(12) Patent Application Publication (10) Pub. No.: US 2017/0224730 A1 BERENSON (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2017/0224730 A1 BERENSON (43) Pub US 20170224730A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0224730 A1 BERENSON (43) Pub. Date: Aug. 10, 2017 (54) ANT-CANCER EFFECTS OF PROTEASOME Publication Classification INHIBITORS IN COMBINATION WITH (51) Int. Cl. GLUCOCORTICOIDS, ARSENIC A633/36 (2006.01) CONTAINING COMPOUNDS, AND A6IR 9/00 (2006.01) ASCORBC ACID A 6LX 3L/375 (2006.01) (71) Applicant: Institute for Myeloma & Bone Cancer A638/07 (2006.01) Research, West Hollywood, CA (US) A 6LX 3/573 (2006.01) (52) U.S. Cl. (72) Inventor: James R. BERENSON, West CPC .............. A61K 33/36 (2013.01); A61K 38/07 Hollywood, CA (US) (2013.01); A61 K3I/573 (2013.01); A61 K 31/375 (2013.01); A61K 9/0019 (2013.01); (73) Assignee: Institute for Myeloma & Bone Cancer A61K 9/0053 (2013.01) Research, West Hollywood, CA (US) (21) Appl. No.: 15/317,690 (57) ABSTRACT PCT Fed: Jun. 10, 2015 The present invention provides methods of treatment for (22) hematological malignancies involving synergistic combina (86) PCT No.: PCT/US2O15/035O23 tion of a proteasome inhibitor, a glucocorticoid, an arsenic containing compound, and ascorbic acid or a derivative S 371 (c)(1), thereof provide an unexpected efficacy in the treatment for (2) Date: Dec. 9, 2016 hematological disorders. The hematological disorders treated by the current invention include multiple myeloma, Related U.S. Application Data and may also include hematological disorders that are (60) Provisional application No. 62/010.391, filed on Jun. refractory to prior cancer treatments, or relapsed hemato 10, 2014. logic disorders. US 2017/0224730 A1 Aug. 10, 2017 ANT-CANCER EFFECTS OF PROTEASOME cortisone, desoxycorticosterone, fludrocortisone, betame INHIBITORS IN COMBINATION WITH thasome, dexamethasone, prednisolone, prednisone, meth GLUCOCORTICOIDS, ARSENIC ylprednisolone, methylprednisone, paramethasone, triamci CONTAINING COMPOUNDS, AND nolone, flumethasone, fluocinolone, fluocinonide, ASCORBIC ACID fluprednisolone, halcinonide, flurandrenolide, mepred nisone, and medrysone. CROSS REFERENCE TO RELATED 0012. In particular embodiments, the glucocorticoid is APPLICATIONS dexamethasone. 0001. This application claims the benefit under 35 U.S.C. 0013. In certain embodiments, the arsenic-containing S119(e) of U.S. Provisional Application No. 62/010,391, compound is selected from the group consisting of arsenic filed Jun. 10, 2014, which is incorporated by reference trioxide (As2O3), arsenic pentoxide (As2O5), arsenic herein in its entirety. hexoxide AS4O6), arsenic triselenide (As2Se3), arsenic dis ulfide (As2S2), arsenic trisulfide (As2S3), arsenic pentasul BACKGROUND fide (As2O5), arsenic tritelluride (As2Te3), sodium arsenate (Na2HAsO4), potassium arsenate (KH2AsO4), and sodium Technical Field arsenyl tartrate (NaC4H4AsO6). 0002 The invention generally relates to novel methods of 0014. In further embodiments, the arsenic-containing treating hematological malignancies, including multiple compound is arsenic trioxide. 0015. In additional embodiments, the ascorbic acid or myeloma. More particularly the invention relates to methods derivative thereof is selected from the group consisting of of treating hematological malignancies with a proteasome ascorbic acid, L-ascorbic acid-2-pyrophosphate esters, inhibitor, glucocorticoid, arsenic containing compound, and L-ascorbic acid-2-triphosphate esters, L-ascorbic acid-2- ascorbic acid or a derivative thereof. polyphosphate esters, sodium L-ascorbic acid-2-phosphate 0003. Description of the Related Art 6-palmitate, L-ascorbic acid-2-phosphate-6-palmitate, 0004 Multiple myeloma is a malignancy characterized L-ascorbic acid-2-phosphate-6-stearate, L-ascorbic acid-2- by the expansion of plasma cells that produce monoclonal