Beobachtungen Der Nova (3. 1901) Persei

Total Page:16

File Type:pdf, Size:1020Kb

Beobachtungen Der Nova (3. 1901) Persei 2 29 3735 230 Sonnenrand Nord- u. Siidpol Helium Sonnenrand Umgebung Mitte beider Linien Jewel1 u. Mohler Runge u. Pasclien I) West Ost Mittel der Flecke Hale 5875.8 I2 5875.810 . 5875.857 5875.824 5875.841 5875,924 5876. '41 5876.209 5876.r88 5876.175 5876.182 5875.815 Die Uebereinstimmung der Wellenlange der Linie D3 und der Protuberanzen, wenn man zunachst von der weniger mit derjenigen der entsprechenden Linie des Heliums ist bekannten Erscheinung des ~flashuabsieht, zu Gunsten der also grade in dem Falle eine vollkommene, in welchem neuen Theorie zu verlassen, wenn auch zuzugeben ist, dass nach der Dispersionstheorie merkliche Unterschiede auftreten die interessanten von Herren Julius und Ebert betrachteten miisst en. Erscheinungen besonders in Gegenwart gluhender Natrium- Nach diesen Darlegungen liegt keine Veranlassung vor, dampfe merkbar werden ktjnnen. die alteren Anschauungen uber die Natur der Chromosphare Potsdam, Kgl. Astrophys. Observatorium, Juni I 90 J. y. Wihing. l) Sitz. d. K. Akad. d. Wiss., Berlin, Juli 1895. Beobachtungen der Nova (3.1901) Persei an der Sternwarte des k. und k. Hydrographischen Amtes zu Pola. Die Helligkeiten der Vergleichsterne wurden der Har- In der Rubrik Beobachter steht vard Photometry entnommen und betragen : B fur den Unterzeichneten Nr. 602 v Persei 4.0 Nr. 566 BD. +-45?7778 5.4 M ftir den k. u. k. Linienschiffsfahnrich Bgon Maychetti Nr. 591 6 Persei 3.2 Nr. 532 1 Persei 4.8 H,> a > Ruaog HXZ Nr. 568 BD. +440734 6.0 Nr. 517 BD. +430674 5.4 MkB B s z Richard MicZauM 1901 Beobachter Grosse 1901 Beobachter Marz 23 H, Mk 3.7 April 17 H 24 Mk 3.8 I8 B, MI H April 2 M 5.0 '9 B, MI H 3 H 5. I 21 H 6 H 5.2 22 H 7 H 5.4 23 H 8 M, H 4.2 24 H 9 M, €3 4.2 26 H 11 HI Mk 5.4, 5.3 28 H 16 H 5.5 Durchweg wurde um 3om M. E. 2. beobachtet. Die Beobachtungen Marz 23 - April 2, April 8- I I geschahen mit freiem Auge, April 3-7 mit einem Handfernrohr, vom 16. April ab mit Binocle. Pola, 1901 Mai 7. Der Vorstand : Ivo Freiherr Don Benko, k. u. k. Linienschiffskapitain. Beobachtungen der Nova (3,1901) Persei. Die Helligkeitsschwankungen der Nova Persei wurden stellt wurden. Als Vergleichssterne dienten bis Mitte Marz von mir bereits An fangs Marz wahrgenommen. Da dieselben E und Y Persei, von da ab, je nach der Helligkeit der Nova, aber nach der von Prof. Seeliger aufgestellten Erklarung uber die Sterne Y, x, 1, 30 und 36 Persei, bei Helligkeiten der die Entstehuag neuer Sterne zunachst durchaus nichp 4uf- Nova unter der 6. Grosse endlich noch die Objecte BD. fallendes