materials Article Dimensional Analysis of Workpieces Machined Using Prototype Machine Tool Integrating 3D Scanning, Milling and Shaped Grinding Piotr Jaskólski 1, Krzysztof Nadolny 1,* , Krzysztof Kukiełka 1 , Wojciech Kapłonek 1 , Danil Yurievich Pimenov 2 and Shubham Sharma 3 1 Department of Production Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland;
[email protected] (P.J.);
[email protected] (K.K.);
[email protected] (W.K.) 2 Department of Automated Mechanical Engineering, South Ural State University, Lenin Prosp. 76, 454080 Chelyabinsk, Russia;
[email protected] 3 Department of Mechanical Engineering, IK Gujral Punjab Technical University, Jalandhar-Kapurthala Road, Kapurthala, Punjab 144603, India;
[email protected] * Correspondence:
[email protected]; Tel.: +48-943-478-412 Received: 11 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: In the literature, there are a small number of publications regarding the construction and application of machine tools that integrate several machining operations. Additionally, solutions that allow for such integration for complex operations, such as the machining of shape surfaces with complex contours, are relatively rare. The authors of this article carried out dimensional analysis of workpieces machined using a prototype Computerized Numerical Control (CNC) machine tool that integrates the possibilities of 3D scanning, milling operations in three axes, and grinding operations using abrasive discs. The general description of this machine tool with developed methodology and the most interesting results obtained during the experimental studies are given. For a comparative analysis of the influence of the machining method on the geometric accuracy of the test pieces, an Analysis of Variance (ANOVA) was carried out.