phosphate-6-oleate and L-ascorbic acid-2-phosphate-6- immunoglobulin (IgG, IgA, Ig), IgE, or free W or K light arachidonate, 5,6-O-isoalkylidene ascorbic acid, 5,6-O-iso chains). The overall survival of patients with multiple propylidine ascorbic acid, and L-ascorbate 2-Sulphate. myeloma varies greatly from a few months to many years; 0016. In particular embodiments, the ascorbic acid or the mean is approximately five years. Anemia, hypercalce derivative thereof is ascorbic acid. mia and bone lesions correlate directly with total mass of myeloma cells and have important prognostic significance. 0017. In further embodiments, the methods comprise Other prognostic factors include age, the plasma cell label administering carfilzomib, arsenic trioxide, dexamethasone, ing index, serum albumin, B2-microglobulin, C-reactive and ascorbic acid. protein, thymidine kinase, and soluble interleukin 6 receptor. 0018. In certain embodiments, the methods comprise Major complications, such as infection and renal insuffi administering carfilzomib intravenously. ciency, are the main causes of death for myeloma patients. 0019. In particular embodiments, the methods comprise 0005. Current therapies for multiple myeloma fail to cure administering carfilzomib at a dose of 1-100 mg/m. the disease and nearly all patients eventually develop resis 0020. In some embodiments, the methods comprise tance to these therapies. Moreover, there are a paucity of administering arsenic trioxide intravenously. multiple myeloma targets and a lack of therapeutic options 0021. In additional embodiments, the methods comprise that are effective in overcoming drug resistance. administering arsenic trioxide at a dose of 0-5 mg/kg. 0022. In particular embodiments, the methods comprise BRIEF SUMMARY administering dexamethasone orally. 0006. The present invention generally provides novel and 0023. In further embodiments, the methods comprise synergistic treatments for multiple myeloma and related B administering dexamethasone intravenously. cell disorders. 0024. In particular embodiments, the methods comprise 0007. In various embodiments, a method of treating or administering dexamethasone at a dose of 1-100 mg. preventing a hematological malignancy in a subject com 0025. In certain embodiments, the methods comprise prising administering to the Subject a proteasome inhibitor, administering ascorbic acid orally. a glucocorticoid, an arsenic-containing compound, and 0026. In further embodiments, the methods comprise ascorbic acid or a derivative thereof is provided. administering ascorbic acid orally at a dose of 100-2000 mg. 0008. In particular embodiments, the hematological 0027. In some embodiments, the methods comprise malignancy is selected from the group consisting of mul administering ascorbic acid intravenously. tiple myeloma, chronic lymphocytic leukemia, or B-cell 0028. In particular embodiments, the methods comprise non-Hodgkin lymphoma. administering ascorbic acid intravenously at a dose of 1-50 0009. In additional embodiments, the proteasome inhibi ng. tor is selected from the group consisting of bortezomib, 0029. In various embodiments, a method of treating or carfilzomib, oprozomib, ixazomib citrate, marizomib, delan preventing multiple myeloma in a subject comprising Zomib, and Syringolin A. administering to the Subject a proteasome inhibitor, arsenic 0010. In some embodiments, the proteasome inhibitor is trioxide, a glucocorticoid, and ascorbic acid is provided. carfilzomib. 