Experimental Implementation of a Quantum Game

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Implementation of a Quantum Game Experimental Implementation of a Quantum Game Diplomarbeit an der FakultÄat furÄ Physik der Ludwig-Maximilians-UniversitÄat MuncÄ hen Arbeitsgruppe Prof. Dr. Harald Weinfurter Carsten Schuck 22. Juli 2003 Erstgutachter: Prof. Dr. Harald Weinfurter Zweitgutachter: Prof. Dr. Klaus Sengstock 2 Contents 1 Introduction 5 2 Theory 9 2.1 Quantum Information . 10 2.2 Game Theory . 21 2.3 Optics . 33 3 Implementation 39 3.1 Initial State Preparation . 40 3.2 Local Unitary Operations . 47 3.3 Complete Bell State Analysis . 51 4 Experiment 65 4.1 Characterization of the Photon Pair Source . 66 4.2 The Hong-Ou-Mandel Dip . 75 4.3 Identi¯cation of Bell States . 81 4.4 Results of a Complete Bell measurement . 93 5 Conclusion & Outlook 99 A Appendix 103 A.1 Detectors . 104 A.2 De¯nitions & Explanations . 106 List of Figures 115 Bibliography I 3 Contents 4 1 Introduction The combination of game theory and quantum information led to the new ¯eld of quantum games. The classical theory of games, which is a well established disci- pline of applied mathematics, and quantum communication are both concerned with information and how information is processed and utilized. Game theory analyzes situations of interactive decision making and provides models of conflict and cooperation [1]. It has numerous applications, most im- portantly among many others in economics, social sciences, politics and biology. However, in every game the players have to inform the other players or the game's arbiter about the decisions they take for the game to evolve. In fact the players need to communicate information. Quantum mechanical systems o®er new possibilities for the communication and processing of information. The basis for the theory of quantum information and computation [2] will be shortly reviewed in section 2.1. Accordingly, one can provide the players of a game with quantum mechanical systems as carriers of information they need to communicate. As this extends the possibilities for communication, novel strategies become possible in quantum games. It turns out that entanglement and linear combinations of the classical strategies can enable the players to reach higher bene¯ts in the quantum mechanical version of a game than classically achievable (s. section 2.2). Yet, quantum communication problems also can be viewed in the light of game theory. Just as new solutions to classically unsolvable games can be found in quantum game theory, it is the aim of some quantum communication protocols to provide a quantum solution to an otherwise unsolvable classical problem. It is thus possible to rephrase problems in quantum communication or computation as games. Consider for example eavesdropping in quantum cryptography: To analyse how vulnerable a quantum cryptography protocol is, one can try to ¯nd the optimal quantum strategy for an eavesdropper, trying to obtain as much information as pos- sible in a given setup, playing against Alice and Bob, who are trying to communicate securely. Likewise, searching a database for a particular entry can be formulated as game between two players, both trying to ¯nd this entry ¯rst. The optimal (quan- tum) strategy in this game then corresponds to an optimal (quantum) algorithm to solve the problem. 5 1 Introduction As a contribution to the new ¯eld of quantum games I will show in chapter 3 how the quantum version of a well known classical game, the prisoner's dilemma, can be implemented. The dilemma of the classical game is that it is not possible to maximize the payo® of all rational players with optimal single player strategies. In the quantum version of the game, however, the players are supplied with one sub- system of an entangled state each. If they may perform any quantum mechanically allowed operation to encode their choice of strategy on their respective subsystem before sending it to an arbiter determining each player's bene¯t, the dilemma can be resolved. It is the goal of this work to realize the idea in practice. In the experimental part, I will present the ¯rst optical realization of this quantum game using polarization-time-entangled photon pairs on which arbitrary (quantum-) strategies can be performed. The entangled photon pairs are generated with high temporal de¯nition in a parametric down-conversion process, explained in section 2.3. It will be shown how a compact and highly e±cient entangled photon pair source is set up to generate the initial state of the game (section 3.1). The need for such highly e±cient sources of entangled photons grew with the interest in fundamental tests of quantum mechanics (tests of Bell's inequality) and the re- alization of quantum computation and communication schemes, for example dense coding and teleportation. To experimentally demonstrate the e±ciency of quantum strategies, two players can perform single-qubit operations