(Idiops Sp.) in the WESTERN GHATS of UTTARA KANNADA, KARNATAKA, INDIA

Total Page:16

File Type:pdf, Size:1020Kb

(Idiops Sp.) in the WESTERN GHATS of UTTARA KANNADA, KARNATAKA, INDIA HABITAT PREFERENCE AND BURROW CHARACTERISTICS OF A TRAPDOOR SPIDER (Idiops sp.) IN THE WESTERN GHATS OF UTTARA KANNADA, KARNATAKA, INDIA Part of CEPF Project: Tarantula (Araneae: Theraphosidae) spider diversity, distribution and habitat-use in the Western Ghats of Uttara Kannada district, Karnataka: A study on Protected Area adequacy and conservation planning at a landscape level (Dr. Manju Siliwal) Ms. Neha Gupta Guru Gobind Singh Indraprastha University, Delhi (Email: [email protected]) INTRODUCTION RESULTS Abundance The family Idiopidae is one of the 8 families of primitive group of spiders (Suborder: Orthognatha) reported from India (Platnick, 2011). The members • A total of 554 burrows of Idiops sp. were found in the study area, out of which 430 of the family Idiopidae are trap door spiders and are mainly ground were active burrows (with the spider) . burrowing forms. They construct a tubular burrow with the walls covered in • This species was found in all habitats sampled during the study silk and have a cork-shape lid at the entrance to the burrow, used as a door • High abundance of Idiops sp. was found in agriculture fields, while least in the semi- (Coyle & Icenogle, 1994; Dippenaar-Schoeman, 2002. The outer surface of evergreen forest. the lid or the door is covered with soil particles and other dry vegetation • In agriculture fields, burrows were clustered and restricted to only very small area debris depending on the surroundings in order to camouflage, and very often • Though number of burrows in mixed forest were observed lesser than agriculture difficult to locate at few centimeters distance and because of this very easily but burrows were distributed uniformly and were recorded in maximum quadrates they remain unnoticed . This is one of the main reason that this group of sampled. This suggests mixed forests likely to be most preferred habitat by Idiops spider remains least studied. In India, studies on trapdoor spiders in the past sp. were very few, and were restricted to taxonomy and therefore, information on natural history, ecology and behaviour is not known (Siliwal, 2009). Therefore, the present study was carried out (January-April 2010) to understand the distribution, habitat preference and burrow characterization of the trapdoor spider (Idiops sp .) across ix different types of habitats (mixed forest, moist deciduous, semi-evergreen, teak plantations, agriculture and human settlements) in Dandeli WLS and nearby reserve forests. It is the first time this kind of information is being gathered for an Indian trapdoor spider OBJECTIVES • To understand habitats and microhabitats preference by the trapdoor spider in study area. • To understand their pattern of distribution across different habitats (semi- evergreen forest, moist deciduous forest, mixed forest, teak plantations, agriculture fields and settlement areas). Habitat preference • To study burrow characteristics & variations with the change in ecological • Idiops sp . preferred open, exposed habitats with low canopy . Habitats with high canopy parameters . cover will also lead to good amount of undergrowth throughout the year and probably these trapdoor spiders do not prefer such microhabitats. STUDY AREA • The Idiops sp. were found more in habitats with low vegetation cover, ranging from 10 to 30%, which could be due to ease of construction and later widening of burrows. With increase in vegetation cover, the network of roots in soil increases which could obstruct the construction and widening of burrows. • The maximum number of burrows were found on south facing slopes Burrow characterization • The Idiops sp. constructed simple tube-like burrows with a “D”-shaped trapdoor Uttara Kannada • Difference in thickness of the entrance door was observed, based on which, trapdoor can be categorized to two types a) Wafer like thin door b) Cork shape thick door • Three types of burrow shapes were observed in Idiops sp. viz ., straight, gently curved and C-shape. This was probably determined by the soil texture and root network of plants in the microhabitat • No significant preference to bund slope was observed • There was significant difference found in structure of