0030. In certain embodiments, the proteasome inhibitor is 0011. In particular embodiments, the glucocorticoid is selected from the group consisting of wherein the protea selected from the group consisting of hydroxycortisone, Some inhibitor is selected from the group consisting of US 2017/0224730 A1 Aug. 10, 2017 bortezomib, carfilzomib, oproZomib, ixazomib citrate, mari 0050. In various embodiments, a method of treating or Zomib, delanzomib, and Syringolin A. preventing a relapsed hematological malignancy in a subject 0031. In some embodiments, the proteasome inhibitor is comprising administering to the Subject, a glucocorticoid, an carfilzomib. arsenic-containing compound, and ascorbic acid or a deriva 0032. In some embodiments, the glucocorticoid is tive thereof is provided. selected from the group consisting of hydroxycortisone, 0051. In various other embodiments, a method of treating cortisone, desoxycorticosterone, fludrocortisone, betame or preventing hematological malignancy that is refractory to thasome, dexamethasone, prednisolone, prednisone, meth a prior treatment or treatments for cancer in a subject ylprednisolone, methylprednisone, paramethasone, triamci comprising administering to the Subject a proteasome inhibi nolone, flumethasone, fluocinolone, fluocinonide, tor, a glucocorticoid, an arsenic-containing compound, and fluprednisolone, halcinonide, flurandrenolide, mepred ascorbic acid or a derivative thereof is provided. nisone, and medrysone. 0052. In further embodiments, the hematological malig 0033. In particular embodiments, the glucocorticoid is nancy is selected from the group consisting of multiple dexamethasone. myeloma, chronic lymphocytic leukemia, or B-cell non 0034. In additional embodiments, the arsenic-containing Hodgkin lymphoma. compound is selected from the group consisting of arsenic 0053. In particular embodiments, the subject was previ trioxide (As2O3), arsenic pentoxide (As2O5), arsenic ously treated with a proteasome inhibitor. hexoxide AS4O6), arsenic triselenide (As2Se3), arsenic dis 0054. In additional embodiments, the subject was previ ulfide (As2S2), arsenic trisulfide (As2S3), arsenic pentasul ously treated with carfilzomib. fide (As2O5), arsenic tritelluride (As2Te3), sodium arsenate 0055. In additional embodiments, the subject was previ (Na2HAsO4), potassium
Recommended publications
  • Toward Personalized Treatment in Waldenström Macroglobulinemia
    | INDOLENT LYMPHOMA:HOW UNDERSTANDING DISEASE BIOLOGY IS INFLUENCING CLINICAL DECISION-MAKING | Toward personalized treatment in Waldenstrom¨ macroglobulinemia Jorge J. Castillo and Steven P. Treon Bing Center for Waldenstrom¨ Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA Waldenstrom¨ macroglobulinemia (WM) is a rare lymphoma with 1000 to 1500 new patients diagnosed per year in the United States. Patients with WM can experience prolonged survival times, which seem to have increased in the last decade, but relapse is inevitable. The identification of recurrent mutations in the MYD88 and CXCR4 genes has opened avenues of research to better understand and treat patients with WM. These developments are giving way to per- sonalized treatment approaches for these patients, focusing on increasing depth and duration of response alongside lower toxicity rates. In the present document, we review the diagnostic differential, the clinical manifestations, and the pathological and genomic features of patients with WM. We also discuss the safety and efficacy data of alkylating agents, proteasome inhibitors, monoclonal antibodies, and Bruton tyrosine kinase inhibitors in patients with WM. Finally, we propose a genomically driven algorithm for the treatment of WM. The future of therapies for WM appears bright and hopeful, but we should be mindful of the cost-effectiveness and long-term toxicity of novel agents. Diagnostic considerations Learning Objectives The differential diagnosis of WM includes immunoglobulin M (IgM) • To understand recent advances on the biology of Waldenstrom¨ monoclonal gammopathy of undetermined significance; other macroglobulinemia IgM-secreting lymphomas, especially marginal zone lymphoma (MZL); • To review available and investigational agents for the treat- and the rare IgM multiple myeloma (MM).
