Counterexample to the Bohigas Conjecture for Transmission Through a One-Dimensional Lattice

Total Page:16

File Type:pdf, Size:1020Kb

Counterexample to the Bohigas Conjecture for Transmission Through a One-Dimensional Lattice Counterexample to the Bohigas Conjecture for Transmission Through a One-Dimensional Lattice Ahmed A. Elkamshishy∗ Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907 USA Chris H. Greeney Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907 USA and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907 USA Resonances in particle transmission through a 1D finite lattice are studied in the presence of a finite number of impurities. Although this is a one-dimensional system that is classically integrable and has no chaos, studying the statistical properties of the spectrum such as the level spacing distribution and the spectral rigidity shows quantum chaos signatures. Using a dimensionless parameter that reflects the degree of state localization, we demonstrate how the transition from regularity to chaos is affected by state localization. The resonance positions are calculated using both the Wigner-Smith time-delay and a Siegert state method, which are in good agreement. Our results give evidence for the existence of quantum chaos in one dimension which is a counter-example to the Bohigas- Giannoni-Schmit conjecture. In 1984, Bohigas, Giannoni and Schmit stated the cel- BGS conjecture, and a second case where a signature of ebrated (BGS) conjecture[1] that describes the statisti- chaos arises in the quantum spectrum, which matches the cal properties of chaotic spectra. This conjecture draws GOE statistics for both the nearest-neighbor distribution a connection between quantum systems whose classical and the spectral rigidity. The chaotic behavior is shown analog is chaotic and random matrix theory (RMT). to depend on a dimensionless parameter that represents Classical chaos is a consequence of the non-linearity of the degree of state localization, thereby suggesting a con- the Newtonian equations of motion, while Schr¨odinger's nection between quantum chaos and the phenomenon of equation is linear and strictly speaking has no chaos. Anderson localization[9, 10]. While RMT formally deals Nevertheless, quantum signatures of chaos can arise and with discrete spectra only, our study discusses it in the are exhibited by the statistical properties of the quantum context of very narrow resonances, which is justifiable energy level spectra, such as the level spacing distribution because of their generally extreme narrowness. and the spectral rigidity (SR) [1, 2]. The model considered in this study is a particle moving The spectrum of random matrices was first studied by through a one-dimensional lattice with the lattice poten- Wigner in 1951 [3{5], who demonstrated the existence of tial energy modeled by a sum of delta functions, one per a few universal classes based on the symmetry imposed lattice site. Thus the Hamiltonian is given by: on such matrices. In this paper, the two classes consid- ered are the gaussian orthogonal ensemble (GOE) and N=2 the Poisson distribution. P 2 X The claimed connection between chaos and RMT is the H = + αnδ(x − na): (1) 2m essence of the BGS conjecture, which relates the spectral n=−N=2 properties of quantum systems whose classical Hamilto- nians are irregular (chaotic) to the GOE class. The BGS Here N + 1 is the total number of lattice sites, and αn conjecture is formally stated as follows: Spectra of time- is the strength of the n-th delta function. In the case of reversal-invariant systems whose classical analogs are K- a perfectly clean periodic but finite lattice that we con- arXiv:2011.10631v1 [nlin.CD] 20 Nov 2020 systems[6] show the same fluctuation properties as pre- sider here, all αn are the same and all are negative, but dicted by GOE [1]. On the other hand, the spectrum of we will keep the notation general for now because part a classically regular system follows Poissonian behavior of our analysis will be an exploration of the effect of im- [1, 7, 8]. purities. The reason behind choosing the delta function The goal of the present study is to explore a one- potential is the fact that an attractive delta function po- dimensional quantum system whose classical analog is tential admits one bound state, so one can imagine the regular. Our analysis demonstrates that such systems system as having one atomic state around each atomic have quantum chaos signatures. Moreover, two limiting site, which allows us to treat both the bound states and cases are discussed: the regular case that agrees with the scattering dynamics. Modeling the lattice by consider- ing one atomic state at each site and treating the effect of site-to-site tunneling as an effective hopping parame- ter has been studied for years and is referred to as the ∗ [email protected] tight-binding approximation [9, 10]. One of our goals y [email protected] is to compare the exact solution with the results of the 2 tight-binding model. Our results show limitations of this particle. To obtain both r, and t, the solution inside the approximation that become relevant in the context of lattice has to be obtained. 