female burrows (burrow diameter, depth and lid thickness) across different habitats but it was insignificant in juveniles • Variation in burrow diameter was not found significant to any habitat type but was related to body sizes of the spider • Burrow length was found more in open habitats (like human settlements and teak plantations), probably to escape excess of heat and high temperature FURTHER STUDIES • A long term study needs to be carried out across different seasons of the year to confirm the above results • Also, similar studies can be carried out for other groups of spiders to understand their natural history, ecology and behaviour MATERIALS AND METHODS REFERENCES • Five locations, viz. Kulgi, Potoli, Joida, Kumbarwada and Anshi were selected • Six different types of habitats moist deciduous forest, mixed forest, semi-evergreen forest, teak plantations, 1. Coyle, F. A. & W. R. Icenogle. (1994). Natural history of the Californian trapdoor spider genus Aliatypus human settlements and agriculture fields were identified in each selected locations. (Araneae, Antrodiaetidae) . Journal of Arachnology, 22:225-255. • Quadrats of size 5×5 sq. m were randomly laid with a minimum interval of 250 m between subsequent 2. Dippenaar-Schoeman, A.S. (2002). Baboon and Trapdoor Spiders of Southern Africa: An Identification quadrats and were thoroughly examined for the presence of burrows Manual. Plant Protection Research Institute Handbook No., 13:1–28. • In all 313 plots were sampled across different locations and habitat types. 3. Platnick, N.I. (2011). The world spider catalog, version11.5. American Museum of Natural • The number of active and empty burrows found were counted. History, http://research.amnh.org/entomology/spiders/catalog/index.html. • Ecological parameters and burrow parameters were recorded. 4. Siliwal, M. (2009). Trapped for life- The trapdoor spiders of India. Hornbill July-September. • ANALYSIS: Burrow parameters like burrow diameter, burrow depth & lid thickness were tested across different habitats using Mann-Whitney U test & Kruskal-Wallis H test (SPSS Analysis, Version 15.0). ACNOWLEDGEMENT Thanks to my supervisors (Dr. Sanjay Keshari Das, Guru Gobind Singh Indraprastha University, Delhi and Dr. Manju Siliwal, Wildlife Information Liaison Development Society, Coimbatore); the Karnataka State Forest Department for giving permissions to carry out the study; CEPF (Critical Ecosystem Partnership Fund) - ATREE (Ashoka Trust For Research In Ecology And The Environment) Western Ghats Small Grants Program for funding tarantula project, during which the present data was collected. Also, thank my field assistants and local people for their assistance and help during fieldwork..
Recommended publications
  • Archiv Für Naturgeschichte
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Archiv für Naturgeschichte Jahr/Year: 1905 Band/Volume: 71-2_2 Autor(en)/Author(s): Lucas Robert Artikel/Article: Arachnida für 1904. 925-993 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Arachnida fiir 1904. Bearbeitet von Dr. Robert Lucas. A. Publikationen (Autoren alphabetisch). d'Agostino, A. P. Prima nota dei Ragni deU'Avelliiiese. Avellino 1/8 4 pp. Banks, Nathan (1). Some spiders and mites from Bermuda Islands. Trans. Connect. Acad. vol. XI, 1903 p. 267—275. — {%), The Arachnida of Florida. Proc. Acad. Philad. Jan. 1904 p. 120—147, 2 pls. (VII u. VIII). — (3). Some Arachnida from CaUfornia. Proc. Californ. Acad. III No. 13. p. 331—374, pls. 38—41. — (4). Arachnida (in) Alaska; from the Harriman Alaska Ex- pedition vol. VIII p. 37—45, 11 pls. — Abdruck der Publikation von 1900 aus d. Proc. Washington Acad. vol. II p. 477—486. Berthoumieu, L' Abbe. Revision de l'entomologie dans 1' Antiquite. Arachnides p. 197—200 (Chelifer, Scorpiones, Galeodes, Aranea, Ixodes, Tyroglyphus et Cheyletus). Eev. Sei. Bourbonnais 1904, p. 167. Bolton, H. The Palaeontology of the Lancashire Goal Measures. Manchester. Mus. Owens Coli. Publ. 50. Mus. Handb. p. 378—415. — Abdruck aus Trans. Manchester geol. min. Soc. vol. 28. Brown, Rob. (I). Rectifications tardives mais necessaires. Proc- verb. Soc. Linn. Bordeaux, vol. 59 p. LXVIII—LXX. — Auch über Arachniden. Calman, W. T. Arachnida in Zool. Record for 1903 vol. XL. XI 47 pp. Cambridge, F. 0. Pickard. 1901. Further Contributions towards the Knowledge of the Arachnida of Epping Forest.