    [Show full text]
  • The Chemotherapy of Malignant Disease -Practical and Experimental Considerations
    Postgrad Med J: first published as 10.1136/pgmj.41.475.268 on 1 May 1965. Downloaded from POSTGRAD. MED. J. (1965), 41,268 THE CHEMOTHERAPY OF MALIGNANT DISEASE -PRACTICAL AND EXPERIMENTAL CONSIDERATIONS JOHN MATTHIAS, M.D., M.R.C.P., F.F.A., R.C.S. Physician, The Royal Marsden Hospital, London, S.W.3. THE TERM chemotherapy was introduced by positively charged alkyl (CH2) radicles of Ehrlich to describe the specific and effective the agent. treatment of infectious disease by chemical (a) The nitrogen mustards: mustine (HN2 substances. It is currently also applied to the 'nitrogen mustard', mechlorethamine, treatment of malignant disease. Unfortunately mustargen), trimustine (Trillekamin no aspect of tumour metabolism has been HN3), chlorambucil (Leukeran, phenyl discovered which has allowed the development butyric mustard), melphalan (Alkeran, of drugs capable of acting specifically upon the phenyl alanine mustard), uramustine malignant cell, so that cytotoxic drugs also (Uracil mustard), cyclophosphamide affect normal cells to a greater or lesser degree. (Endoxan or Cytoxan), mannomustine The most susceptible or sensitive of the normal (DegranoO). tissues are those with the highest rates of cell (b) The ethylenamines: tretamine (trie- turnover and include the haemopoietic and thanomelamine, triethylene melamine, lympho-reticular tissues, the gastro-intestinal TEM), thiotepa (triethylene thiopho- the the testis and the hair epithelium, ovary, sphoramide), triaziquone (Trenimon).by copyright. follicles. (c) The epoxides: triethyleneglycoldigly- Cancer chemotherapy may be said to encom- cidyl ether (Epodyl). pass all treatments of a chemical nature (d) The sulphonic acid esters: busulphan administered to patients with the purpose of (Myleran), mannitol myleran. restricting tumour growth or destroying tumour 2.
    [Show full text]
  • In the United States Court of Appeals for the Federal Circuit
    Case: 18-1959 Document: 16 Page: 1 Filed: 08/20/2018 No. 18-1959 In the United States Court of Appeals for the Federal Circuit GENENTECH, INC., APPELLANT v. HOSPIRA, INC., APPELLEE ON APPEAL FROM THE UNITED STATES PATENT AND TRADEMARK OFFICE PATENT TRIAL AND APPEAL BOARD IN NO. IPR2016-01771 BRIEF OF APPELLANT GENENTECH, INC. PAUL B. GAFFNEY ADAM L. PERLMAN THOMAS S. FLETCHER WILLIAMS & CONNOLLY LLP 725 Twelfth Street, N.W. Washington, DC 20005 (202) 434-5000 Case: 18-1959 Document: 16 Page: 2 Filed: 08/20/2018 CERTIFICATE OF INTEREST Pursuant to Federal Circuit Rule 47.4, undersigned counsel for appellant certifies the following: 1. The full name of the party represented by me is Genentech, Inc. 2. The name of the real party in interest represented by me is the same. 3. Genentech, Inc. is a wholly-owned subsidiary of Roche Holdings Inc. Roche Holdings Inc.’s ultimate parent, Roche Holdings Ltd, is a publicly held Swiss corporation traded on the Swiss Stock Exchange. Upon information and belief, more than 10% of Roche Holdings Ltd’s voting shares are held either directly or indirectly by Novartis AG, a publicly held Swiss corporation. 4. The following attorneys appeared for Genentech, Inc. in proceedings below or are expected to appear in this Court and are not already listed on the docket for the current case: Teagan J. Gregory and Christopher A. Suarez of Williams & Connolly LLP, 725 Twelfth Street, N.W., Washington, D.C. 20005. 5. The title and number of any case known to counsel to be pending in this or any other court or agency that will directly affect or be directly affected by this court’s decision in this pending appeal are Genentech, Inc.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Pdf; Chi 2015 DPP Air in Cars.Pdf; Dodson 2014 DPP Dust CA.Pdf; Kasper-Sonnenberg 2014 Phth Metabolites.Pdf; EU Cosmetics Regs 2009.Pdf
    Bouge, Cathy (ECY) From: Nancy Uding <[email protected]> Sent: Friday, January 13, 2017 10:24 AM To: Steward, Kara (ECY) Cc: Erika Schreder Subject: Comments re. 2016 CSPA Rule Update - DPP Attachments: DPP 131-18-0 exposure.pdf; Chi 2015 DPP air in cars.pdf; Dodson 2014 DPP dust CA.pdf; Kasper-Sonnenberg 2014 phth metabolites.pdf; EU Cosmetics Regs 2009.pdf Please accept these comments from Toxic-Free Future concerning the exposure potential of DPP for consideration during the 2016 CSPA Rule update. Regards, Nancy Uding -- Nancy Uding Grants & Research Specialist Toxic-Free Future 206-632-1545 ext.123 http://toxicfreefuture.org 1 JES-00888; No of Pages 9 JOURNAL OF ENVIRONMENTAL SCIENCES XX (2016) XXX– XXX Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jes Determination of 15 phthalate esters in air by gas-phase and particle-phase simultaneous sampling Chenchen Chi1, Meng Xia1, Chen Zhou1, Xueqing Wang1,2, Mili Weng1,3, Xueyou Shen1,4,⁎ 1. College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China 2. Zhejiang National Radiation Environmental Technology Co., Ltd., Hangzhou 310011, China 3. School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China 4. Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China ARTICLE INFO ABSTRACT Article history: Based on previous research, the sampling and analysis methods for phthalate esters (PAEs) Received 24 December 2015 were improved by increasing the sampling flow of indoor air from 1 to 4 L/min, shortening the Revised 14 January 2016 sampling duration from 8 to 2 hr.
