Effectiveness of Solids Removal from Liquid Swine and Dairy Manures Using Biomaterial Filtration Mark Vincent Garrison Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Effectiveness of Solids Removal from Liquid Swine and Dairy Manures Using Biomaterial Filtration Mark Vincent Garrison Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2005 Effectiveness of solids removal from liquid swine and dairy manures using biomaterial filtration Mark Vincent Garrison Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Bioresource and Agricultural Engineering Commons, and the Environmental Engineering Commons Recommended Citation Garrison, Mark Vincent, "Effectiveness of solids removal from liquid swine and dairy manures using biomaterial filtration " (2005). Retrospective Theses and Dissertations. 1237. https://lib.dr.iastate.edu/rtd/1237 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Effectiveness of solids removal from liquid swine and dairy manures using biomaterial filtration by Mark Vincent Garrison A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Agricultural Engineering Program of Study Committee: Thomas L. Richard, Major Professor Jeffery Lorimor Carl Bern Shih-Wu Sung Theodore Bailey Iowa State University Ames, Iowa 2005 UMI Number: 3172215 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 3172215 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 ii Graduate College Iowa State University This is to certify that the doctoral dissertation of Mark Vincent Garrison has met the dissertation requirements of Iowa State University Signature was redacted for privacy. Major Professor Signature was redacted for privacy. For the Major Program iii TABLE OF CONTENTS iv LIST OF FIGURES vii LIST OF TABLES ABSTRACT viii CHAPTER 1. GENERAL INTRODUCTION 1 Introduction 1 Thesis Organization 4 Literature Review 5 References 14 CHAPTER 2. EFFECTIVENESS OF SOLIDS REMOVAL FROM 20 LIQUID SWINE AND DAIRY MANURES USING BIOMATERIAL FILTRATION Abstract 20 Introduction 20 Materials and Methods 22 Results and Discussion 25 Conclusions 34 References 35 CHAPTER 3. GENERAL CONCLUSIONS 61 General Discussion 61 Future Research Recommendations 63 APPENDIX A. EXPERIMENTAL DATA 65 iv LIST OF FIGURES Chapter 1 Figure 1. Dry matter contents of influent dairy manure solids and total 17 solids removed for different types of separators Figure 2. Dry matter contents of influent swine manure solids and total 18 solids removed for different types of separators Chapter 2 Figure 3. Side (top) and top (bottom) views of the filter with filter material 37 installed Figure 4. Filter material samples com stover (top) and wood shavings 38 (bottom) Figure 5. Particle size distribution graph for the com stover and wood 39 shavings filter material Figure 6. % TS mass removal efficiency per i* volume of 0.5% influent 40 TS dairy manure over three com stover filter densities Figure 7. Filtration duration (sec) per i* volume of 0.5% influent TS dairy 40 manure over three com stover filter densities Figure 8. % TS mass removal efficiency per i^ volume of 2.75% influent 41 TS dairy manure over three com stover filter densities Figure 9. Filtration duration (sec) per i* volume of 2.75% influent TS dairy 41 manure over three com stover filter densities Figure 10. % TS mass removal efficiency per i* volume of 5.0% influent 42 TS dairy manure over three com stover filter densities Figure 11. Filtration duration (sec) per i* volume of 5.0% influent TS dairy 42 manure over three com stover filter densities Figure 12. % TS mass removal efficiency per i* volume of 0.5% influent 43 TS dairy manure over three wood shaving filter densities Figure 13. Filtration duration (sec) per i* volume of 0.5% influent TS dairy 43 manure over three wood shaving filter densities. Figure 14. % TS mass removal efficiency per i* volume of 2.75% influent 44 TS dairy manure over three wood shaving filter densities. V Figure 15. Filtration duration (sec) per i* volume of 2.75% influent TS 44 dairy manure over three wood shaving filter densities Figure 16. % TS mass removal efficiency per i* volume of 5.0% influent 45 TS dairy manure over three wood shaving filter densities Figure 17. Filtration duration (sec) per P volume of 5.0% influent TS dairy 45 manure over three wood shaving filter densities Figure 18. % TS mass removal efficiency per i* volume of 0.5% influent 46 TS swine manure over three com stover filter densities Figure 19. Filtration duration (sec) per i* volume of 0.5% influent TS 46 swine manure over three com stover filter densities Figure 20. % TS mass removal efficiency per i^ volume of 2.75% influent 47 TS swine manure over three com stover filter densities Figure 21. Filtration duration (sec) per i* volume of 2.75% influent TS 47 swine manure over three com stover filter densities Figure 22. % TS mass removal efficiency per i* volume of 5.0% influent 48 TS swine manure over three com stover filter densities Figure 23. Filtration duration (sec) per i* volume of 2.75% influent TS 48 swine manure over three com stover filter densities Figure 24. % TS mass removal efficiency per i^ volume of 0.5% influent 49 TS swine manure over three wood shaving filter densities Figure 25. Filtration duration (sec) per i* volume of 0.5% influent TS 49 swine manure over three wood shaving filter densities Figure 26. % TS mass removal efficiency per i^ volume of 2.75% influent 50 TS swine manure