boten, schien mir eine besondere Mittheilung iiber +440734 und +420795. Die angenommenen Helligkeiten diese Wahrnehmung nicht angezeigt. Nur ganz kurz habe dieser Vergleichsobjecte sind : ich ihrer um die angegebene Zeit in einer hier erscheinen- E Persei 3m5 5414 den Tageszeitung Erwahnung gethan. Y )) 4.0 Die nachfolgenden Helligkeiten der Nova sind die Er- 1 ;: Pe:sei 5.6 x z 40 BD. +44?734 6.5 gebnisse Schatzungen, die, durchgehends nach der Arge- von 1 z 5.1 ED. +42?795 6.5 lander'schen Methode rnit einem Opernglas von etwa zwei- maliger (hearer) Vergrosserung, an jedem klaren Abend und Der Stern 36 Persei hitte nach dem ersteh Hagen' &war stets II/~bis 2 Stunden nach Sonnenuntergang ange- schen Verzeichniss, bezw. nach der H. P. die Grosse 5.3; IS* 231 3735 232 von Herrn Dr. Villiger und mir wurde jedoch mit aller Bestimmtheit festgestellt, dass diese Angabe um etwn 0.3 Stern- grossen zu klein ist. Da Herr Prof. Seeliger diesen Stern, allerdings bei sehr tiefem Stand am Himmel, einmal heller als 30 Persei schatzte, scheint 36 Persei farbig zu sein. Beobachtete Helligkeiten der Nova 1901 Helligkeit Vergleichstern Bemerkungen Miirz 8 4mo v Persei - 10 3.5 I Persei - 14 3.5 E Persei - - 25 5.5 30 Persei 27 3.9 u Persei - 29 4.7 Y, 1 Persei Mondhell 30 4.3 v, 1 Persei 2 3' 4.5 u,1 Persei Mondhell, leichte Wolken April 2 5.5 30, 1 Persei Mondhell 3 6 30 u. 36 Persei, +42?795 Nicht sicher, Vollmond 7 5.8 30 u. 36 Persei, +42?795 Leichte WBlkchen in der Nahe 8 4.1 v, I, x Persei Ganz klar, sicher I1 5.4 I, 30, 36 Persei Zwischen Wolken, aber sicher '3 4.7 v, 1 Persei Sicher 16 6.0 30, 36 Persei, -1-420795 Sicher I8 4.3 v, 1, x Persei Durch Wolkenliicken, aber ziemlich sicher '9 5.5 1, 30, 36 Persei Ganz klar 20 5.6 I, 30, 36 Persei Leichte Schleierwolken 21 6.2 +42"95 u. +44?734, 36 Pers. Schwaches Mondlicht stort etwas 22 5.7 I, 30 und 36 Persei Vollig klar, Mond hell 23 4.5 Y, x, 1 Persei Leichte Schleierwolken, mondhell 24 5.4 I, 30, 36 Persei > )Y 27 4.6 u, x, 1 Persei Wolkig ; aber sicher; mondhell 29 -<- 6 36 Persei, +44?734 Wolken, mondhell ; nicht sehr sicher Mai 5 6.3 36 Persei, +44?734 Ganz klar, sehr tiefer Stand am Himmel (9h30m Abends) 9 <6 36 Persei, +44?734 Am niirdlichen Horizont einzelne schwache Wolken I2 5.6 30, 36 Persei Ganz klar, gleichwohl sehr schwache Bilder Seit der letzten Beobachtung konnte die Nova trotz mehrfach vorhandener klarer Abende nicht mehr beobachtet werden, weil die die Sternwarte umgebenden Baume den freien Ausblick nach den tiefsten Stellen des Nordhorizontes verhindern. Sternwarte Miinchen, 1901 Mai 25. K. Oertel. Beobachtungen der Nova (3,1901) Persei. Fortsetzung von Nr. 3 7 I 2. 