    [Show full text]
  • Anticancer Effect of Deuterium Oxide on a Bladder Cancer Cell Related to Bcl-2 and Bax
    J. Ind. Eng. Chem., Vol. 13, No. 4, (2007) 501-507 Anticancer Effect of Deuterium Oxide on a Bladder Cancer Cell Related to Bcl-2 and Bax Jong Yoon Bahk*, Jeong-Hee Lee**, Hong Suk Chung***, Hae Young Lee******, † † Bong Chul Chung**** , Moon Seok Park******, Seung Ki Min*****, and Myeong Ok Kim****** *Department of Urology and **Pathology, Medical School, Gyeongsang National University, Jinju, 660-751, Korea ***Korea Atomic Energy Research Institute, PO Box 105, Daejeon, 305-600, Korea ****Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, P.O.BOX 131, Seoul, Korea *****Department of Urology, National Police Hospital, Seoul, 138-708, Korea ****** Division of Life Science and Applied of Life Science, BK 21 College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Korea Received February 17, 2007; Accepted April 18, 2007 Abstract: To evaluate the potentiality, as a drug for an intravesical instillation after a transurethral resection of a bladder tumor, we studied the anticancer effects of deuterium oxide (D2O) related to bcl-2 and bax. Bladder cancer cell T-24 was used and culture media were prepared with H2O and D2O at different concentrations (D2O v/v), 0 (control), 75, and 100 %. Cells were exposed to each D2O for 2, 2.5, 3, and 3.5 h. The anti- proliferative effects were measured by a quantitative colorimetric assay (MTT assay) and a hemocytometer. Invasion study was implemented with a modified reconstituted basement membrane after an exposure to D2O. Immunohistochemical staining and Western blot analysis for bcl-2 and bax were implemented to evaluate the relation between D2O and apoptosis.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • WO 2017/173206 Al 5 October 2017 (05.10.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/173206 Al 5 October 2017 (05.10.2017) P O P C T (51) International Patent Classification: CA 94121 (US). HUBBARD, Robert; 7684 Marker Road, A61K 31/52 (2006.01) C07D 473/02 (2006.01) San Diego, CA 92087 (US). MIKOLON, David; 6140 A61K 31/505 (2006.01) C07D 473/26 (2006.01) Calle Empinada, San Diego, CA 92120 (US). RAYMON, A61K 31/519 (2006.01) C07D 473/32 (2006.01) Heather; 3520 Vista de la Orilla, San Diego, CA 921 17 (US). SHI, Tao; 4650 Tarantella Lane, San Diego, CA (21) International Application Number: 92130 (US). TRAN, Tam, M.; 8953 Libra Drive, San PCT/US20 17/025252 Diego, CA 92126 (US). TSUJI, Toshiya; 4171 Donald (22) International Filing Date: Court, San Diego, CA 921 17 (US). WONG, Lilly, L.; 871 3 1 March 2017 (3 1.03.2017) Viva Court, Solana Beach, CA 92075 (US). XU, Suichan; 9650 Deer Trail Place, San Diego, CA 92127 (US). ZHU, (25) Filing Language: English Dan; 4432 Calle Mar De Armonia, San Diego, CA 92130 (26) Publication Language: English (US). (30) Priority Data: (74) Agents: BRUNER, Michael, J. et al; Jones Day, 250 Ve- 62/3 17,412 1 April 2016 (01.04.2016) US sey Street, New York, NY 10281-1047 (US). (71) Applicant: SIGNAL PHARMACEUTICALS, LLC (81) Designated States (unless otherwise indicated, for every [US/US]; 10300 Campus Point Drive, Suite 100, San kind of national protection available): AE, AG, AL, AM, Diego, CA 92121 (US).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,580,267 B2 Pedretti Et Al
