Unstable Periodic Orbits and the Dimensions of Multifractal Chaotic Attractors

Total Page:16

File Type:pdf, Size:1020Kb

Unstable Periodic Orbits and the Dimensions of Multifractal Chaotic Attractors PHYSICAL REVIE%' A VOLUME 37, NUMBER 5 MARCH 1, 1988 Unstable periodic orbits and the dimensions of mnltifractal chaotic attractors Celso Grebogi Laboratory for Plasma and Fusion Energy Studies, Uniuersity ofMaryland, College Park, Maryland 20742 Edward Ott Laboratory for Plasma and Fusion Energy Studies, Uniuersity ofMaryland, College Park, Maryland 20742 and Department ofElectrical Engineering and Department ofPhysics, Uniuersity ofMaryland, College Park, Maryland 20742 James A. Yorke Institute for Physical Science and Technology and Department ofMathematics, Uniuersity ofMaryland, College Park, Maryland 20742 (Received 28 September 1987) The probability measure generated by typical chaotic orbits of a dynamical system can have an arbitrarily Sne-scaled interwoven structure of points with different singularity scalings. Recent work has characterized such measures via a spectrum of fractal dimension values. In this paper we pursue the idea that the infinite number of unstable periodic orbits embedded in the support of the measure provides the key to an understanding of the structure of the subsets with different singulari- ty scalings. In particular, a formulation relating the spectrum of dimensions to unstable periodic or- bits is presented for hyperbolic maps of arbitrary dimensionality. Both chaotic attractors and chaotic repeBers are considered. I. INTRODUCTION the distribution of energy levels can be related to unstable periodic orbits of the classical Hamiltonian. " ' Anoth- The long time distribution generated by a typical orbit er case where unstable periodic orbits appear' is in of a chaotic nonconservative dynamical system is general- determining the behavior near parameter values where ly highly singular. The subset of phase space to which sudden changes in chaotic attractors occur [the argument the orbit asymptotes with time, the attractor, can be in connection with our Fig. 1 is similar to that for Eq. (2) geometrically fractal. Furthermore, the distribution of of Ref. 10]. orbit points on the attractor can have an arbitrarily 6ne- The organization of this paper is as follows. Section II scaled interwoven structure of hot and cold spots. Sets presents a discussion of the pointwise dimension for at- with such distributions have been called multifractals. tractors and shows that hot and cold spots occur on the By hot and cold spots we mean points on the attractor for unstable manifolds of saddle periodic orbits in the attrac- which the frequency of close approach of typical orbits is tor, Numerical experiments illustrating this are also either much greater than typical (a hot spot) or much less presented. Section III reviews recent work on the dimen- than typical (a cold spot). Recently there has been much sions of attractors including the partition function for- work developing ways of quantitatively characterizing malism. Section IV presents our results relating the dis- how such chaotic orbits distribute themselves on attrac- tribution of typical chaotic orbits on attractors and the tors. ' In particular, the spectrum of fractal dimensions associated fractal dimensions to the unstable periodic or- introduced in Refs. 2-4 are sensitive to the characteris- bits. Section V illustrates the material of Sec. IV with ex- tics of the structure of hot and cold spots on the attrac- amples. Arguments yielding the results stated in Sec. IV tor. In this paper we present results which show that, for are presented in Sec. VI for the case of hyperbolic attrac- a large class of chaotic attractors, the infinite number of tors. Section VII treats the case of chaotic sets which are unstable periodic orbits embedded in the attractor pro- repelling rather than attracting. vide the key to an understanding of such issues. (A brief The dynamical systems to be discussed throughout this preliminary report of some of this work appears in Gre- paper are d-dimensional maps of the form x„+& F(x„), — bogi, Ott, and Yorke. ) where x is a vector in the d-dimensional phase space of The importance of unstable periodic orbits in deter- the system. An attractor A for such a system is a closed mining ergodic properties of chaotic systems has long set, invariant under I', which is the limit set as time goes been recognized in the mathematical literature (e.g., to + Oo for almost every initial condition in some neigh- Bowen and Katok ). For some more recent work see borhood of A. (By "almost every" we mean that the set Refs. 8 and 9 which also illustrate the important point of initial conditions in the neighborhood that