over three wood shaving filter densities Figure 27. Filtration duration (sec) per i* volume of 2.75% influent TS 50 swine manure over three wood shaving filter densities Figure 28. % TS mass removal efficiency per i* volume of 5.0% influent 51 TS swine manure over three wood shaving filter densities Figure 29. Filtration duration (sec) per i* volume of 5.0% influent TS 51 swine manure over three wood shaving filter densities vi Figure 30. Total solids removal means for manure type versus initial total 52 solids Figure 31. Total solids removal means for manure type versus filter 52 material density Figure 32. Total solids removal means for % initial total solids versus filter 53 material density. Figure 33. Volume of manure filtered means for manure type versus % 53 initial total solids Figure 34. Volume of manure filtered means for filter material density 54 versus % initial total solids vii LIST OF TABLES Chapter 1 Table 1. Summary of previous studies using organic and related materials 19 for filters Chapter 2 Table 2. Initial measured physical properties of the com stover and wood 55 shavings Table 3. Estimated porosities for the three levels of compaction 55 Table 4. Summary of biomaterial filter performance based on manure 56 mass Table 5. Summary of biomaterial filter performance based on manure 57 volume Table 6. Average and standard deviations for manure volumes applied to 58 filters Table 7. ANOVA table for the Total Solids removal efficiency (%) 59 Table 8. Total solids removal means for manure type versus influent total 59 solids Table 9. Total solids removal means for manure type versus filter material 59 Table 10. Total solids removal means for manure type versus filter material 59 density Table 11. Total solids removal means for % initial total solids versus filter 59 material density 60 Table 12. ANOVA table for the filtrate volume Table 13. Total filtrate volume means for filter material type versus influent 60 total solids mass % Table 14. Total filtrate volume means of % initial total solids versus filter 60 material density Appendix Table 15. Experimental data 65 viii ABSTRACT Recently, the livestock industry in the United States has been under scrutiny of environmental policymakers and the general public in regards to the industry's impact on the environment. This has forced the livestock industry to be more conscious in the handling, treatment, and disposal of manures produced by confinement animals. The management of animal waste typically involves several steps, but due to low production profit margins and the demand for technological simplicity, animal manures tend to have less treatment than human wastes. Liquid- solid separation using biomaterials, like com stover, offers a possible cheap and technologically simple alternative for waste processing, in some cases. Separation allows for the recovery of one or both components (liquid or solid fraction) as a useful by-product or to enhance the overall waste treatment process. The primary objective of this investigation was to examine the effect of biomaterial filtration on dairy and swine manure using two readily available biomaterials (com stover and wood shavings). The effects of filter density and influent manure total solids (TS) mass were also investigated. Filter performance primarily depended on manure type and to lesser extent on influent TS concentration and filter media density. TS mass removal ranged from 53 to 80% and from 35 to 56% for dairy and swine manures, respectively. Biomaterials, like com stover, offer some promise as filter materials for liquid-solid separation of animal manures. 1 CHAPTER 1. GENERAL INTRODUCTION Introduction Recently, the livestock industry in the United States has been under the focus of environmental regulators and the public with respect to the industry's impact on the environment.
Recommended publications
  • A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds
    polymers Review A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds M. Sai Bhargava Reddy 1 , Deepalekshmi Ponnamma 2 , Rajan Choudhary 3,4,5 and Kishor Kumar Sadasivuni 2,* 1 Center for Nanoscience and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad 500085, India; [email protected] 2 Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; [email protected] 3 Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia; [email protected] 4 Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia 5 Center for Composite Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia * Correspondence: [email protected] Abstract: Tissue engineering (TE) and regenerative medicine integrate information and technology from various fields to restore/replace tissues and damaged organs for medical treatments. To achieve this, scaffolds act as delivery vectors or as cellular systems for drugs and cells; thereby, cellular material is able to colonize host cells sufficiently to meet up the requirements of regeneration and repair. This process is multi-stage and requires the development of various components to create the desired neo-tissue or organ. In several current TE strategies, biomaterials are essential compo- nents. While several polymers are established for their use as biomaterials, careful consideration of the cellular environment and interactions needed is required in selecting a polymer for a given Citation: Reddy, M.S.B.; Ponnamma, application.