    US008580267B2 (12) United States Patent (10) Patent No.: US 8,580,267 B2 Pedretti et al. (45) Date of Patent: Nov. 12, 2013 (54) IMMUNOCYTOKINES FORTUMOUR (56) References Cited THERAPY WITH CHEMOTHERAPEUTIC AGENTS FOREIGN PATENT DOCUMENTS (75) Inventors: Marta Pedretti, Zurich (CH): Dario WO O2/O59264 8, 2002 WO O3,O93478 11, 2003 Neri, Buchs (CH) WO 2004/OO2528 1, 2004 WO 2006/026020 3, 2006 (73) Assignee: Philogen S.p.A., Siena (IT) WO 2006/050834 5, 2006 WO 2007/128563 11, 2007 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. Paul, William, Fundamental Immunology, 3rd Edition, Raven Press, New York, 1993, pp. 292-295.* (21) Appl. No.: 13/139,655 Vajdos et al., Comprehensive functional maps of the antigen-binding site of an anti-ErbB2 antibody obtained with shotgun scanning 1-1. mutagenesis. J. Mol. Biol. 320:415-428, 2002.* (22) PCT Filed: Dec. 14, 2009 Bartolomei, M., et al. “Combined treatment of glioblastomapatients with locoregional pre-targeted 90Y-biotin radioimmunotherapy and (86). PCT No.: PCT/EP2009/008920 temozolomide.” QJNuclMed Mol Imaging. Sep. 2004:48(3):220-8. S371 (c)(1) Marlind, J., et al. "Antibody-mediated delivery of interleukin-2 to the (2), (4) Date. Jun. 14, 2011 Stroma of breast cancer strongly enhances the potency of chemo s 9 therapy” Clin Cancer Res. Oct. 15, 2008;14(20):6515-24. Brack, S.S., et al. “Tumor-targeting properties of novel antibodies (87) PCT Pub. No.: WO2010/078916 specific to the large isoform oftenascin-C.” Clin Cancer Res.
    [Show full text]
  • Ep 2569287 B1
    (19) TZZ _T (11) EP 2 569 287 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 413/04 (2006.01) C07D 239/46 (2006.01) 09.07.2014 Bulletin 2014/28 (86) International application number: (21) Application number: 11731562.2 PCT/US2011/036245 (22) Date of filing: 12.05.2011 (87) International publication number: WO 2011/143425 (17.11.2011 Gazette 2011/46) (54) COMPOUNDS USEFUL AS INHIBITORS OF ATR KINASE VERBINDUNGEN ALS HEMMER DER ATR-KINASE COMPOSÉS UTILISABLES EN TANT QU’INHIBITEURS DE LA KINASE ATR (84) Designated Contracting States: • VIRANI, Aniza, Nizarali AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Abingdon GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Oxfordshire OX144RY (GB) PL PT RO RS SE SI SK SM TR • REAPER, Philip, Michael Abingdon (30) Priority: 12.05.2010 US 333869 P Oxfordshire OX144RY (GB) (43) Date of publication of application: (74) Representative: Coles, Andrea Birgit et al 20.03.2013 Bulletin 2013/12 Kilburn & Strode LLP 20 Red Lion Street (73) Proprietor: Vertex Pharmaceuticals Inc. London WC1R 4PJ (GB) Boston, MA 02210 (US) (56) References cited: (72) Inventors: WO-A1-2010/054398 WO-A1-2010/071837 • CHARRIER, Jean-Damien Abingdon • C. A. HALL-JACKSON: "ATR is a caffeine- Oxfordshire OX144RY (GB) sensitive, DNA-activated protein kinase with a • DURRANT, Steven, John substrate specificity distinct from DNA-PK", Abingdon ONCOGENE, vol. 18, 1999, pages 6707-6713, Oxfordshire OX144RY (GB) XP002665425, cited in the application • KNEGTEL, Ronald, Marcellus Alphonsus Abingdon Oxfordshire OX144RY (GB) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • WO 2018/067991 Al 12 April 2018 (12.04.