corresponding to the angular settings of a com- bination of ¸=2- and ¸=4-waveplates, as discussed in section 3.2. To determine the player's bene¯ts, the ¯nal state is transformed into a Bell state and projected onto the complete set of maximally entangled basis-states of the two-particle polarization Hilbert space. This so-called Bell measurement is very important for many quantum communication experiments (e.g. dense coding, teleportation and quantum cryp- tography [3]), and will be covered in section 3.3. LutkÄ enhaus et al. presented a no-go theorem for a perfect Bell state analysis of two polarization-entangled qubits involving only linear optical elements [4]. Nevertheless, in this experiment, it will for the ¯rst time be possible to perform a complete Bell measurement with a method presented by P. Kwiat and H. Weinfurter [5]; the results are presented in chapter 4. The idea behind this measurement is to make use of simultaneous entanglement in multiple degrees of freedom. If the photons are entangled in more than one degree of freedom one can operate in a higher dimensional Hilbert space. In our case the intrinsic time-energy entanglement of the down-converted photons will be employed to achieve additional arrival-time correlations of the photons after having passed an asymmetric interferometer with polarizing beam splitters to temporally separate horizontal and vertical polarizations. Since the photons are entangled in the polar- ization and the time degrees of freedom, i.e. they are embedded in a larger Hilbert space, and a complete Bell state analysis to determine the payo®s is possible. This will for example allow to realize optimal dense coding, where the full two bits of information are encoded in the polarization of the two qubits of a Bell state. This 6 class of state transformations can be regarded as a realization of a simple non-trivial two-qubit quantum logic network. Apart from the possibility to distinguish between all four Bell states and the implementation of single qubit gates it is noteworthy that our quantum network involves a controlled NOT operation. The importance of a controlled NOT gate stems from the fact that it is (together with a set of single-qubit gates) a universal quantum gate [6, 7]. Single qubit gates are relatively simple to realize (s. section 3.2), but the controlled-NOT is generally much more di±cult to implement, because it requires two separated carriers of quantum information to interact in a controlled manner. Here the advantage of the optical approach, namely the photon's intrinsic lack of decoherence when transported through free space or optical ¯bers, turns into a drawback. Since the photon-photon interaction is extremely weak and hence takes place with a negligible probability of success, an optical implementation of a two-qubit gate necessarily requires strong non-linearities. One idea to avoid the need for a direct nonlinear coupling between photons is to mediate the interaction by something else, for example an atom, of course at the expense of introducing noise into the system. Therefore, current experiments are trying to map the state of photons onto atom or ion states and vice versa to implement a non-trivial two-particle gate with these systems. Nevertheless it is desirable to have an optical implemention of such gates with linear elements to avoid all the problems (e.g. decoherence, noise, more complex setups, etc.) that come with schemes involving atoms or ions. A circumvention of the necessity for a strong non-linearity to implement a controlled-NOT gate has been proposed by E. Knill, R. Laflamme and G.J. Milburn (KLM). They showed that scalable quantum information processing with linear op- tical elements "is possible in principle but technically di±cult" [8]. Their scheme for "e±cient quantum computation" requires phase shifters, beam splitters, determin- istic (i.e. on-demand) single-photon sources and the intrinsic non-linearity of highly e±cient discriminating single photon detectors. They propose that it is possible to increase the probability of success asymptotically (as n=(n + 1)) at the expense of an increasing number (n) of auxiliary photons which have to be independently prepared in any desired entangled state. Using beamsplitters it is possible to couple the additional auxiliary modes to the initial input state so that the resulting state is living in the direct product of the two Hilbert spaces and therefore, a larger Hilbert space as well. Of course, our approach is not su±cient for the implementation of general pur- pose controlled-NOT operation in universal quantum networks, because it requires entanglement in more than one degree of freedom, which will generally be di±cult to achive. But since the generation of the necessary entangled ancilla states in the KLM scheme is very challenging, it is interesting to apply the presented idea of entangled states embedded in higher dimensional Hilbert spaces as an extension.