    [Show full text]
  • A Review of the Anti-Predator Devices of Spiders* Invaders Away Or Kill and Eat Them
    Bull. Br. arachnol. Soc. (1995) 10 (3), 81-96 81 A review of the anti-predator devices of spiders* invaders away or kill and eat them. The pirate spiders (Mimetidae) that have been studied feed almost J. L. Cloudsley-Thompson exclusively on other spiders, whilst certain Salticidae 10 Battishill Street, (Portia spp.) feed not only upon insects, but sometimes London Nl 1TE also on other jumping spiders, and even tackle large orb-weavers in their webs (see below). Several other Summary families and genera, including Archaeidae, Palpimanus (Palpimanidae), Argyrodes and Theridion (Theridiidae), The predators of spiders are mostly either about the and Chorizopes (Araneidae) contain species that include same size as their prey (arthropods) or much larger (vertebrates), against each of which different types of de- other spiders in their diet. Sexual cannibalism has been fence have evolved. Primary defences include anachoresis, reviewed by Elgar (1992). Other books in which the phenology, crypsis, protective resemblance and disguise, enemies of spiders are discussed include: Berland (1932), spines and warning coloration, mimicry (especially of ants), Bristowe (1958), Cloudsley-Thompson (1958, 1980), cocoons and retreats, barrier webs, web stabilimenta and Edmunds (1974), Gertsch (1949), Main (1976), Millot detritus, and communal webs. Secondary defences are flight, dropping to the ground, colour change and thanatosis, (1949), Preston-Mafham, R. & K. (1984), Savory (1928), web vibration, whirling and bouncing, autotomy, venoms Thomas (1953) and Wise (1993). (For earlier references, and defensive fluids, urticating setae, warning sounds and see Warburton, 1909). deimatic displays. The anti-predator adaptations of spiders The major predators of spiders fall into two cate- are extremely complex, and combinations of the devices gories: (a) those about the same size as their prey (mainly listed frequently occur.
    [Show full text]
  • Final Project Completion Report
    CEPF SMALL GRANT FINAL PROJECT COMPLETION REPORT Organization Legal Name: - Tarantula (Araneae: Theraphosidae) spider diversity, distribution and habitat-use: A study on Protected Area adequacy and Project Title: conservation planning at a landscape level in the Western Ghats of Uttara Kannada district, Karnataka Date of Report: 18 August 2011 Dr. Manju Siliwal Wildlife Information Liaison Development Society Report Author and Contact 9-A, Lal Bahadur Colony, Near Bharathi Colony Information Peelamedu Coimbatore 641004 Tamil Nadu, India CEPF Region: The Western Ghats Region (Sahyadri-Konkan and Malnad-Kodugu Corridors). 2. Strategic Direction: To improve the conservation of globally threatened species of the Western Ghats through systematic conservation planning and action. The present project aimed to improve the conservation status of two globally threatened (Molur et al. 2008b, Siliwal et al., 2008b) ground dwelling theraphosid species, Thrigmopoeus insignis and T. truculentus endemic to the Western Ghats through systematic conservation planning and action. Investment Priority 2.1 Monitor and assess the conservation status of globally threatened species with an emphasis on lesser-known organisms such as reptiles and fish. The present project was focused on an ignored or lesser-known group of spiders called Tarantulas/ Theraphosid spiders and provided valuable information on population status and potential conservation sites in Uttara Kannada district, which will help in future monitoring and assessment of conservation status of the two globally threatened theraphosid species T. insignis and Near Threatened T. truculentus. Investment Priority 2.3. Evaluate the existing protected area network for adequate globally threatened species representation and assess effectiveness of protected area types in biodiversity conservation.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • Biogeografía Histórica Y Diversidad De Arañas Mygalomorphae De Argentina, Uruguay Y Brasil: Énfasis En El Arco Peripampásico