1901 April 29, gh30rn, Mondschein, N schwach; 36 Mai 12, lsh-lsh IO'", N hell => 36 = 32 > 30. > 30 > N - loh 5", N deutlich schwacher als 30, etwa R. 998 und H. 80 wegen Dammerung nicht gesehen. = Heis 80, R. 998 nicht zu sehen wegen Mondschein trotz Mai 13, loh, N > 32. - 14"25~,32 = 36 > N Klarheit, 36 = 32 1. => 30 > H. 80 > > R. 998; die vier ersten nicht vie1 ver- Mai 3, 9h 25m, 32 > 36 > 30 > N R. 998 und Heis schieden. 80 wegen Mondschein nicht gesehen. Mai 14, 9h 40"*), 36 => 32 > N= 30. - 14~30~"~ Mai 4, loh lorn, N wegen Mondschein nicht sichtbar N schwach, kaum heller als R. 998, Reihenfolge 36 > 32 im Handsucher, ebenso R. 998 und Heis 80; 30, 32 und => 30 > H. 80 > > N=> R. 998. 36 schwach. Mai 11, 1qh40m, 36>30=32>N>H.8o>>R.998, Mai 8, loh 5", N hell, Reihenfolge N > 36 > 32 die vier ersten wenig verschieden. > 80 > H. R. 998. Mai I 8, I oh I 5'*, N wenig schwacher als 36. Reihen- Mai 9, 14~30~,N schwach, Reihenfolge 36 => 32 folge 36 > N>> H. 80 > > K. 998. - 14~55*', N wenig > 30 = H. 80 > > N > R. 998, die ersten vier wenig ver- schwacher als 32. Reihenfolge 36 => 32 > N>30> > H. schieden, der letzte fast unsichtbar. 80 >'> R. 998. *') Von hier an steb Cometensucher yon 75 mm Oeffnung. .
Recommended publications
  • 061208A0.Pdf
    NATURE l DECEl\IBEK 28. 1899 J 1 _;. wh. 1m. of Algol 1$ Persei). followed ll\' no loss of accuracy, and thereft•re their puhlicatio:I 1:; . \'enus. Illuminated portion of <lise = o·873· is In :lccordance with th<: decisions of the Con­ l(r. 6h. sorn. :'llinimum nf Algol (8 . ference of Superintendents of Ephemeride;; held at _l'aris in 1(). t7h. 17m. to 17h. som. OccultatiOn of a Cancn 18<)6, I he constants of aberration, precession, and nutatron have (mag. 4'3) by the moon. _ . lreen altered from the commencement of 1901' ; but, for the con­ 20 12h. 46m. to 13h. 46m. Occuliatwn of IL\.C. Yenience of oh<en·ers Hill desirint-: to use the Stnl\·e-l'cter's 4006 (mag. 5 71 by the moon. constants, both been inchulcd in the present tables. 21. 1 1 h. 22m. to 12h. 26m. OccultatH>n of '/ "l'Ot•t:I.AR ,. FOR DECE:l!IIER. · -The issue of \"irnini< (mog. 57) by the moon. l'opu!ar Ash·oiiOIII)' for this month contain>, among much -J? ' ISh 3sm. to I6h. 45•11 . Occuliation cf H . .-\.C. generally interesting matter, two useful :lrticlcs by _Profs. II. C. 4722 mag. 5 ·s). \Yilsun and \V. II. Pickering. The former descnbcs a photo­ 2(}, 1h. Conjunction of Jupiter and the moon graph of the nebula of Andromeda obtained by at Coodsell (Jupiler z ' 3' i'l.). Observatory, the 8-inch Clarke refractor, wrth an exposure I ;h 40n1. of Jupiter'.; Sat. Ill. of twell'e hours given on three nights.