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/067991 Al 12 April 2018 (12.04.2018) W !P O PCT (51) International Patent Classification: achusetts 021 15 (US). THE BROAD INSTITUTE, A61K 51/10 (2006.01) G01N 33/574 (2006.01) INC. [US/US]; 415 Main Street, Cambridge, Massachu C07K 14/705 (2006.01) A61K 47/68 (2017.01) setts 02142 (US). MASSACHUSETTS INSTITUTE OF G01N 33/53 (2006.01) TECHNOLOGY [US/US]; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (US). (21) International Application Number: PCT/US2017/055625 (72) Inventors; and (71) Applicants: KUCHROO, Vijay K. [IN/US]; 30 Fairhaven (22) International Filing Date: Road, Newton, Massachusetts 02149 (US). ANDERSON, 06 October 2017 (06.10.2017) Ana Carrizosa [US/US]; 110 Cypress Street, Brookline, (25) Filing Language: English Massachusetts 02445 (US). MADI, Asaf [US/US]; c/o The Brigham and Women's Hospital, Inc., 75 Francis (26) Publication Language: English Street, Boston, Massachusetts 021 15 (US). CHIHARA, (30) Priority Data: Norio [US/US]; c/o The Brigham and Women's Hospital, 62/405,835 07 October 2016 (07.10.2016) US Inc., 75 Francis Street, Boston, Massachusetts 021 15 (US). REGEV, Aviv [US/US]; 15a Ellsworth Ave, Cambridge, (71) Applicants: THE BRIGHAM AND WOMEN'S HOSPI¬ Massachusetts 02139 (US). SINGER, Meromit [US/US]; TAL, INC. [US/US]; 75 Francis Street, Boston, Mass c/o The Broad Institute, Inc., 415 Main Street, Cambridge, (54) Title: MODULATION OF NOVEL IMMUNE CHECKPOINT TARGETS CD4 FIG.
    [Show full text]
  • Proteasome Inhibitors for the Treatment of Multiple Myeloma
    cancers Review Proteasome Inhibitors for the Treatment of Multiple Myeloma Shigeki Ito Hematology & Oncology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba-cho 028-3695, Japan; [email protected]; Tel.: +81-19-613-7111 Received: 27 December 2019; Accepted: 19 January 2020; Published: 22 January 2020 Abstract: Use of proteasome inhibitors (PIs) has been the therapeutic backbone of myeloma treatment over the past decade. Many PIs are being developed and evaluated in the preclinical and clinical setting. The first-in-class PI, bortezomib, was approved by the US food and drug administration in 2003. Carfilzomib is a next-generation PI, which selectively and irreversibly inhibits proteasome enzymatic activities in a dose-dependent manner. Ixazomib was the first oral PI to be developed and has a robust efficacy and favorable safety profile in patients with multiple myeloma. These PIs, together with other agents, including alkylators, immunomodulatory drugs, and monoclonal antibodies, have been incorporated into several regimens. This review summarizes the biological effects and the results of clinical trials investigating PI-based combination regimens and novel investigational inhibitors and discusses the future perspective in the treatment of multiple myeloma. Keywords: multiple myeloma; proteasome inhibitors; bortezomib; carfilzomib; ixazomib 1. Introduction Multiple myeloma (MM) remains an incurable disease. Over the last ten years, the availability of new drugs, such as the proteasome inhibitors (PIs), the immunomodulatory drugs (IMiDs), the monoclonal antibodies (MoAbs), and the histone deacetylase inhibitors, have greatly advanced the treatment and improved the survival of patients with MM [1–3]. Proteasome inhibition has emerged as a crucial therapeutic strategy in the treatment of MM.
    [Show full text]