    [Show full text]
  • Overview of Biomaterials and Their Use in Medical Devices
    © 2003 ASM International. All Rights Reserved. www.asminternational.org Handbook of Materials for Medical Devices (#06974G) CHAPTER 1 Overview of Biomaterials and Their Use in Medical Devices A BIOMATERIAL, as defined in this hand- shapes, have relatively low cost, and be readily book, is any synthetic material that is used to available. replace or restore function to a body tissue and Figure 1 lists the various material require- is continuously or intermittently in contact with ments that must be met for successful total joint body fluids (Ref 1). This definition is somewhat replacement. The ideal material or material restrictive, because it excludes materials used combination should exhibit the following prop- for devices such as surgical or dental instru- erties: ments. Although these instruments are exposed A biocompatible chemical composition to to body fluids, they do not replace or augment • avoid adverse tissue reactions the function of human tissue. It should be noted, Excellent resistance to degradation (e.g., cor- however, that materials for surgical instru- • rosion resistance for metals or resistance to ments, particularly stainless steels, are reviewed biological degradation in polymers) briefly in Chapter 3, “Metallic Materials,” in Acceptable strength to sustain cyclic loading this handbook. Similarly, stainless steels and • endured by the joint shape memory alloys used for dental/endodon- A low modulus to minimize bone resorption tic instruments are discussed in Chapter 10, • High wear resistance to minimize wear- “Biomaterials for Dental Applications.” • debris generation Also excluded from the aforementioned defi- nition are materials that are used for external prostheses, such as artificial limbs or devices Uses for Biomaterials (Ref 3) such as hearing aids.
    [Show full text]
  • When Does a Material Become a Biomaterial?
    When does a material become a biomaterial? Prof. Dr. Ir. Jan Van Humbeeck MTM-K.U.Leuven 1 When it is allowed making contact with human tissue 2 The goal of using biomaterials: Assisting in • Regenerating • Repairing • Supporting • Replacing defect tissues and esthetic parts. 3 Origin of defects in the body • Life quality: – congenital defects – development defects – diseases – accidents – aesthetic reasons • Tissue degeneration due to aging: – Osteoporosis – Hart failure – Wear of joints 4 A problem of aging Czech expression: If you’re over 60 and wake up one morning and nothing hurts, then you’re probably dead. 5 What is a biomaterial? • A biomaterial is a nonviable material used in a (medical) device, intended to interact with biological systems (biofunctionality). (Williams, 1987) • A biomaterial is a material intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body. • A biomaterial is a material that should perform an intended function over a definite amount of time in a specific biological environment, as good as possible. • Biomaterials are inorganic or organic materials that are biocompatible and can be implanted in the human body to replace or repair failing tissue. 6 History of biomaterials • 1° generation-materials: based on replacing tissue or replacing a function with as low as possible interaction with the surrounding tissue. Those materials were found in the classic industrial markets. Those materials were selected because of their corrosion resistance or inertness when in contact with a tissue. • metals: SS, Ti, Co-Cr • polymers: UHMWPE, PMMA, PMDS • ceramics: Al2O3 7 Did Georg Washingthon A false toe made of out of wood and leather had a wooden set of teeth? was found on a 3,000-year-old mummified body of an Egyptian noblewoman Cripple with supporting pole.
    [Show full text]
  • Biomaterial Scaffolds in Pediatric Tissue Engineering
    0031-3998/08/6305-0497 Vol. 63, No. 5, 2008 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2008 International Pediatric Research Foundation, Inc. Biomaterial Scaffolds in Pediatric Tissue Engineering MINAL PATEL AND JOHN P. FISHER Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742 ABSTRACT: This article reviews recent developments and major immune system is not completely developed. However, pedi- issues in the use and design of biomaterials for use as scaffolds in atric patients have exhibited a higher regenerative capacity com- pediatric tissue engineering. A brief history of tissue engineering and pared with adults because younger cells have undergone less the limitations of current tissue-engineering research with respect to stress and age damage. This review studies novel biomaterials as pediatric patients have been introduced. An overview of the charac- scaffolds and pediatric tissue-engineering applications. teristics of an ideal tissue-engineering scaffold for pediatric applica- tions has been presented, including a description of the different types of scaffolds. Applications of scaffolds materials have been high- CHARACTERISTICS OF AN IDEAL SCAFFOLD lighted in the fields of drug delivery, bone, cardiovascular, and skin tissue engineering with respect to the pediatric population. This Before developing a scaffold for any tissue-engineering review highlights biomaterials as scaffolds as an alternative treatment application, the material and biologic properties have to be method for pediatric surgeries due to the ability to create a functional evaluated. Initially, depending upon the application, mechan- cell-scaffold environment. (Pediatr Res 63: 497–501, 2008) ical properties should be studied keeping in mind the sur- rounding environment of the scaffold once placed in an in vivo he field of tissue engineering involves replacement of system.