    [Show full text]
  • The Axis Is Nearly Perpendicular to the Orbital Plane ; (2) the Sense Is the Same As That of the Revolution ; (3) the Period Is Longer Than That of the Revolution
    No. 7.] 247 75. An Explanation of the Periodic Variable Stars. By Kiyotsugu HIRAYAMA, M.I.A. Astronomical Observatory, Azabu, Tokyo. (Comm. July 13, 1931.) The binary hypotheses, initially proposed to explain the periodic variable stars, were defective. The pulsation theory seemed more promising ; but even this is disappointing in explaining the varieties and the minor details, of the phenomena. The following explanation ,1) although qualitative, seems satisfactory for those. The hypothesis is based on the capture theory of the stars,2) recently proposed by the writer, and is inconsistent with the fission theory. Cepheid Variables. The Cepheid variable is supposed to be a contact system of a giant star and a dwarf star which is almost dark. The relative orbit is supposed to be nearly circular, in accordance with the general tendency of the binary stars. For the rotation of the primary, the following qualifications are made : (1) the axis is nearly perpendicular to the orbital plane ; (2) the sense is the same as that of the revolution ; (3) the period is longer than that of the revolution. No assumption is made for the rotation of the companion, although the libration is very probable. Taking as a model, the stars of spherical form of the masses 10 and 1 solar units, and the period of revolution, 0.02 year, the mean distance comes out as 0.16 astronomical unit, and the velocitiesrelative to the centre of gravity, as 22.3 and 223.5 km sec-1. As a consequence of the relative motion of the companion, a trail, or an abrasion, so to speak, is left on the surface of the primary, which may be recovered as the time goes on.
    [Show full text]
  • Binocular Universe: You're My Hero! December 2010
    Binocular Universe: You're My Hero! December 2010 Phil Harrington on't you just love a happy ending? I know I do. Picture this. Princess Andromeda, a helpless damsel in distress, chained to a rock as a ferocious D sea monster loomed nearby. Just when all appeared lost, our hero -- Perseus! -- plunges out of the sky, kills the monster, and sweeps up our maiden in his arms. Together, they fly off into the sunset on his winged horse to live happily ever after. Such is the stuff of myths and legends. That story, the legend of Perseus and Andromeda, was recounted in last month's column when we visited some binocular targets within the constellation Cassiopeia. In mythology, Queen Cassiopeia was Andromeda's mother, and the cause for her peril in the first place. Left: Autumn star map from Star Watch by Phil Harrington Above: Finder chart for this month's Binocular Universe. Chart adapted from Touring the Universe through Binoculars Atlas (TUBA), www.philharrington.net/tuba.htm This month, we return to the scene of the rescue, to our hero, Perseus. He stands in our sky to the east of Cassiopeia and Andromeda, should the Queen's bragging get her daughter into hot water again. The constellation's brightest star, Mirfak (Alpha [α] Persei), lies about two-thirds of the way along a line that stretches from Pegasus to the bright star Capella in Auriga. Shining at magnitude +1.8, Mirfak is classified as a class F5 white supergiant. It radiates some 5,000 times the energy of our Sun and has a diameter 62 times larger.