1 1 transmission through a finite lattice. In the domain x 2 [(n − 2 )a; (n + 2 )a], Within the tight-binding approximation, two things iqx −iqx + − are assumed: First, there exists one atomic state around Ψn(x) = Ane + Bne ≡ n + n (4) each lattice site, and secondly, there is only hopping be- p tween nearest neighbors [11]. The Hamiltonian in this where q = 2mE , and m is the particle mass. After ap- ~ case is written as: plying the the wave function continuity and derivative X y X y discontinuity conditions, the solutions in any two adja- H = iai ai + ti;jai aj (2) cent regions separated by a lattice constant a are related i <i;j> by the transfer matrix [18] as follows: where i is the energy of the atomic state site i and ti;j is + iqa 1+mαn mαn ! + the tunneling amplitude from site j to site i, and the sum n+1 e iq iq n − = −mαn −iqa 1−mαn − in the second term is taken for nearest-neighbors where n+1 iq e iq n j = i ± 1. Both can be calculated from the potential in- (5) + troduced in Eq.1. If the lattice is periodic and all atomic n ≡ T (αn; q) − sites are identical, then this model can be solved analyt- n ically [12]. However, there is much interesting physics to To obtain the full S-matrix, both transmission (reflec- study when impurities are placed in the lattice, such as tion) amplitudes should also be obtained in the case of the transport across the lattice. In that case, the period- scattering by particles incident from the right, denoting icity is broken and there is no general analytical solution. them as t0(q), and r0(q). In one dimension, the S-matrix However, the spectrum can be obtained by writing the has the form [19, 20]: Hamiltonian in a matrix form and diagonalizing it [10]. The tight-binding approximation is useful in many t r0 S = (6) cases, especially for the N ! 1 limiting case. Most r t0 of the physics of bound states can be studied within this simple approximation. However, tight-binding has limi- tations, such as the fact that a set of N negative delta The distinctions between the periodic and the disor- functions do not necessarily support N bound states. dered cases become clear from plots of the Wigner-Smith dSy Even two delta functions in one dimension do not neces- time-delay [13], Q = iS dE , and the phase shifts [14].The sarily have two bound states, which can cause difficulties trace of Q gives the total time-delay. Fig.1 shows that whenever finite lattices are considered. Secondly, within there are no resonances in the exactly periodic case with tight-binding, one can only study bound states. So, all no impurities, and only a simple, regular oscillation of the physics of scattering is missing, such as transmission the total time-delay as a function of collision energy. On resonances. the contrary, when impurities are present, there are many The approach used in this paper is to consider a fi- narrow resonances. Associated with each resonance is a nite lattice and treat it as a finite range potential. Then peak in the time-delay and a clear rise in the sum of the scattering (S) matrix is obtained for a particle in- the eigenphaseshifts by π radians as functions of energy. cident from −∞ representing a scattering from the left, Studying the statistical properties of all the resonances and for a particle incident from +1 representing scat- in the first band shows chaos signatures in the system, tering from the right, and all desired observables calcu- as is demonstrated next. lated. The resonance positions and widths can be calcu- The resonances can also be calculated using a differ- lated from either the Wigner-Smith time-delay [13{15] or ent method: The Siegert state [17] boundary conditions by imposing outgoing-wave Siegert state boundary con- allows only outgoing waves, and they take the form: ditions [16, 17]. A numerical solution is obtained for ( −iqx −Na lattices with different values of the lattice size and the Ae if x < 2 (x) = iqx Na (7) lattice constant. A main goal here is to study the real Be if x > 2 part of the resonance energy level distribution in the first energy band. In all calculations, atomic units are used, With this boundary condition, the Hamiltonian is non- Hermitian and the spectrum is complex. Each eigen- i.e. with ~ = a0 = me = Eh = 1. The solution to the time-independent Schr¨odinger value can be written as Ej = E0j − iΓj=2, where E0j th equation for the Hamiltonian introduced in Eq.1 has the is the position of the j resonance, and Γj is the width following form for particles incident from the left: [17, 21].