    i UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO Biogeografía histórica y diversidad de arañas Mygalomorphae de Argentina, Uruguay y Brasil: énfasis en el arco peripampásico Trabajo de tesis doctoral TOMO I Lic. Nelson E. Ferretti Centro de Estudios Parasitológicos y de Vectores CEPAVE (CCT- CONICET- La Plata) (UNLP) Directora: Dra. Alda González Codirector: Dr. Fernando Pérez-Miles Argentina Año 2012 “La tierra y la vida evolucionan juntas”… León Croizat (Botánico y Biogeógrafo italiano) “Hora tras hora… otra de forma de vida desaparecerá para siempre de la faz del planeta… y la tasa se está acelerando” Dave Mustaine (Músico Estadounidense) A la memoria de mi padre, Edgardo Ferretti ÍNDICE DE CONTENIDOS TOMO I Agradecimientos v Resumen vii Abstract xi Capítulo I: Introducción general. I. Biogeografía. 2 II. Biogeografía histórica. 5 III. Áreas de endemismo. 11 IV. Marco geológico. 14 IV.1- Evolución geológica de América del Sur. 15 IV.2- Arco peripampásico. 23 V. Arañas Mygalomorphae. 30 VI. Objetivos generales. 34 Capítulo II: Diversidad, abundancia, distribución espacial y fenología de la comunidad de Mygalomorphae de Isla Martín García, Ventania y Tandilia. I. INTRODUCCIÓN. 36 I.1- Isla Martín García. 36 I.2- El sistema serrano de Ventania. 37 I.3- El sistema serrano de Tandilia. 38 I.4- Las comunidades de arañas en áreas naturales. 39 I.5- ¿Porqué estudiar las comunidades de arañas migalomorfas? 40 II. OBJETIVOS. 42 II.1- Objetivos específicos. 42 III. MATERIALES Y MÉTODOS. 43 III.1- Áreas de estudio. 43 III.1.1- Isla Martín García. 43 III.1.2- Sistema de Ventania.
    [Show full text]
  • Araneae (Spider) Photos
    Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison.
    [Show full text]
  • Royal Society of Western Australia, 97: 57–64, 2014
    WA Science—Journal of the Royal Society of Western Australia, 97: 57–64, 2014 Arachnida (Arthropoda: Chelicerata) of Western Australia: overview and prospects M S HARVEY * Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia. [email protected]. The history of the study of arachnids (spiders, scorpions, ticks, mites and their relatives) in Western Australia is briefly reviewed, and the main periods of activity are documented: 1860s–1910s, between the wars, after World War II, and the modern era. The fauna consists of at least 1400 named species (but the mite fauna is imperfectly documented), and it is estimated that ~6000 species exist, the majority of which are currently undescribed KEYWORDS: history, pseudoscorpions, scorpions, spiders, taxonomy. INTRODUCTION nowadays known as Missulena granulosum (Cambridge). This species is quite common throughout southwestern The arachnid fauna of Western Australia represents a Australia where it persists in woodland habitats. The fascinating tableau of ancient relictual species and more next arachnid to be described was Idiops blackwalli recently arrived invaders. While the spiders (order Cambridge (1870) based on an adult male collected from Araneae) and mites (superorder Acari) are numerically Swan River. The species was quickly transferred to a new dominant, representatives of six other orders— genus by Ausserer (1871). Idiommata blackwalli is a large, Scorpiones, Pseudoscorpiones, Opiliones, Schizomida, impressive species still common in the Perth region. The Amblypygi and Palpigradi (Figure 1)—have been found trapdoor spiders Aganippe latior (based on a female from in the state. The size of the fauna is unknown, but ‘West Australia’), Eriodon insignis (based on a male from certainly comprises several thousand species, the Swan River), and E.