Recommended publications
  • Game Theory Lecture Notes
    Game Theory: Penn State Math 486 Lecture Notes Version 2.1.1 Christopher Griffin « 2010-2021 Licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License With Major Contributions By: James Fan George Kesidis and Other Contributions By: Arlan Stutler Sarthak Shah Contents List of Figuresv Preface xi 1. Using These Notes xi 2. An Overview of Game Theory xi Chapter 1. Probability Theory and Games Against the House1 1. Probability1 2. Random Variables and Expected Values6 3. Conditional Probability8 4. The Monty Hall Problem 11 Chapter 2. Game Trees and Extensive Form 15 1. Graphs and Trees 15 2. Game Trees with Complete Information and No Chance 18 3. Game Trees with Incomplete Information 22 4. Games of Chance 24 5. Pay-off Functions and Equilibria 26 Chapter 3. Normal and Strategic Form Games and Matrices 37 1. Normal and Strategic Form 37 2. Strategic Form Games 38 3. Review of Basic Matrix Properties 40 4. Special Matrices and Vectors 42 5. Strategy Vectors and Matrix Games 43 Chapter 4. Saddle Points, Mixed Strategies and the Minimax Theorem 45 1. Saddle Points 45 2. Zero-Sum Games without Saddle Points 48 3. Mixed Strategies 50 4. Mixed Strategies in Matrix Games 53 5. Dominated Strategies and Nash Equilibria 54 6. The Minimax Theorem 59 7. Finding Nash Equilibria in Simple Games 64 8. A Note on Nash Equilibria in General 66 Chapter 5. An Introduction to Optimization and the Karush-Kuhn-Tucker Conditions 69 1. A General Maximization Formulation 70 2. Some Geometry for Optimization 72 3.
    [Show full text]
  • Game Theoretic Interaction and Decision: a Quantum Analysis
    games Article Game Theoretic Interaction and Decision: A Quantum Analysis Ulrich Faigle 1 and Michel Grabisch 2,* 1 Mathematisches Institut, Universität zu Köln, Weyertal 80, 50931 Köln, Germany; [email protected] 2 Paris School of Economics, University of Paris I, 106-112, Bd. de l’Hôpital, 75013 Paris, France * Correspondence: [email protected]; Tel.: +33-144-07-8744 Received: 12 July 2017; Accepted: 21 October 2017; Published: 6 November 2017 Abstract: An interaction system has a finite set of agents that interact pairwise, depending on the current state of the system. Symmetric decomposition of the matrix of interaction coefficients yields the representation of states by self-adjoint matrices and hence a spectral representation. As a result, cooperation systems, decision systems and quantum systems all become visible as manifestations of special interaction systems. The treatment of the theory is purely mathematical and does not require any special knowledge of physics. It is shown how standard notions in cooperative game theory arise naturally in this context. In particular, states of general interaction systems are seen to arise as linear superpositions of pure quantum states and Fourier transformation to become meaningful. Moreover, quantum games fall into this framework. Finally, a theory of Markov evolution of interaction states is presented that generalizes classical homogeneous Markov chains to the present context. Keywords: cooperative game; decision system; evolution; Fourier transform; interaction system; measurement; quantum game 1. Introduction In an interaction system, economic (or general physical) agents interact pairwise, but do not necessarily cooperate towards a common goal. However, this model arises as a natural generalization of the model of cooperative TU games, for which already Owen [1] introduced the co-value as an assessment of the pairwise interaction of two cooperating players1.