Recommended publications
  • Chaotic Advection, Diffusion, and Reactions in Open Flows Tamás Tél, György Károlyi, Áron Péntek, István Scheuring, Zoltán Toroczkai, Celso Grebogi, and James Kadtke
    Chaotic advection, diffusion, and reactions in open flows Tamás Tél, György Károlyi, Áron Péntek, István Scheuring, Zoltán Toroczkai, Celso Grebogi, and James Kadtke Citation: Chaos: An Interdisciplinary Journal of Nonlinear Science 10, 89 (2000); doi: 10.1063/1.166478 View online: http://dx.doi.org/10.1063/1.166478 View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/10/1?ver=pdfcov Published by the AIP Publishing This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.173.125.76 On: Mon, 24 Mar 2014 14:44:01 CHAOS VOLUME 10, NUMBER 1 MARCH 2000 Chaotic advection, diffusion, and reactions in open flows Tama´sTe´l Institute for Theoretical Physics, Eo¨tvo¨s University, P.O. Box 32, H-1518 Budapest, Hungary Gyo¨rgy Ka´rolyi Department of Civil Engineering Mechanics, Technical University of Budapest, Mu¨egyetem rpk. 3, H-1521 Budapest, Hungary A´ ron Pe´ntek Marine Physical Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0238 Istva´n Scheuring Department of Plant Taxonomy and Ecology, Research Group of Ecology and Theoretical Biology, Eo¨tvo¨s University, Ludovika te´r 2, H-1083 Budapest, Hungary Zolta´n Toroczkai Department of Physics, University of Maryland, College Park, Maryland 20742-4111 and Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0435 Celso Grebogi Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 James Kadtke Marine Physical Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0238 ͑Received 30 July 1999; accepted for publication 8 November 1999͒ We review and generalize recent results on advection of particles in open time-periodic hydrodynamical flows.
    [Show full text]
  • Table of Contents (Print, Part 2)
    PERIODICALS PHYSICAL REVIEW E Postmaster send address changes to: For editorial and subscription correspondence, APS Subscription Services please see inside front cover Suite 1NO1 „ISSN: 1539-3755… 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 75, NUMBER 6 CONTENTS JUNE 2007 PART 2: STATISTICAL AND NONLINEAR PHYSICS, FLUID DYNAMICS, AND RELATED TOPICS RAPID COMMUNICATIONS Chaos and pattern formation Giant acceleration in slow-fast space-periodic Hamiltonian systems (4 pages) ........................... 065201͑R͒ D. V. Makarov and M. Yu. Uleysky Controlling spatiotemporal chaos using multiple delays (4 pages) ..................................... 065202͑R͒ Alexander Ahlborn and Ulrich Parlitz Signatures of fractal clustering of aerosols advected under gravity (4 pages) ............................ 065203͑R͒ Rafael D. Vilela, Tamás Tél, Alessandro P. S. de Moura, and Celso Grebogi Fluid dynamics Clustering of matter in waves and currents (4 pages) ............................................... 065301͑R͒ Marija Vucelja, Gregory Falkovich, and Itzhak Fouxon Experimental study of the bursting of inviscid bubbles (4 pages) ..................................... 065302͑R͒ Frank Müller, Ulrike Kornek, and Ralf Stannarius Surface thermal capacity and its effects on the boundary conditions at fluid-fluid interfaces (4 pages) ....... 065303͑R͒ Kausik S. Das and C. A. Ward Plasma physics Direct evidence of strongly inhomogeneous energy deposition in target heating with laser-produced ion beams (4 pages) ..................................................................................
    [Show full text]
  • Data Based Identification and Prediction of Nonlinear and Complex Dynamical Systems
    Data Based Identification and Prediction of Nonlinear and Complex Dynamical Systems Wen-Xu Wanga;b, Ying-Cheng Laic;d;e, and Celso Grebogie a School of Systems Science, Beijing Normal University, Beijing, 100875, China b Business School, University of Shanghai for Science and Technology, Shanghai 200093, China c School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA d Department of Physics, Arizona State University, Tempe, Arizona 85287, USA e Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK Wen-Xu Wang, Ying-Cheng Lai, and Celso Grebogi 1 Abstract The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space re- construction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, under- stand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these tasks, especially prediction and control, an accurate reconstruction of the original system is required.