do not ap- that information about unstable periodic orbits is readily proach A can be covered by a set of d-dimensional cubes accessible from numerical computation (and perhaps ex- of arbitrarily small total volume. ) The basin of attraction perimentally ' ) and can be used for determining ergodic for the attractor is the closure of the set of points which properties. In addition, in the theory of quantum chaos, asymptote to the attractor as time goes to + 00. In the 1988 The American Physical Society CELSO GREBOGI„EDWARD OTT, AND JAMES A. YORKE case of continuous time systems (ffows), we can think of sure, the attractor has been decomposed into two disjoint F(x ) as arising from a Poincare surface of section. F invariant sets. We conclude that D~(x) must be the same for almost every x with respect to the natural mea- sure on the attractor. Returning now to consideration of the zero measure sei For most purposes w'e may think of the natural mea- of points x for which Dz(x ) is not typical (i.e., is not the sure an attractor as follows: For a subset of the of 5 common value assumed at almost every x on the attrac- phase space and an initial condition x in the basin of at- tor) and taking the map to be two dimensional (d =2), we traction of the attractor, we define S ) as the fraction p(x, will obtain the following result. Let be an index label- of time the trajectory originating at x spends in S in the j ing the fixed points of the n times iterated map F". (The limit that the length of the trajectory goes to infinity. If components of a period n orbit are fixed points of F".} is the same for almost every x in the basin of at- p(x, S) We assume that the Jacobian matrix of I"at fixed point traction, then we denote this value and say that is j p(S} p has one unstable direction and one stable direction. Then the natural measure of the attractor (cf. Appendix). for any point x on the unstable manifold of fixed point j Henceforth, we assume that the attractor has a natural of I'", measure. In particular, this means that the attractor is ergodic (i.e., it cannot be split into two disjoint pieces logk, iJ. that each have positive natural measure and are invariant D~(x ) =1 logA, under application of F). » Let 8 (l,x ) denote a d-dimensional ball of radius I cen- where lL, , & 1 and A,» & 1 are the magnitudes of the unsta- tered at a point x on an attractor embedded in the d- ble and stable eigenvalues of the Jacobian matrix of F". dimensional phase space of the dynamical system being Since points on different periodic orbits typically have considered. Then the pointwise dimension (at the point diff'erent eigenvalues, Dz(x) will clearly be different for x) of the attractor is defined as different periodic orbits and hence will not be the typical ). logy. (8(l,x }) Dp(x (2.1) To obtain (2.2) consider a point on the unstable I-o logl xp manifold of a saddle periodic point and two small circu- D (x) or p(B(l,x))-l ~ . For almost every point with lar disks centered at xo with radii l, and l2, where respect to the natural measure on the attractor, D~(x) I, /12 —A, 2J'. We iterate the two disks backward a large takes on a common value and is equal to the information integral number of periods so that the two disks are now dimension (defined in Sec. III). That is, the set of points similar ellipses close to the saddle and with their major on the chaotic attractor for which D (x ) is not this com- axes parallel to the stable manifold of the saddle (cf. Fig. mon value may be covered with a set of d-dimensional 1). We now iterate the 12 ellipse backward one more cubes of varying sizes which together contain an arbi- period. Since it is close to the saddle, its backward itera- trarily small amount of the natural measure of the attrac- tion by one period is governed by the linearized map at tor. [Points x where D (x ) is greater than (less than) the the saddle (i.e., by the eigenvalues A, ,J and A, »). Thus, common value it assumes at almost every point with since we choose l, /12 —A, 2J', the major diameter of the l2 respect to the natural measure are the hot (cold) spots re- ellipse is now the same as that for the 1, ellipse, while its ferred to in Sec. I.] For example, a chaotic attractor typi- minor diameter is smaller than that for the !i ellipse by cally has a dense set of unstable periodic orbits embedded the factor A,z /A, tJ. The inverse images of the disks con- within it, and, as we shall see, Dr(x) with x on one of tain the same natural measure as the original disks. these periodic orbits does not take on the typical values. Thus, treating the attractor measure as if it were smooth The periodic points, however, are countable and so have along the unstable direction, we have p{B(lt xp)}/ zero measure.