    [Show full text]
  • Strong Stackelberg Reasoning in Symmetric Games: an Experimental
    Strong Stackelberg reasoning in symmetric games: An experimental ANGOR UNIVERSITY replication and extension Pulford, B.D.; Colman, A.M.; Lawrence, C.L. PeerJ DOI: 10.7717/peerj.263 PRIFYSGOL BANGOR / B Published: 25/02/2014 Publisher's PDF, also known as Version of record Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Pulford, B. D., Colman, A. M., & Lawrence, C. L. (2014). Strong Stackelberg reasoning in symmetric games: An experimental replication and extension. PeerJ, 263. https://doi.org/10.7717/peerj.263 Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 23. Sep. 2021 Strong Stackelberg reasoning in symmetric games: An experimental replication and extension Briony D. Pulford1, Andrew M. Colman1 and Catherine L. Lawrence2 1 School of Psychology, University of Leicester, Leicester, UK 2 School of Psychology, Bangor University, Bangor, UK ABSTRACT In common interest games in which players are motivated to coordinate their strate- gies to achieve a jointly optimal outcome, orthodox game theory provides no general reason or justification for choosing the required strategies.
    [Show full text]
  • Economics 201B Economic Theory (Spring 2021) Strategic Games
    Economics 201B Economic Theory (Spring 2021) Strategic Games Topics: terminology and notations (OR 1.7), games and solutions (OR 1.1-1.3), rationality and bounded rationality (OR 1.4-1.6), formalities (OR 2.1), best-response (OR 2.2), Nash equilibrium (OR 2.2), 2 2 examples × (OR 2.3), existence of Nash equilibrium (OR 2.4), mixed strategy Nash equilibrium (OR 3.1, 3.2), strictly competitive games (OR 2.5), evolution- ary stability (OR 3.4), rationalizability (OR 4.1), dominance (OR 4.2, 4.3), trembling hand perfection (OR 12.5). Terminology and notations (OR 1.7) Sets For R, ∈ ≥ ⇐⇒ ≥ for all . and ⇐⇒ ≥ for all and some . ⇐⇒ for all . Preferences is a binary relation on some set of alternatives R. % ⊆ From % we derive two other relations on : — strict performance relation and not  ⇐⇒ % % — indifference relation and ∼ ⇐⇒ % % Utility representation % is said to be — complete if , or . ∀ ∈ % % — transitive if , and then . ∀ ∈ % % % % can be presented by a utility function only if it is complete and transitive (rational). A function : R is a utility function representing if → % ∀ ∈ () () % ⇐⇒ ≥ % is said to be — continuous (preferences cannot jump...) if for any sequence of pairs () with ,and and , . { }∞=1 % → → % — (strictly) quasi-concave if for any the upper counter set ∈ { ∈ : is (strictly) convex. % } These guarantee the existence of continuous well-behaved utility function representation. Profiles Let be a the set of players. — () or simply () is a profile - a collection of values of some variable,∈ one for each player. — () or simply is the list of elements of the profile = ∈ { } − () for all players except . ∈ — ( ) is a list and an element ,whichistheprofile () .
    [Show full text]
  • John Von Neumann Between Physics and Economics: a Methodological Note
    Review of Economic Analysis 5 (2013) 177–189 1973-3909/2013177 John von Neumann between Physics and Economics: A methodological note LUCA LAMBERTINI∗y University of Bologna A methodological discussion is proposed, aiming at illustrating an analogy between game theory in particular (and mathematical economics in general) and quantum mechanics. This analogy relies on the equivalence of the two fundamental operators employed in the two fields, namely, the expected value in economics and the density matrix in quantum physics. I conjecture that this coincidence can be traced back to the contributions of von Neumann in both disciplines. Keywords: expected value, density matrix, uncertainty, quantum games JEL Classifications: B25, B41, C70 1 Introduction Over the last twenty years, a growing amount of attention has been devoted to the history of game theory. Among other reasons, this interest can largely be justified on the basis of the Nobel prize to John Nash, John Harsanyi and Reinhard Selten in 1994, to Robert Aumann and Thomas Schelling in 2005 and to Leonid Hurwicz, Eric Maskin and Roger Myerson in 2007 (for mechanism design).1 However, the literature dealing with the history of game theory mainly adopts an inner per- spective, i.e., an angle that allows us to reconstruct the developments of this sub-discipline under the general headings of economics. My aim is different, to the extent that I intend to pro- pose an interpretation of the formal relationships between game theory (and economics) and the hard sciences. Strictly speaking, this view is not new, as the idea that von Neumann’s interest in mathematics, logic and quantum mechanics is critical to our understanding of the genesis of ∗I would like to thank Jurek Konieczny (Editor), an anonymous referee, Corrado Benassi, Ennio Cavaz- zuti, George Leitmann, Massimo Marinacci, Stephen Martin, Manuela Mosca and Arsen Palestini for insightful comments and discussion.