    [Show full text]
  • Strange Attractors That Are Not Chaotic
    Physica 13D (1984) 261-268 North-Holland, Amsterdam STRANGE ATTRACTORS THAT ARE NOT CHAOTIC Celso GREBOGI, a Edward OTT, ~b Steven PELIKAN, c and James A. YORKE d Received 7. February 1984 It is shown that in certain types of dynamical systems it is possible to have attractors which are strange but not chaotic. Here we use the word strange to refer to the geometry or shape of the attracting set, while the word chaotic refers to the dynamics of orbits on the attractor (in particular, the exponential divergence of nearby trajectories). We first give examples for which it can be demonstrated that there is a strange nonchaotic attractor. These examples apply to a class of maps which model nonlinear oscillators (continuous time) which are externally driven at two incommensurate frequencies. It is then shown that such attractors are persistent under perturbations which preserve the original system type (i.e., there are two incommensurate external driving frequencies). This suggests that, for systems of the type which we have considered, nonchaotic strange attractors may be expected to occur for a finite interval of parameter values. On the other hand, when small perturbations which do not preserve the system type are numerically introduced the strange nonchaotic attractor is observed to be converted to a periodic or chaotic orbit. Thus we conjecture that, in general, continuous time systems (" flows") which are not externally driven at two incommensurate frequencies should not be expected to have strange nonchaotic attractors except possibly on a set of measure zero in the parameter space. 1. Introduction and definitions ties [1] such as noninteger fractal dimension, Cantor set structure, or nowhere differentiability.
    [Show full text]
  • Crises, Sudden Changes in Chaotic Attractors, and Transient Chaos
    Physica 7D (1983) 181-200 North-Holland Publishing Company CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS Celso GREBOGI and Edward OTT Laboratory for Plasma and Fusion Energy Studies, Unit'ersity of Maryland, College Park, Md. 20742, USA and James A. YORKE Institute for Physical Science and Technology and Department of Mathematics, Unit ersi O, of Mao'land, College Park, Md. 20742, USA The occurrence of sudden qualitative changes of chaotic dynamics as a parameter is varied is discussed and illustrated. It is shown that such changes may result from the collision of an unstable periodic orbit and a coexisting chaotic attractor. We call such collisions crises. Phenomena associated with crises include sudden changes in the size of chaotic attractors, sudden appearances of chaotic attractors (a possible route to chaos), and sudden destructions of chaotic attractors and their basins. This paper presents examples illustrating that crisis events are prevalent in many circumstances and systems, and that, just past a crisis, certain characteristic statistical behavior (whose type depends on the type of crisis) occurs. In particular the phenomenon of chaotic transients is investigated. The examples discussed illustrate crises in progressively higher dimension and include the one-dimensional quadratic map, the (two-dimensional) H~non map, systems of ordinary differential equations in three dimensions and a three-dimensional map. In the case of our study of the three-dimensional map a new route to chaos is proposed which is possible only in invertible maps or flows of dimension at least three or four, respectively. Based on the examples presented the following conjecture is proposed: almost all sudden changes in the size of chaotic attractors and almost all sudden destructions or creations of chaotic attractors and their basins are due to crises.