Recommended publications
  • Chaotic Advection, Diffusion, and Reactions in Open Flows Tamás Tél, György Károlyi, Áron Péntek, István Scheuring, Zoltán Toroczkai, Celso Grebogi, and James Kadtke
    Chaotic advection, diffusion, and reactions in open flows Tamás Tél, György Károlyi, Áron Péntek, István Scheuring, Zoltán Toroczkai, Celso Grebogi, and James Kadtke Citation: Chaos: An Interdisciplinary Journal of Nonlinear Science 10, 89 (2000); doi: 10.1063/1.166478 View online: http://dx.doi.org/10.1063/1.166478 View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/10/1?ver=pdfcov Published by the AIP Publishing This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.173.125.76 On: Mon, 24 Mar 2014 14:44:01 CHAOS VOLUME 10, NUMBER 1 MARCH 2000 Chaotic advection, diffusion, and reactions in open flows Tama´sTe´l Institute for Theoretical Physics, Eo¨tvo¨s University, P.O. Box 32, H-1518 Budapest, Hungary Gyo¨rgy Ka´rolyi Department of Civil Engineering Mechanics, Technical University of Budapest, Mu¨egyetem rpk. 3, H-1521 Budapest, Hungary A´ ron Pe´ntek Marine Physical Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0238 Istva´n Scheuring Department of Plant Taxonomy and Ecology, Research Group of Ecology and Theoretical Biology, Eo¨tvo¨s University, Ludovika te´r 2, H-1083 Budapest, Hungary Zolta´n Toroczkai Department of Physics, University of Maryland, College Park, Maryland 20742-4111 and Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0435 Celso Grebogi Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 James Kadtke Marine Physical Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0238 ͑Received 30 July 1999; accepted for publication 8 November 1999͒ We review and generalize recent results on advection of particles in open time-periodic hydrodynamical flows.
    [Show full text]
  • Table of Contents (Print, Part 2)
    PERIODICALS PHYSICAL REVIEW E Postmaster send address changes to: For editorial and subscription correspondence, APS Subscription Services please see inside front cover Suite 1NO1 „ISSN: 1539-3755… 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 75, NUMBER 6 CONTENTS JUNE 2007 PART 2: STATISTICAL AND NONLINEAR PHYSICS, FLUID DYNAMICS, AND RELATED TOPICS RAPID COMMUNICATIONS Chaos and pattern formation Giant acceleration in slow-fast space-periodic Hamiltonian systems (4 pages) ........................... 065201͑R͒ D. V. Makarov and M. Yu. Uleysky Controlling spatiotemporal chaos using multiple delays (4 pages) ..................................... 065202͑R͒ Alexander Ahlborn and Ulrich Parlitz Signatures of fractal clustering of aerosols advected under gravity (4 pages) ............................ 065203͑R͒ Rafael D. Vilela, Tamás Tél, Alessandro P. S. de Moura, and Celso Grebogi Fluid dynamics Clustering of matter in waves and currents (4 pages) ............................................... 065301͑R͒ Marija Vucelja, Gregory Falkovich, and Itzhak Fouxon Experimental study of the bursting of inviscid bubbles (4 pages) ..................................... 065302͑R͒ Frank Müller, Ulrike Kornek, and Ralf Stannarius Surface thermal capacity and its effects on the boundary conditions at fluid-fluid interfaces (4 pages) ....... 065303͑R͒ Kausik S. Das and C. A. Ward Plasma physics Direct evidence of strongly inhomogeneous energy deposition in target heating with laser-produced ion beams (4 pages) ..................................................................................
    [Show full text]
  • Data Based Identification and Prediction of Nonlinear and Complex Dynamical Systems
    Data Based Identification and Prediction of Nonlinear and Complex Dynamical Systems Wen-Xu Wanga;b, Ying-Cheng Laic;d;e, and Celso Grebogie a School of Systems Science, Beijing Normal University, Beijing, 100875, China b Business School, University of Shanghai for Science and Technology, Shanghai 200093, China c School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA d Department of Physics, Arizona State University, Tempe, Arizona 85287, USA e Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK Wen-Xu Wang, Ying-Cheng Lai, and Celso Grebogi 1 Abstract The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space re- construction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, under- stand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these tasks, especially prediction and control, an accurate reconstruction of the original system is required.