    [Show full text]
  • Keck Spectra of Brown Dwarf Candidates and a Precise
    TABLE 1 Summary of Optical Imaging for Alpha Persei Telescope Area Covered Limiting Magnitude (sq.degrees) (R/I) CWRU Schmidt 3.2 21.5/20.5 MHO 1.2m 1.1 22.0/20.7 KPNO 0.9m 0.5 21.5/20.5 KPNO 4.0m 1.3 22.4/21.0 KPNO 4.0m a (2.5) ≈ 24/≈ 23 aBouvier et al. (1999) TABLE 2 Photometry of Alpha Persei Stars Star α(J2000) δ(J2000) Ic R − Ic K Ic − K AP300 3 17 27.6 49 36 53.0 17.85 2.18 14.62 3.23 AP301 3 18 09.2 49 25 19.0 17.75 2.22 14.14 3.61 AP302 3 19 08.4 48 43 48.5 17.63 2.08 ······ AP303 3 19 10.9 48 42 20.0 16.98 1.88 ······ AP304 3 19 13.2 48 31 55.0 18.83 2.40 ······ AP305 3 19 21.7 49 23 32.0 18.48 2.34 ······ AP306 3 19 41.8 50 30 42.0 18.40 2.34 14.9 3.5 AP307 3 20 20.9 48 01 05.0 17.08 2.01 ······ AP308 3 20 59.7 48 18 37.0 16.71 1.89 ······ AP309 3 22 40.6 48 00 36.0 16.57 1.88 ······ AP275 a 3 23 03.3 48 53 07.0 17.25 2.20 ······ AP310 3 23 04.7 48 16 13.0 17.80 2.33 14.55 3.25 AP311 3 23 08.4 48 04 52.5 17.70 2.12 14.30 3.40 AP312 3 23 14.8 48 11 56.0 18.60 2.41 15.21 3.39 AP313 3 24 08.1 48 48 30.0 17.55 2.13 ······ AP314 3 25 19.6 49 17 58.0 18.20 2.26 15.15 3.05 AP315 3 26 34.5 49 07 46.0 18.20 2.34 14.80 3.40 arXiv:astro-ph/9909207v2 15 Sep 1999 AP316 3 27 01.3 49 14 40.0 17.75 2.18 14.48 3.27 AP317 3 28 06.0 48 45 13.5 17.85 2.29 15.0 2.85 AP318 3 30 42.5 48 21 27.0 17.45 2.16 14.10 3.35 AP319 3 31 03.2 49 02 58.0 16.89 1.95 ······ AP320 3 31 25.3 49 02 52.0 16.79 1.90 ······ AP321 3 32 18.7 49 32 18.0 17.75 2.20 ······ AP322 3 33 08.3 49 37 56.5 17.60 2.14 14.57 3.03 AP323 3 33 20.7 48 45 51.0 17.50 2.13 14.33 3.17 AP324 3 33 48.2 48 52 30.5 18.10 2.36 14.68 3.42 AP325 3 35 47.2 49 17 43.0 17.65 2.30 14.14 3.51 AP326 3 38 55.2 48 57 31.0 18.70 2.40 15.09 3.61 aAP275 is from Prosser (1994).
    [Show full text]
  • Milan Dimitrijevic Avgust.Qxd
    1. M. Platiša, M. Popović, M. Dimitrijević, N. Konjević: 1975, Z. Fur Natur- forsch. 30a, 212 [A 1].* 1. Griem, H. R.: 1975, Stark Broadening, Adv. Atom. Molec. Phys. 11, 331. 2. Platiša, M., Popović, M. V., Konjević, N.: 1975, Stark broadening of O II and O III lines, Astron. Astrophys. 45, 325. 3. Konjević, N., Wiese, W. L.: 1976, Experimental Stark widths and shifts for non-hydrogenic spectral lines of ionized atoms, J. Phys. Chem. Ref. Data 5, 259. 4. Hey, J. D.: 1977, On the Stark broadening of isolated lines of F (II) and Cl (III) by plasmas, JQSRT 18, 649. 5. Hey, J. D.: 1977, Estimates of Stark broadening of some Ar III and Ar IV lines, JQSRT 17, 729. 6. Hey, J. D.: Breger, P.: 1980, Stark broadening of isolated lines emitted by singly - ionized tin, JQSRT 23, 311. 7. Hey, J. D.: Breger, P.: 1981, Stark broadening of isolated ion lines by plas- mas: Application of theory, in Spectral Line Shapes I, ed. B. Wende, W. de Gruyter, 201. 8. Сыркин, М. И.: 1981, Расчеты электронного уширения спектральных линий в теории оптических свойств плазмы, Опт. Спектроск. 51, 778. 9. Wiese, W. L., Konjević, N.: 1982, Regularities and similarities in plasma broadened spectral line widths (Stark widths), JQSRT 28, 185. 10. Konjević, N., Pittman, T. P.: 1986, Stark broadening of spectral lines of ho- mologous, doubly ionized inert gases, JQSRT 35, 473. 11. Konjević, N., Pittman, T. P.: 1987, Stark broadening of spectral lines of ho- mologous, doubly - ionized inert gases, JQSRT 37, 311. 12. Бабин, С.