    [Show full text]
  • A New Species of the Trapdoor Spiders Genus Idiops Perty, 1833 (Araneae: Idiopidae) from the Western Ghats, with a Key to the Idiops of India
    Revista Ibérica de Aracnología, nº 21 (31/12/2012): 9‒14. ARTÍCULO Grupo Ibérico de Aracnología (S.E.A.). ISSN: 1576 - 9518. http://www.sea-entomologia.org/ A NEW SPECIES OF THE TRAPDOOR SPIDERS GENUS IDIOPS PERTY, 1833 (ARANEAE: IDIOPIDAE) FROM THE WESTERN GHATS, WITH A KEY TO THE IDIOPS OF INDIA Zeeshan A. Mirza1, Varun V. Vaze2 & Rajesh V. Sanap3 1 Post-Graduate Program in Wildlife Biology & Conservation, WCS-India Program, F-21, National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India ‒ [email protected] 2 Biospheres, Eshwari, 52/403, Lakshminagar, Paravati, Pune 411 009, Maharashtra, India ‒ [email protected] 3 D-5/2, Marol Police Camp, M. M. Road, Andheri (East), Mumbai, 400059, Maharashtra, India. ‒ [email protected] Abstract: A new species of the trapdoor spider genus Idiops Perty, Idiops kaasensis sp. n., is described from Kaas Plateau in the Satara District (Western Ghats, Maharashtra, India). A key to the known Indian species of the genus is presented. Key words: Araneae, Idiopidae, new species, Kaas Plateau, Satara, Maharashtra, India. Una especie nueva de araña del género Idiops Perty, 1833 (Araneae: Idiopidae) de los Ghats Occidentales, con una clave para los Idiops de la India Resumen: Se describe una nueva especie de araña de trampilla del género Idiops Perty, Idiops kaasensis sp. n., procedente de la meseta de Kaas, en el distrito de Satara (Ghats Occidentales, Maharashtra, India). Se presenta una clave para las especies conoci- das del género de la India. Palabras clave: Araneae, Idiopidae, especie nueva, meseta de Kaas, Satara, Maharashtra, India.
    [Show full text]
  • Download PDF (Inglês)
    DOI: http://dx.doi.org/10.1590/1678-992X-2019-0198 ISSN 1678-992X Research Article Soil spiders (Arachnida: Araneae) in native and reforested Araucaria forests Ecology Jamil de Morais Pereira1* , Elke Jurandy Bran Nogueira Cardoso2 , Antonio Domingos Brescovit3 , Luís Carlos Iuñes de Oliveira Filho4 , Julia Corá Segat5 , Carolina Riviera Duarte Maluche Baretta6 , Dilmar Baretta5 1Instituto Federal de Educação, Ciência e Tecnologia do Sul ABSTRACT: Spiders are part of the soil biodiversity, considered fundamental to the food de Minas Gerais, Praça Tiradentes, 416 – 37576-000 – chain hierarchy, directly and indirectly influencing several services in agricultural and forest Inconfidentes, MG – Brasil. ecosystems. The present study aimed to evaluate the biodiversity of soil spider families and 2Universidade de São Paulo/ESALQ – Depto. de Ciência do identify which soil properties influence their presence, as well as proposing families as potential Solo, Av. Pádua Dias, 11 – 13418-900 – Piracicaba, SP – bioindicators. Native forest (NF) and reforested sites (RF) with Araucaria angustifolia (Bertol.) Brasil. Kuntze were evaluated in three regions of the state São Paulo, both in the winter and summer. 3Instituto Butantan – Lab. Especial de Coleções Zoológicas, Fifteen soil samples were collected from each forest to evaluate the biological (spiders and Av. Vital Brasil, 1500 – 05503-900 – São Paulo, SP – Brasil. microbiological), chemical and physical soil properties, in addition to properties of the litter 4Universidade Federal de Pelotas/FAEM – Depto. de Solos, (dry matter and C, N and S contents). For soil spiders, two sampling methods were used: pitfall Av. Eliseu Maciel, s/n – 96050-500 – Capão do Leão, RS – traps and soil monoliths.
    [Show full text]
  • UWA (2005) Mygalomorph Spiders of Mt Gibson Region
    The University of Western Australia School of Animal Biology 35 Stirling Highway, Crawley, Western Australia Australia 6009 Facsimile (08) 9380 1029 Telephone (08) 9380 3903 [email protected] THE MYGALOMORPH SPIDERS FROM THE MT GIBSON REGION, WESTERN AUSTRALIA, INCLUDING SPECIES APPARENTLY ENDEMIC TO THE AREA Report to ATA Environmental October 2005 Barbara York Main 1 REPORT TO ATA ENVIRONMENTAL ON MT GIBSON MYGALOMORPH SPIDERS By Barbara York Main School of Animal Biology MO92, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009. bymain @cyllene.uwa.edu.au OBJECTIVES To identify the mygalomorph spiders (trapdoor spiders) collected by ATA Environmental during a survey of selected invertebrates targeting short range endemic species at the site of the proposed Mt Gibson iron ore mine. INTRODUCTION The trapdoor and funnelweb spiders (Mygalomorphae) are richly represented in Australia with ten families. Of these, eight occur in Western Australia with seven represented in the Wheatbelt. The remaining family, Migidae, is confined to the moist forested and topographically high areas of the southwest of the state. Of those occurring in the wheatbelt, the “brushfooted” Theraphosidae (so-called bird eating spiders) which are generally tropical and secondarily inhabit arid areas (Main 1997), impinge on the northern and eastern margins only. The remaining six families are well represented throughout the wheatbelt and lower pastoral areas. The Idiopidae (typical trapdoor spiders) and the Nemesiidae (mostly open-holed burrowers) are particularly diverse both taxonomically and ecologically and comprise many genera, some of which eg. Aganippe (Idiopidae) and Teyl (Nemesiidae) have undergone sequential radiations in response to geohistorical events combined with climatic change (Main 1996, 1999) resulting in a plethora of species.