    [Show full text]
  • Strange Attractors That Are Not Chaotic
    Physica 13D (1984) 261-268 North-Holland, Amsterdam STRANGE ATTRACTORS THAT ARE NOT CHAOTIC Celso GREBOGI, a Edward OTT, ~b Steven PELIKAN, c and James A. YORKE d Received 7. February 1984 It is shown that in certain types of dynamical systems it is possible to have attractors which are strange but not chaotic. Here we use the word strange to refer to the geometry or shape of the attracting set, while the word chaotic refers to the dynamics of orbits on the attractor (in particular, the exponential divergence of nearby trajectories). We first give examples for which it can be demonstrated that there is a strange nonchaotic attractor. These examples apply to a class of maps which model nonlinear oscillators (continuous time) which are externally driven at two incommensurate frequencies. It is then shown that such attractors are persistent under perturbations which preserve the original system type (i.e., there are two incommensurate external driving frequencies). This suggests that, for systems of the type which we have considered, nonchaotic strange attractors may be expected to occur for a finite interval of parameter values. On the other hand, when small perturbations which do not preserve the system type are numerically introduced the strange nonchaotic attractor is observed to be converted to a periodic or chaotic orbit. Thus we conjecture that, in general, continuous time systems (" flows") which are not externally driven at two incommensurate frequencies should not be expected to have strange nonchaotic attractors except possibly on a set of measure zero in the parameter space. 1. Introduction and definitions ties [1] such as noninteger fractal dimension, Cantor set structure, or nowhere differentiability.
    [Show full text]
  • Crises, Sudden Changes in Chaotic Attractors, and Transient Chaos
    Physica 7D (1983) 181-200 North-Holland Publishing Company CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS Celso GREBOGI and Edward OTT Laboratory for Plasma and Fusion Energy Studies, Unit'ersity of Maryland, College Park, Md. 20742, USA and James A. YORKE Institute for Physical Science and Technology and Department of Mathematics, Unit ersi O, of Mao'land, College Park, Md. 20742, USA The occurrence of sudden qualitative changes of chaotic dynamics as a parameter is varied is discussed and illustrated. It is shown that such changes may result from the collision of an unstable periodic orbit and a coexisting chaotic attractor. We call such collisions crises. Phenomena associated with crises include sudden changes in the size of chaotic attractors, sudden appearances of chaotic attractors (a possible route to chaos), and sudden destructions of chaotic attractors and their basins. This paper presents examples illustrating that crisis events are prevalent in many circumstances and systems, and that, just past a crisis, certain characteristic statistical behavior (whose type depends on the type of crisis) occurs. In particular the phenomenon of chaotic transients is investigated. The examples discussed illustrate crises in progressively higher dimension and include the one-dimensional quadratic map, the (two-dimensional) H~non map, systems of ordinary differential equations in three dimensions and a three-dimensional map. In the case of our study of the three-dimensional map a new route to chaos is proposed which is possible only in invertible maps or flows of dimension at least three or four, respectively. Based on the examples presented the following conjecture is proposed: almost all sudden changes in the size of chaotic attractors and almost all sudden destructions or creations of chaotic attractors and their basins are due to crises.
    [Show full text]
  • Final State Sensitivity: an Obstruction to Predictability
    Volume 99A, number 9 PHYSICS LETTERS 26 December 1983 FINAL STATE SENSITIVITY: AN OBSTRUCTION TO PREDICTABILITY Celso GREBOGI 1 Steven W. McDONALD 1 , Edward OTT 1'2 and James A. YORKE 3 University of Maryland, College Park, MD 20742, USA Received 21 October 1983 It is shown that nonlinear systems with multiple attractors commonly require very accurate initial conditions for the reliable prediction of final states. A scaling exponent for the final-state-uncertain phase space volume dependence on un- certainty in initial conditions is defined and related to the fractai dimension of basin boundaries. Typical nonlinear dynamical systems may have more is the "basin bounctary". It the initial conaitions are than one possible time-asymptotic final state. In such uncertain by an amount e, then (cf. fig. 1), for those cases the final state that is eventually reached depends initial conditions within e of the boundary, we cannot on the initial state of the system. In this letter we say a priori to which attractor the orbit eventually wish to consider the extent to which uncertainty in tends. For example, in fig. 1, 1 and 2 represent two initial conditions leads to uncertainty in the final state. initial conditions with an uncertainty e. The orbit To orient the discussion, consider the simple two- generated by initial condition 1 is attracted to attrac- dimensional phase space diagram schematically de- tor B. Initial condition 2, however, is uncertain in the picted in fig. 1. There are two possible final states sense that the orbit generated by 2 may be attracted ("attractors") denoted A and B.