    [Show full text]
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL, 525:420È433, 1999 November 1 ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. ULTRAVIOLET AND OPTICAL LINE PROFILE VARIATIONS IN THE SPECTRUM OF v PERSEI D. R. GIES,1 E. KAMBE,2 T. S. JOSEPHS,W.G.BAGNUOLO,JR., Y. J. CHOI,D.GUDEHUS,K.M.GUYTON,3 W. I. HARTKOPF,4,5 J. L. HILDEBRAND,A.B.KAYE,6 B. D. MASON,4,5 R. L. RIDDLE,J.W.SOWERS, N. H. TURNER,7 J. W. WILSON, AND Y. XIONG Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303; gies=chara.gsu.edu, kambe=cc.nda.ac.jp, tammy=chara.gsu.edu, bagnuolo=chara.gsu.edu, phyyjcx=panther.gsu.edu, gudehus=chara.gsu.edu, uskmg=emory.edu, hartkopf=chara.gsu.edu, jlh=chara.gsu.edu, kaye=lanl.gov, bdm=draco.usno.navy.mil, riddle=chara.gsu.edu, sowers=chara.gsu.edu, nils=chara.gsu.edu, wilson=chara.gsu.edu, ying=chara.gsu.edu Received 1998 October 27; accepted 1999 June 17 ABSTRACT The rapid variable star, v Per (B0.5 IVÈIII), displays the largest amplitude proÐle Ñuctuations known among the growing number of massive, spectrum-variable stars. Here we present an analysis of a contin- uous 5 day run of IUE UV spectroscopy, and we show for the Ðrst time that the systematic, blue-to-red moving patterns observed in high-quality optical spectra are also present in the UV photospheric lines. We present cross-correlation functions of the individual spectra with that of a narrow-lined standard that produce a high signal-to-noise ratio representation of the blue-to-red moving bump patterns found in individual lines.
    [Show full text]
  • Supernova Star Maps
    Supernova Star Maps Which Stars in the Night Sky Will Go Su pernova? About the Activity Allow visitors to experience finding stars in the night sky that will eventually go supernova. Topics Covered Observation of stars that will one day go supernova Materials Needed • Copies of this month's Star Map for your visitors- print the Supernova Information Sheet on the back. • (Optional) Telescopes A S A Participants N t i d Activities are appropriate for families Cre with children over the age of 9, the general public, and school groups ages 9 and up. Any number of visitors may participate. Location and Timing This activity is perfect for a star party outdoors and can take a few minutes, up to 20 minutes, depending on the Included in This Packet Page length of the discussion about the Detailed Activity Description 2 questions on the Supernova Helpful Hints 5 Information Sheet. Discussion can start Supernova Information Sheet 6 while it is still light. Star Maps handouts 7 Background Information There is an Excel spreadsheet on the Supernova Star Maps Resource Page that lists all these stars with all their particulars. Search for Supernova Star Maps here: http://nightsky.jpl.nasa.gov/download-search.cfm © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Star Maps: Stars likely to go Supernova! Leader’s Role Participants’ Role (Anticipated) Materials: Star Map with Supernova Information sheet on back Objective: Allow visitors to experience finding stars in the night sky that will eventually go supernova.