    [Show full text]
  • Finite Automata Capturing Winning Sequences for All Possible Variants of the PQ Penny flip Game
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 October 2017 doi:10.20944/preprints201710.0179.v1 Peer-reviewed version available at Mathematics 2018, 6, 20; doi:10.3390/math6020020 Article Finite automata capturing winning sequences for all possible variants of the PQ penny flip game Theodore Andronikos 1*, Alla Sirokofskich 2, Kalliopi Kastampolidou 1* ID , Magdalini Varvouzou 1, Konstantinos Giannakis 1* ID , and Alexandre Singh 1 1 Ionian University, Department of Informatics, 7 Tsirigoti Square, Corfu, Greece Emails: {andronikos, c16kast, p14varv, kgiann, p13sing}@ionio.gr 2 Department of History and Philosophy of Sciences, National and Kapodistrian University of Athens, Athens, Greece Email; [email protected] * Correspondence: [email protected] and [email protected] and [email protected]; Tel.: +30 2661087712 1 Abstract: The meticulous study of finite automata has produced many important and useful results. 2 Automata are simple yet efficient finite state machines that can be utilized in a plethora of situations. 3 It comes, therefore, as no surprise that they have been used in classic game theory in order to model 4 players and their actions. Game theory has recently been influenced by ideas from the field of 5 quantum computation. As a result, quantum versions of classic games have already been introduced 6 and studied. The PQ penny flip game is a famous quantum game introduced by Meyer in 1999. In 7 this paper we investigate all possible finite games that can be played between the two players Q and 8 Picard of the original PQ game. For this purpose we establish a rigorous connection between finite 9 automata and the PQ game along with all its possible variations.
    [Show full text]
  • ECONS 424 – STRATEGY and GAME THEORY MIDTERM EXAM #2 – Answer Key
    ECONS 424 – STRATEGY AND GAME THEORY MIDTERM EXAM #2 – Answer key Exercise #1. Hawk-Dove game. Consider the following payoff matrix representing the Hawk-Dove game. Intuitively, Players 1 and 2 compete for a resource, each of them choosing to display an aggressive posture (hawk) or a passive attitude (dove). Assume that payoff > 0 denotes the value that both players assign to the resource, and > 0 is the cost of fighting, which only occurs if they are both aggressive by playing hawk in the top left-hand cell of the matrix. Player 2 Hawk Dove Hawk , , 0 2 2 − − Player 1 Dove 0, , 2 2 a) Show that if < , the game is strategically equivalent to a Prisoner’s Dilemma game. b) The Hawk-Dove game commonly assumes that the value of the resource is less than the cost of a fight, i.e., > > 0. Find the set of pure strategy Nash equilibria. Answer: Part (a) • When Player 2 (in columns) chooses Hawk (in the left-hand column), Player 1 (in rows) receives a positive payoff of by paying Hawk, which is higher than his payoff of zero from playing Dove. − Therefore, for Player2 1 Hawk is a best response to Player 2 playing Hawk. Similarly, when Player 2 chooses Dove (in the right-hand column), Player 1 receives a payoff of by playing Hawk, which is higher than his payoff from choosing Dove, ; entailing that Hawk is Player 1’s best response to Player 2 choosing Dove. Therefore, Player 1 chooses2 Hawk as his best response to all of Player 2’s strategies, implying that Hawk is a strictly dominant strategy for Player 1.
