a metric space (X, d) any totally bounded set E is bounded. Proof Total boundedness means we may choose = 1 and find A ={x1,...,xn} in X such that for every x ∈ E © The Editor(s) (if applicable) and The Author(s), under exclusive 429 license to Springer Nature Switzerland AG 2020 S. Gentili, Measure, Integration and a Primer on Probability Theory, UNITEXT 125, https://doi.org/10.1007/978-3-030-54940-4 430 Appendix A: Compact and Totally Bounded Metric Spaces inf d(xi , x) ≤ 1. -
Chapter 7. Complete Metric Spaces and Function Spaces
43. Complete Metric Spaces 1 Chapter 7. Complete Metric Spaces and Function Spaces Note. Recall from your Analysis 1 (MATH 4217/5217) class that the real numbers R are a “complete ordered field” (in fact, up to isomorphism there is only one such structure; see my online notes at http://faculty.etsu.edu/gardnerr/4217/ notes/1-3.pdf). The Axiom of Completeness in this setting requires that ev- ery set of real numbers with an upper bound have a least upper bound. But this idea (which dates from the mid 19th century and the work of Richard Dedekind) depends on the ordering of R (as evidenced by the use of the terms “upper” and “least”). In a metric space, there is no such ordering and so the completeness idea (which is fundamental to all of analysis) must be dealt with in an alternate way. Munkres makes a nice comment on page 263 declaring that“completeness is a metric property rather than a topological one.” Section 43. Complete Metric Spaces Note. In this section, we define Cauchy sequences and use them to define complete- ness. The motivation for these ideas comes from the fact that a sequence of real numbers is Cauchy if and only if it is convergent (see my online notes for Analysis 1 [MATH 4217/5217] http://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf; notice Exercise 2.3.13). 43. Complete Metric Spaces 2 Definition. Let (X, d) be a metric space. A sequence (xn) of points of X is a Cauchy sequence on (X, d) if for all ε > 0 there is N N such that if m, n N ∈ ≥ then d(xn, xm) < ε.