    [Show full text]
  • Data Based Identification and Prediction of Nonlinear And
    Data Based Identification and Prediction of Nonlinear and Complex Dynamical Systems Wen-Xu Wanga;b, Ying-Cheng Laic;d;e, and Celso Grebogie a School of Systems Science, Beijing Normal University, Beijing, 100875, China b Business School, University of Shanghai for Science and Technology, Shanghai 200093, China c School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA d Department of Physics, Arizona State University, Tempe, Arizona 85287, USA e Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK arXiv:1704.08764v1 [physics.data-an] 27 Apr 2017 Wen-Xu Wang, Ying-Cheng Lai, and Celso Grebogi 1 Abstract The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space re- construction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, under- stand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology.
    [Show full text]
  • Chaos, Qualitative Reasoning, and the Predictability Proble M
    CHAOS, QUALITATIVE REASONING, AND THE PREDICTABILITY PROBLE M Bernardo A. Huberma n Xerox Palo Alto Research Center Palo Alto, CA . 94304 Peter Struss Siemens Corp. Corporate Research and Development Munich, West Germany Abstract Qualitative Physics attempts to predict the behavior of physical systems based on qualitativ e information . No one would consider using these methods to predict the dynamics of a tennis ball on th e frictionless edge of a knife . The reason: a strong instability caused by the edge which makes tw o arbitrarily small different initial conditions have very different outcomes . And yet, research on chaos suggests that sharp edges are not so unique : most nonlinear systems can be shown to be as unstable as the ball on the cutting edge. As a result, prediction is often impossible regardless of how simple the deterministic system is . We analyze the predictabilit y problem and its origins in some detail, show how it is generic, and discuss the impact of these result s on commonsense reasoning and Qualitative Physics . This done by presenting an example from the world of billiards and attempting to uncover the underlying assumptions that may lead physics , commonsense reasoning, and Qualitative Physics to generate different results . 2 1 Introduction Qualitative Physics (QP) aims at describing, explaining, and predicting the behavior of physical systems based only on qualitative information ([Bobrow 841 , [Hobbs-Moore 85]) . Predicting the future development of some part of the world give n knowledge of its current situation is also a central problem when attempting t o formalize the commonsense by some sort of non-monotonic logic (eg .
    [Show full text]
  • Counterexample to the Bohigas Conjecture for Transmission Through a One-Dimensional Lattice
    Counterexample to the Bohigas Conjecture for Transmission Through a One-Dimensional Lattice Ahmed A. Elkamshishy∗ Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907 USA Chris H. Greeney Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907 USA and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907 USA Resonances in particle transmission through a 1D finite lattice are studied in the presence of a finite number of impurities. Although this is a one-dimensional system that is classically integrable and has no chaos, studying the statistical properties of the spectrum such as the level spacing distribution and the spectral rigidity shows quantum chaos signatures. Using a dimensionless parameter that reflects the degree of state localization, we demonstrate how the transition from regularity to chaos is affected by state localization. The resonance positions are calculated using both the Wigner-Smith time-delay and a Siegert state method, which are in good agreement. Our results give evidence for the existence of quantum chaos in one dimension which is a counter-example to the Bohigas- Giannoni-Schmit conjecture. In 1984, Bohigas, Giannoni and Schmit stated the cel- BGS conjecture, and a second case where a signature of ebrated (BGS) conjecture[1] that describes the statisti- chaos arises in the quantum spectrum, which matches the cal properties of chaotic spectra. This conjecture draws GOE statistics for both the nearest-neighbor distribution a connection between quantum systems whose classical and the spectral rigidity. The chaotic behavior is shown analog is chaotic and random matrix theory (RMT). to depend on a dimensionless parameter that represents Classical chaos is a consequence of the non-linearity of the degree of state localization, thereby suggesting a con- the Newtonian equations of motion, while Schr¨odinger's nection between quantum chaos and the phenomenon of equation is linear and strictly speaking has no chaos.