    [Show full text]
  • Introduction to Game Theory I
    Introduction to Game Theory I Presented To: 2014 Summer REU Penn State Department of Mathematics Presented By: Christopher Griffin [email protected] 1/34 Types of Game Theory GAME THEORY Classical Game Combinatorial Dynamic Game Evolutionary Other Topics in Theory Game Theory Theory Game Theory Game Theory No time, doesn't contain differential equations Notion of time, may contain differential equations Games with finite or Games with no Games with time. Modeling population Experimental / infinite strategy space, chance. dynamics under Behavioral Game but no time. Games with motion or competition Theory Generally two player a dynamic component. Games with probability strategic games Modeling the evolution Voting Theory (either induced by the played on boards. Examples: of strategies in a player or the game). Optimal play in a dog population. Examples: Moves change the fight. Chasing your Determining why Games with coalitions structure of a game brother across a room. Examples: altruism is present in or negotiations. board. The evolution of human society. behaviors in a group of Examples: Examples: animals. Determining if there's Poker, Strategic Chess, Checkers, Go, a fair voting system. Military Decision Nim. Equilibrium of human Making, Negotiations. behavior in social networks. 2/34 Games Against the House The games we often see on television fall into this category. TV Game Shows (that do not pit players against each other in knowledge tests) often require a single player (who is, in a sense, playing against The House) to make a decision that will affect only his life. Prize is Behind: 1 2 3 Choose Door: 1 2 3 1 2 3 1 2 3 Switch: Y N Y N Y N Y N Y N Y N Y N Y N Y N Win/Lose: L W W L W L W L L W W L W L W L L W The Monty Hall Problem Other games against the house: • Blackjack • The Price is Right 3/34 Assumptions of Multi-Player Games 1.
    [Show full text]
  • Arxiv:Quant-Ph/0702167V2 30 Jan 2013
    Quantum Game Theory Based on the Schmidt Decomposition Tsubasa Ichikawa∗ and Izumi Tsutsui† Institute of Particle and Nuclear Studies High Energy Accelerator Research Organization (KEK) Tsukuba 305-0801, Japan and Taksu Cheon‡ Laboratory of Physics Kochi University of Technology Tosa Yamada, Kochi 782-8502, Japan Abstract We present a novel formulation of quantum game theory based on the Schmidt de- composition, which has the merit that the entanglement of quantum strategies is manifestly quantified. We apply this formulation to 2-player, 2-strategy symmetric games and obtain a complete set of quantum Nash equilibria. Apart from those available with the maximal entanglement, these quantum Nash equilibria are ex- arXiv:quant-ph/0702167v2 30 Jan 2013 tensions of the Nash equilibria in classical game theory. The phase structure of the equilibria is determined for all values of entanglement, and thereby the possibility of resolving the dilemmas by entanglement in the game of Chicken, the Battle of the Sexes, the Prisoners’ Dilemma, and the Stag Hunt, is examined. We find that entanglement transforms these dilemmas with each other but cannot resolve them, except in the Stag Hunt game where the dilemma can be alleviated to a certain degree. ∗ email: [email protected] † email: [email protected] ‡ email: [email protected] 1. Introduction Quantum game theory, which is a theory of games with quantum strategies, has been attracting much attention among quantum physicists and economists in recent years [1, 2] (for a review, see [2, 3, 4]). There are basically two reasons for this. One is that quantum game theory provides a general basis to treat the quantum information processing and quantum communication in which plural actors try to achieve their objectives such as the increase in communication efficiency and security [5, 6].
    [Show full text]
  • Acquisition Research Program Sponsored Report Series
    NPS-AM-18-012 ACQUISITION RESEARCH PROGRAM SPONSORED REPORT SERIES Big Data and Deep Learning for Defense Acquisition Visibility Environment (DAVE)—Developing NPS Student Thesis Research 21 December 2017 Dr. Ying Zhao, Research Professor Graduate School of Operational & Information Sciences Naval Postgraduate School Approved for public release; distribution is unlimited. Prepared for the Naval Postgraduate School, Monterey, CA 93943. Acquisition Research Program Graduate School of Business & Public Policy Naval Postgraduate School The research presented in this report was supported by the Acquisition Research Program of the Graduate School of Business & Public Policy at the Naval Postgraduate School. To request defense acquisition research, to become a research sponsor, or to print additional copies of reports, please contact any of the staff listed on the Acquisition Research Program website (www.acquisitionresearch.net). Acquisition Research Program Graduate School of Business & Public Policy Naval Postgraduate School Abstract The U.S. Department of Defense (DoD) acquisition process is extremely complex. There are three key processes that must work in concert to deliver capabilities: determining warfighters’ requirements and needs, planning the DoD budget, and procuring final products. Each process produces large amounts of information (big data). There is a critical need for automation, validation, and discovery to help acquisition professionals, decision-makers, and researchers understand the important content within large data sets and optimize DoD resources. Lexical link analysis (LLA) and collaborative learning agents (CLAs) have been applied to reveal and depict—to decision-makers—the correlations, associations, and program gaps across acquisition programs examined over many years. This enables strategic understanding of data gaps and potential trends, and it can inform managers which areas might be exposed to higher program risk and how resource and big data management might affect the desired return on investment (ROI) among projects.