    [Show full text]
  • On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach
    Atoms 2014, 2, 357-377; doi:10.3390/atoms2030357 OPEN ACCESS atoms ISSN 2218-2004 www.mdpi.com/journal/atoms Article On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach Milan S. Dimitrijević 1,2,* and Sylvie Sahal-Bréchot 2 1 Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia 2 Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique, Observatoire de Paris, UMR CNRS 8112, UPMC, 5 Place Jules Janssen, 92195 Meudon Cedex, France; E-Mail: [email protected] (S.S.-B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +381-64-297-8021; Fax: +381-11-2419-553. Received: 5 May 2014; in revised form: 20 June 2014 / Accepted: 16 July 2014 / Published: 7 August 2014 Abstract: The significance of Stark broadening data for problems in astrophysics, physics, as well as for technological plasmas is discussed and applications of Stark broadening parameters calculated using a semiclassical perturbation method are analyzed. Keywords: Stark broadening; isolated lines; impact approximation 1. Introduction Stark broadening parameters of neutral atom and ion lines are of interest for a number of problems in astrophysical, laboratory, laser produced, fusion or technological plasma investigations. Especially the development of space astronomy has enabled the collection of a huge amount of spectroscopic data of all kinds of celestial objects within various spectral ranges. Consequently, the atomic data for trace elements, which had not been
    [Show full text]
  • Algol As Horus in the Cairo Calendar: the Possible Means and the Motives of the Observations
    Open Astron. 2018; 27: 232–263 Research Article Sebastian Porceddu*, Lauri Jetsu, Tapio Markkanen, Joonas Lyytinen, Perttu Kajatkari, Jyri Lehtinen, and Jaana Toivari-Viitala Algol as Horus in the Cairo Calendar: the possible means and the motives of the observations https://doi.org/10.1515/astro-2018-0033 Received Feb 15, 2018; accepted May 04, 2018 Abstract: An ancient Egyptian Calendar of Lucky and Unlucky Days, the Cairo Calendar (CC), assigns luck with the period of 2.850 days. Previous astronomical, astrophysical and statistical analyses of CC support the idea that this was the period of the eclipsing binary Algol three millennia ago. However, next to nothing is known about who recorded Algol’s period into CC and especially how. Here, we show that the ancient Egyptian scribes had the possible means and the motives for such astronomical observations. Their principles of describing celestial phenomena as activity of gods reveal why Algol received the title of Horus Keywords: Algol, Horus, ancient Egyptian Astronomy, variable stars, the Cairo Calendar, hemerologies 1 Introduction ies (Porceddu et al., 2008; Jetsu et al., 2013; Jetsu and Porceddu, 2015), we use only the best preserved continuous calendar which is found on pages recto III-XXX and verso The ancient Egyptian texts known as the Calendars of I-IX of papyrus Cairo 86637.The other texts and fragments Lucky and Unlucky Days, or hemerologies, are literary contained in the same papyrus are ignored from this analy- works that assign prognoses to each day of the Egyp- sis because the connection of these fragments to the main tian year (Wells, 2001a, p117-118), (Leitz, 1994, p1-2) (Bacs, calendar is not apparent and we do not know what year 1990, p41-45) (Troy, 1989, p127-147) and (Helck et al., 1975– they describe, so combining any data points from these 1992, p156).
    [Show full text]
  • Search for Forced Oscillations in Binaries I
    Astron. Astrophys. 319, 867–880 (1997) ASTRONOMY AND ASTROPHYSICS Search for forced oscillations in binaries I. The eclipsing and spectroscopic binary V 436 Persei 1 Persei?;?? ≡ P. Harmanec1, P. Hadrava1,S.Yang2, D. Holmgren1, P. North3, P. Koubsky´1,J.Kubat´ 1, and E. Poretti4 1 Astronomicky´ ustav´ Akademie vedˇ Ceskˇ e´ republiky, 251 65 Ondrejov,ˇ Czech Republic (hec(had, david, koubsky, kubat)@sunstel.asu.cas.cz) 2 Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, B.C., V8W 3P6, Canada ([email protected]) 3 Institut d’Astronomie de l’Universite´ de Lausanne, CH-1290 Chavannes-des-Bois, Switzerland ([email protected]) 4 Osservatorio Astronomico, Via E. Bianchi 46, I-22055 Merate (CO), Italy ([email protected]) Received 20 May 1996 / Accepted 21 August 1996 Abstract. Outline of a project aimed at testing the presence stable electronic spectral detectors in the seventies brought a of rapid line-profile variations in the atmospheres of hot com- real revolution to the subject. Smith (1977, 1978) discovered ponents of close binaries is presented and its first results are variable line asymmetries for several sharp-lined OB stars while described. An analysis of new electronic spectra of the eclips- Walker, Yang and Fahlman (1979) were the first to recognize ing binary V436 Per from three observatories and of photoelec- another type of variation, now known as ‘travelling sub-features’ tric observations, obtained earlier by several authors, leads to a or ‘moving bumps’: small profile disturbances which gradually unique determination of all basic physical elements of this in- move (most often from blue to red) across the line profiles.