    [Show full text]
  • Spider Burrows in Ichnological Context: a Review of Literature Data and Burrows of the Wolf Spider Trochosa Hispanica Simon, 1870 from Albania
    Rendiconti Lincei. Scienze Fisiche e Naturali (2018) 29:67–79 https://doi.org/10.1007/s12210-017-0662-7 Spider burrows in ichnological context: a review of literature data and burrows of the wolf spider Trochosa hispanica Simon, 1870 from Albania Alfred Uchman1 · Blerina Vrenozi2 · Bardhyl Muceku3 Received: 28 September 2017 / Accepted: 29 November 2017 / Published online: 22 December 2017 © The Author(s) 2017. This article is an open access publication Abstract A general review of spider burrows and history of their research in eighteenth to nineteenth centuries are provided on the basis of the literature, which is dispersed and almost forgotten by majority of ichnologists. Moreover, burrows of the wolf spider Trochosa hispanica Simon, 1870 from a mountain meadow in Albania are presented. They are composed of an almost straight through gently curved to slightly winding vertical shafts (8.2–17.2 mm in diameter) with a basal, oval chamber, which is 14.5–30.6 mm wide. Above the ground level, some of them show a low, agglutinated chimney a cone composed of soil granules. The burrows are 83–235 mm long. They are comparable with the trace fossil Macanopsis Macsotay, 1967. Other spider burrows can form a simple shaft, which may be ascribed to the ichnogenus Skolithos Haldeman, 1840, or a shaft with the side oblique branches, which is is similar to the ichnogenus Psilonichnus Fürsich, 1981. Many spider burrows show one or more chambers. Their outlet may be closed with a trapdoor or show a chimney sticking above the ground. They may show scratch traces running parallel to the burrow.
    [Show full text]
  • New Records of 43 Spider Species from the Mountain Zebra National Park, South Africa (Arachnida: Araneae)
    New records of 43 spider species from the Mountain Zebra National Park, South Africa (Arachnida: Araneae) A.S. DIPPENAAR-SCHOEMAN Dippenaar-Schoeman, A.S. 2006. New records of 43 spider species from the Mountain Zebra National Park, South Africa (Arachnida: Araneae). Koedoe 49(2): 23–28. Pretoria. ISSN 0075-6458. Forty-three new spider species records have been added to the check list of spiders pub- lished in 1988 on the spiders of the Mountain Zebra National Park. An updated check list with information on the guilds, habitat preferences and web types are provided for the 34 families, 66 genera and 76 species presently known from the park. A total of 3.8 % of the spiders known from South Africa are presently protected in the park. Fourteen of the 34 families representing 35 species (46.1 %) are web builders and twenty-one families represented by 41 species (53.9 %) are wanderers. The Thomisidae are the most diverse family represented by 11 species. This is an inventory project of the South African National Survey of Arachnida (SANSA) for spiders in the Nama Karoo and conserved areas. Key words: Araneae, check list, Mountain Zebra National Park, Nama Karoo, spiders, South African National Survey of Arachnida. A.S. Dippenaar-Schoeman, Agricultural Research Council, Plant Protection Research Institute, Biosystematics Division, Private Bag X134, Queenswood, 0121 Republic of South Africa/ Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002 Republic of South Africa. Introduction and the Soutpansberg Conservancy (Foord et al. 2002). This study forms part of the South African National Survey of Arachnida (SANSA), The Mountain Zebra National Park (MZNP) initiated in 1997 with the main aim to is 24 km west of Cradock in the Eastern Cape create an inventory of the arachnid fauna Province and was proclaimed as a protected of South Africa (Dippenaar-Schoeman & area in 1937.
    [Show full text]