    [Show full text]
  • Quantum Conditional Strategies for Prisoners' Dilemmata Under The
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2019 doi:10.20944/preprints201905.0366.v1 Peer-reviewed version available at Appl. Sci. 2019, 9, 2635; doi:10.3390/app9132635 Article Quantum conditional strategies for prisoners’ dilemmata under the EWL scheme Konstantinos Giannakis* , Georgia Theocharopoulou, Christos Papalitsas, Sofia Fanarioti, and Theodore Andronikos* Department of Informatics, Ionian University, Tsirigoti Square 7, Corfu, 49100, Greece; {kgiann, zeta.theo, c14papa, sofiafanar, andronikos}@ionio.gr * Correspondence: [email protected] (K.G.); [email protected] (Th.A.) 1 Abstract: Classic game theory is an important field with a long tradition of useful results. Recently, 2 the quantum versions of classical games, such as the Prisoner’s Dilemma (PD), have attracted a lot of 3 attention. Similarly, state machines and specifically finite automata have also been under constant 4 and thorough study for plenty of reasons. The quantum analogues of these abstract machines, like the 5 quantum finite automata, have been studied extensively. In this work, we examine some well-known 6 game conditional strategies that have been studied within the framework of the repeated PD game. 7 Then, we try to associate these strategies to proper quantum finite automata that receive them as 8 inputs and recognize them with probability 1, achieving some interesting results. We also study the 9 quantum version of PD under the Eisert-Wilkens-Lewenstein scheme, proposing a novel conditional 10 strategy for the repeated version of this game. 11 Keywords: quantum game theory, quantum automata, prisoner’s dilemma, conditional strategies, 12 quantum strategies 13 1. Introduction 14 Quantum game theory has gained a lot of research interest since the first pioneering works of the 15 late ’90s [1–5].
    [Show full text]
  • Quantum Games with Unawareness
    entropy Article Quantum Games with Unawareness Piotr Fr ˛ackiewicz Institute of Mathematics, Pomeranian University, 76-200 Slupsk, Poland; [email protected] Received: 25 June 2018; Accepted: 23 July 2018; Published: 26 July 2018 Abstract: Games with unawareness model strategic situations in which players’ perceptions about the game are limited. They take into account the fact that the players may be unaware of some of the strategies available to them or their opponents as well as the players may have a restricted view about the number of players participating in the game. The aim of the paper is to introduce this notion into theory of quantum games. We focus on games in strategic form and Eisert–Wilkens–Lewenstein type quantum games. It is shown that limiting a player’s perception in the game enriches the structure of the quantum game substantially and allows the players to obtain results that are unattainable when the game is played in a quantum way by means of previously used methods. Keywords: quantum game; game with unawareness; strategic-form game; quantum algorithms 1. Introduction Game theory, launched in 1928 by John von Neumann in a paper [1] and developed in 1944 by John von Neumann and Oskar Morgenstern in a book [2] is one of the youngest branches of mathematics. The aim of this theory is mathematical modeling of behavior of rational participants of conflict situations who aim at maximizing their own gain and take into account all possible ways of behaving of remaining participants. Within this young theory, new ideas that improve already used models of conflict situations are still proposed.
    [Show full text]