    [Show full text]
  • 1903Aj 23 . . . 22K 22 the Asteojsomic Al
    22 THE ASTEOJSOMIC AL JOUENAL. Nos- 531-532 22K . Taking into account the smallness of the weights in- concerned. Through the use of these tables the positions . volved, the individual differences which make up the and motions of many stars not included in the present 23 groups in the preceding table agree^very well. catalogue can be brought into systematic harmony with it, and apparently without materially less accuracy for the in- dividual stars than could be reached by special compu- Tables of Systematic Correction for N2 and A. tations for these stars in conformity with the system of B. 1903AJ The results of the foregoing comparisons. have been This is especially true of the star-places computed by utilized to form tables of systematic corrections for ISr2, An, Dr. Auwers in the catalogues, Ai and As. As will be seen Ai and As. In right-ascension no distinction is necessary by reference to the catalogue the positions and motions of between the various catalogues published by Dr. Auwers, south polar stars taken from N2 agree better with the beginning with the Fundamental-G at alo g ; but in decli- results of this investigation than do those taken from As, nation the distinction between the northern, intermediate, which, in turn, are quoted from the Cape Catalogue for and southern catalogues must be preserved, so far as is 1890. SYSTEMATIC COBEECTIOEB : CEDEE OF DECLINATIONS. Eight-Ascensions ; Cokrections, ¿las and 100z//xtf. Declinations; Corrections, Æs and IOOzZ/x^. B — ISa B —A B —N2 B —An B —Ai âas 100 â[is âas 100 âgô âSs 100
    [Show full text]
  • Cluster Analysis and Unsupervised Machine Learning Applied to Find Open Star Clusters in the Milky Way
    Cluster analysis and unsupervised machine learning applied to find open star clusters in the Milky Way This dissertation is submitted for the degree of physicist By Andrés Felipe Amar Lesmes Faculty of Science Physics Department Bogotá D.C. Colombia November 2020 Cluster analysis and unsupervised machine learning applied to find open star clusters in the Milky Way This dissertation is submitted for the degree of physicist By Andrés Felipe Amar Lesmes Universidad de los Andes Faculty of Science Physics Department Advisor Alejandro García Ph. D. Bogotá D.C. Colombia 2020 This project is dedicated to my family who have been a big support along this track, To my dearest Luna... Acknowledgements I would like to express thanks to Dr. Alejandro García for being a big support and good guidance along this project, thanks for the patience and for always pushing me forward in this task. I would like to express also my genuine thanks to my Mother, Grandmother, Aunt and Sister for encourage me. All my friends and colleagues, who have helped me during the degree in order to study and understand many topics, specially thanks to Juanpi, Alejo2, Roosvelt, Coco, Jorge, Ávila, Gus and Daniel Calderón. To my school teacher Hermes Ortíz who gave me a wonderfull introduction of the beauty of physics. And finally my grandad who always accompanied me in difficult moments. Abstract The main intention of this project is to characterize open clusters of the Milky Way via unsupervised machine learning with the clustering algorithm density-based spatial clustering of applications with noise (DBSCAN), the data used was retrieved from Gaia DR2 in favor of having standard data for further analysis based on literature and comparison also with it.
    [Show full text]