    [Show full text]
  • Some Elements for a History of the Dynamical Systems Theory Christophe Letellier,1 Ralph Abraham,2 Dima L
    Some elements for a history of the dynamical systems theory Christophe Letellier,1 Ralph Abraham,2 Dima L. Shepelyansky,3 Otto E. Rössler,4 Philip Holmes,5 René Lozi,6 Leon Glass,7 Arkady Pikovsky,8 Lars F. Olsen,9 Ichiro Tsuda,10 Celso Grebogi,11 Ulrich Parlitz,12 Robert Gilmore,13 Louis M. Pecora,14 and Thomas L. Carroll14 1)Normandie Université — CORIA, Campus Universitaire du Madrillet, F-76800 Saint-Etienne du Rouvray, France. 2)University of California, Santa Cruz, USA 3)Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, Francea) 4)University of Tübingen, Germany 5)Department of Mechanical and Aerospace Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA 6)Université Côte d’Azur, CNRS, Laboratoire Jean Alexandre Dieudonné, Nice, France 7)Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal H3G 1Y6, Quebec, Canada 8)Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany 9)Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark 10)Chubu University Academy of Emerging Sciences, Matumoto-cho 1200, Kasugai, Aichi 487-8501, Japan 11)Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE, Scotland 12)Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany — Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 13)Drexel University, Philadelphia, USA 14)Code 6392, U.S.
    [Show full text]
  • Appendix a the Mathematics of Discontinuity
    Appendix A The Mathematics of Discontinuity On the plane of philosophy properly speaking, of metaphysics, catastrophe theory cannot, to be sure, supply any answer to the great problems which torment mankind. But it favors a dialectical, Heraclitean view of the universe, of a world which is the continual theatre of the battle between ‘logoi,’ between archetypes. René Thom (1975, “Catastrophe Theory: Its Present State and Future Perspectives,” p. 382) Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line. Benoit B. Mandelbrot (1983, The Fractal Geometry of Nature, p. 1) A.1 General Overview Somehow it is appropriate if ironic that sharply divergent opinions exist in the mathematical House of Discontinuity with respect to the appropriate method for analyzing discontinuous phenomena. Different methods include catastrophe theory, chaos theory, fractal geometry, synergetics theory, self-organizing criticality, spin glass theory, and emergent complexity. All have been applied to economics in one way or another. What these approaches have in common is more important than what divides them. They all see discontinuities as fundamental to the nature of nonlinear dynam- ical reality.1 In the broadest sense, discontinuity theory is bifurcation theory of which all of these are subsets. Ironically then we must consider the bifurcation of bifurcation theory into competing schools. After examining the historical origins of this bifurcation of bifurcation theory, we shall consider the possibility of a recon- ciliation and synthesis within the House of Discontinuity between these fractious factions. J.B. Rosser, Complex Evolutionary Dynamics in Urban-Regional 213 and Ecologic-Economic Systems, DOI 10.1007/978-1-4419-8828-7, C Springer Science+Business Media, LLC 2011 214 Appendix A A.2 The Founding Fathers The conflict over continuity versus discontinuity can be traced deep into a variety of disputes among the ancient Greek philosophers.
    [Show full text]
  • Relativistic Quantum Chaos—An Emergent Interdisciplinary Field Ying-Cheng Lai, Hong-Ya Xu, Liang Huang, and Celso Grebogi
    Relativistic quantum chaos—An emergent interdisciplinary field Ying-Cheng Lai, Hong-Ya Xu, Liang Huang, and Celso Grebogi Citation: Chaos 28, 052101 (2018); doi: 10.1063/1.5026904 View online: https://doi.org/10.1063/1.5026904 View Table of Contents: http://aip.scitation.org/toc/cha/28/5 Published by the American Institute of Physics Articles you may be interested in When chaos meets relativistic quantum mechanics Scilight 2018, 180006 (2018); 10.1063/1.5037088 Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 041101 (2018); 10.1063/1.5028373 Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 043119 (2018); 10.1063/1.5025646 Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 121102 (2017); 10.1063/1.5010300 Optimal control of networks in the presence of attackers and defenders Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 051103 (2018); 10.1063/1.5030899 Impacts of opinion leaders on social contagions Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 053103 (2018); 10.1063/1.5017515 CHAOS 28, 052101 (2018) Relativistic quantum chaos—An emergent interdisciplinary field Ying-Cheng Lai,1,2,a) Hong-Ya Xu,1 Liang Huang,3 and Celso Grebogi4 1School of Electrical, Computer and Energy
    [Show full text]