Hindawi Publishing Corporation Advances in High Energy Physics Volume 2015, Article ID 608252, 20 pages http://dx.doi.org/10.1155/2015/608252 Research Article Dynamics of Mixed Dark Energy Domination in Teleparallel Gravity and Phase-Space Analysis Emre Dil1 and Erdinç Kolay2 1 Department of Physics, Sinop University, Korucuk, 57000 Sinop, Turkey 2Department of Statistics, Sinop University, Korucuk, 57000 Sinop, Turkey Correspondence should be addressed to Emre Dil;
[email protected] Received 16 October 2015; Revised 26 November 2015; Accepted 29 November 2015 Academic Editor: Frank Filthaut Copyright © 2015 E. Dil and E. Kolay. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3. We consider a novel dark energy model to investigate whether it will provide an expanding universe phase. Here we propose a mixed dark energy domination which is constituted by tachyon, quintessence, and phantom scalar fields nonminimally coupled to gravity, in the absence of background dark matter and baryonic matter, in the framework of teleparallel gravity. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions implying the acceleration phase of universe. 1. Introduction quantity of dark energy; its equation of state parameter DE = DE/DE,whereDE and DE are the pressure and energy The universe is known to be experiencing an accelerating density of the dark energy, respectively. For cosmological expansion by astrophysical observations such as Supernova constant boundary DE =−1,butforquintessencethe Ia [1, 2], large scale structure [3, 4], the baryon acoustic parameter DE ≥−1,forphantomDE ≤−1,andfor oscillations [5], and cosmic microwave background radiation nonminimally coupled tachyon with gravity both DE ≤−1 [6–9].