    [Show full text]
  • Final State Sensitivity: an Obstruction to Predictability
    Volume 99A, number 9 PHYSICS LETTERS 26 December 1983 FINAL STATE SENSITIVITY: AN OBSTRUCTION TO PREDICTABILITY Celso GREBOGI 1 Steven W. McDONALD 1 , Edward OTT 1'2 and James A. YORKE 3 University of Maryland, College Park, MD 20742, USA Received 21 October 1983 It is shown that nonlinear systems with multiple attractors commonly require very accurate initial conditions for the reliable prediction of final states. A scaling exponent for the final-state-uncertain phase space volume dependence on un- certainty in initial conditions is defined and related to the fractai dimension of basin boundaries. Typical nonlinear dynamical systems may have more is the "basin bounctary". It the initial conaitions are than one possible time-asymptotic final state. In such uncertain by an amount e, then (cf. fig. 1), for those cases the final state that is eventually reached depends initial conditions within e of the boundary, we cannot on the initial state of the system. In this letter we say a priori to which attractor the orbit eventually wish to consider the extent to which uncertainty in tends. For example, in fig. 1, 1 and 2 represent two initial conditions leads to uncertainty in the final state. initial conditions with an uncertainty e. The orbit To orient the discussion, consider the simple two- generated by initial condition 1 is attracted to attrac- dimensional phase space diagram schematically de- tor B. Initial condition 2, however, is uncertain in the picted in fig. 1. There are two possible final states sense that the orbit generated by 2 may be attracted ("attractors") denoted A and B.
    [Show full text]
  • Data Based Identification and Prediction of Nonlinear And
    Data Based Identification and Prediction of Nonlinear and Complex Dynamical Systems Wen-Xu Wanga;b, Ying-Cheng Laic;d;e, and Celso Grebogie a School of Systems Science, Beijing Normal University, Beijing, 100875, China b Business School, University of Shanghai for Science and Technology, Shanghai 200093, China c School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA d Department of Physics, Arizona State University, Tempe, Arizona 85287, USA e Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK arXiv:1704.08764v1 [physics.data-an] 27 Apr 2017 Wen-Xu Wang, Ying-Cheng Lai, and Celso Grebogi 1 Abstract The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space re- construction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, under- stand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology.
    [Show full text]
  • Chaos, Qualitative Reasoning, and the Predictability Proble M
    CHAOS, QUALITATIVE REASONING, AND THE PREDICTABILITY PROBLE M Bernardo A. Huberma n Xerox Palo Alto Research Center Palo Alto, CA . 94304 Peter Struss Siemens Corp. Corporate Research and Development Munich, West Germany Abstract Qualitative Physics attempts to predict the behavior of physical systems based on qualitativ e information . No one would consider using these methods to predict the dynamics of a tennis ball on th e frictionless edge of a knife . The reason: a strong instability caused by the edge which makes tw o arbitrarily small different initial conditions have very different outcomes . And yet, research on chaos suggests that sharp edges are not so unique : most nonlinear systems can be shown to be as unstable as the ball on the cutting edge. As a result, prediction is often impossible regardless of how simple the deterministic system is . We analyze the predictabilit y problem and its origins in some detail, show how it is generic, and discuss the impact of these result s on commonsense reasoning and Qualitative Physics . This done by presenting an example from the world of billiards and attempting to uncover the underlying assumptions that may lead physics , commonsense reasoning, and Qualitative Physics to generate different results . 2 1 Introduction Qualitative Physics (QP) aims at describing, explaining, and predicting the behavior of physical systems based only on qualitative information ([Bobrow 841 , [Hobbs-Moore 85]) . Predicting the future development of some part of the world give n knowledge of its current situation is also a central problem when attempting t o formalize the commonsense by some sort of non-monotonic logic (eg .
    [Show full text]
  • Some Elements for a History of the Dynamical Systems Theory Christophe Letellier,1 Ralph Abraham,2 Dima L
    Some elements for a history of the dynamical systems theory Christophe Letellier,1 Ralph Abraham,2 Dima L. Shepelyansky,3 Otto E. Rössler,4 Philip Holmes,5 René Lozi,6 Leon Glass,7 Arkady Pikovsky,8 Lars F. Olsen,9 Ichiro Tsuda,10 Celso Grebogi,11 Ulrich Parlitz,12 Robert Gilmore,13 Louis M. Pecora,14 and Thomas L. Carroll14 1)Normandie Université — CORIA, Campus Universitaire du Madrillet, F-76800 Saint-Etienne du Rouvray, France. 2)University of California, Santa Cruz, USA 3)Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, Francea) 4)University of Tübingen, Germany 5)Department of Mechanical and Aerospace Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA 6)Université Côte d’Azur, CNRS, Laboratoire Jean Alexandre Dieudonné, Nice, France 7)Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal H3G 1Y6, Quebec, Canada 8)Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany 9)Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark 10)Chubu University Academy of Emerging Sciences, Matumoto-cho 1200, Kasugai, Aichi 487-8501, Japan 11)Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE, Scotland 12)Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany — Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 13)Drexel University, Philadelphia, USA 14)Code 6392, U.S.
    [Show full text]
  • Appendix a the Mathematics of Discontinuity
    Appendix A The Mathematics of Discontinuity On the plane of philosophy properly speaking, of metaphysics, catastrophe theory cannot, to be sure, supply any answer to the great problems which torment mankind. But it favors a dialectical, Heraclitean view of the universe, of a world which is the continual theatre of the battle between ‘logoi,’ between archetypes. René Thom (1975, “Catastrophe Theory: Its Present State and Future Perspectives,” p. 382) Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line. Benoit B. Mandelbrot (1983, The Fractal Geometry of Nature, p. 1) A.1 General Overview Somehow it is appropriate if ironic that sharply divergent opinions exist in the mathematical House of Discontinuity with respect to the appropriate method for analyzing discontinuous phenomena. Different methods include catastrophe theory, chaos theory, fractal geometry, synergetics theory, self-organizing criticality, spin glass theory, and emergent complexity. All have been applied to economics in one way or another. What these approaches have in common is more important than what divides them. They all see discontinuities as fundamental to the nature of nonlinear dynam- ical reality.1 In the broadest sense, discontinuity theory is bifurcation theory of which all of these are subsets. Ironically then we must consider the bifurcation of bifurcation theory into competing schools. After examining the historical origins of this bifurcation of bifurcation theory, we shall consider the possibility of a recon- ciliation and synthesis within the House of Discontinuity between these fractious factions. J.B. Rosser, Complex Evolutionary Dynamics in Urban-Regional 213 and Ecologic-Economic Systems, DOI 10.1007/978-1-4419-8828-7, C Springer Science+Business Media, LLC 2011 214 Appendix A A.2 The Founding Fathers The conflict over continuity versus discontinuity can be traced deep into a variety of disputes among the ancient Greek philosophers.
    [Show full text]
  • Relativistic Quantum Chaos—An Emergent Interdisciplinary Field Ying-Cheng Lai, Hong-Ya Xu, Liang Huang, and Celso Grebogi
    Relativistic quantum chaos—An emergent interdisciplinary field Ying-Cheng Lai, Hong-Ya Xu, Liang Huang, and Celso Grebogi Citation: Chaos 28, 052101 (2018); doi: 10.1063/1.5026904 View online: https://doi.org/10.1063/1.5026904 View Table of Contents: http://aip.scitation.org/toc/cha/28/5 Published by the American Institute of Physics Articles you may be interested in When chaos meets relativistic quantum mechanics Scilight 2018, 180006 (2018); 10.1063/1.5037088 Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 041101 (2018); 10.1063/1.5028373 Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 043119 (2018); 10.1063/1.5025646 Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 121102 (2017); 10.1063/1.5010300 Optimal control of networks in the presence of attackers and defenders Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 051103 (2018); 10.1063/1.5030899 Impacts of opinion leaders on social contagions Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 053103 (2018); 10.1063/1.5017515 CHAOS 28, 052101 (2018) Relativistic quantum chaos—An emergent interdisciplinary field Ying-Cheng Lai,1,2,a) Hong-Ya Xu,1 Liang Huang,3 and Celso Grebogi4 1School of Electrical, Computer and Energy
    [Show full text]
  • Two-Week Loan Py
    LBL-1 0903 (! at the International Conference on Plasma Physics, Nagoya, Japan, Apri 1 7-11 , 1980, and to be published in the Proceedings STATISTICAL ANALYSIS OF A DETERMINISTIC STOCHASTIC ORBIT Allan N. Kaufman, Henry O.I. Abarbanel and Celso Grebogi May 1980 TWO-WEEK LOAN PY This is a Library Copy which may be borrowed for two weeks. For a personal retention copyy call Tech. Info. Division; Ext 6782. Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Submitted to the Proceedings of the LBL-10903 International Conference on Plasma Physics Nagoya, Japan, April 1980 Statistical Analysis of a Deterministic Stochastic Orbit* Allan N.
    [Show full text]