    [Show full text]
  • Mechanical Properties of Biomaterials
    Mechanical Properties of Biomaterials Academic Resource Center Determining Biomaterial Mechanical Properties • Tensile and Shear properties • Bending properties • Time dependent properties Tensile and Shear properties • Types of forces that can be applied to material: a) Tensile b) Compressive c) Shear d) Torsion Tensile Testing • Force applied as tensile, compressive, or shear. • Parameters measured: Engineering stress (σ) and Engineering strain (ԑ). • σ = F/A0 : Force applied perpendicular to the cross section of sample • ԑ = (li-l0)/l0: l0 is the length of sample before loading, li is the length during testing. Compression Testing • Performed mainly for biomaterials subjected to compressive forces during operation. E.g. orthopedic implants. • Stress and strain equations same as for tensile testing except force is taken negative and l0 larger than li. • Negative stress and strain obtained. Shear Testing • Forces parallel to top and bottom faces • Shear stress (τ) = F/A0 • Shear strain (γ)= tanθ ; θ is the deformation angle. • In some cases, torsion forces may be applied to sample instead of pure shear. Elastic Deformation • Material 1: Ceramics • Stress proportional to strain. • Governed by Hooke’s law: σ = ԑE; τ=Gγ • E :Young’s modulus G: Shear modulus - measure of material stiffness. • Fracture after applying small values of strain: ceramics are brittle in nature. Elastic and Plastic deformation. • Material 2: Metal • Stress proportional to strain with small strain; elastic deformation. • At high strain, stress increases very slowly with increased strain followed by fracture: Plastic deformation. Elastic and Plastic deformation. • Material 3: Plastic deformation polymer • Stress proportional to strain with small strain; elastic deformation. • At high strain, stress nearly independent of strain, shows slight increase: Plastic deformation.
    [Show full text]
  • Silk-Based Biomaterials for Tissue Engineering
    C H A P T E R 1 Silk-based Biomaterials for Tissue Engineering V. Kearns, A.C. MacIntosh, A. Crawford and P.V. Hatton* Summary ilks are fibrous proteins, which are spun by a variety of species including silkworms and spiders. Silks have common structural components and have a hierarchical structure. Silkworm silk must be S degummed for biomedical applications in order to remove the immunogenic sericin coating. It may subsequently be processed into a variety of forms, often via the formation of a fibroin solution, including films, fibres and sponges, and used in combination with other materials such as gelatine and hydroxyapatite. Spider silks do not have a sericin coating and may be used in natural fibre form or processed via formation of a spidroin solution. Both silkworm and spider silks have been reported to support attachment and proliferation of a variety of cell types. Silks have subsequently been investigated for use in tissue engineering. This chapter provides a general overview of silk biomaterials, discussing their processing, biocompatibility and degradation behaviour and paying particular attention to their applications in tissue engineering. KEYWORDS: Silk; Fibroin; Spidroin; Tissue engineering. *Correspondence to: Professor Paul V Hatton, Centre for Biomaterials & Tissue Engineering, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, S10 2TA, UK. Email: [email protected] Tel: +44 (114) 271 7938 Fax: +44 (114) 279 7050. Topics in Tissue Engineering, Vol. 4. Eds. N Ashammakhi, R Reis, & F Chiellini © 2008. Kearns et al. Silk Biomaterials 1. INTRODUCTION Silks are fibrous proteins, which are spun into fibres by a variety of insects and spiders [1].
    [Show full text]
  • Physical Property Testing Equipment for Biomaterials and Medical Applications C220-E010
    Physical Property Testing Equipment for Biomaterials and Medical Applications C220-E010 Contributing to the Development and Reliability of Advanced Medical Treatments Physical Property Testing Equipment for Biomaterials and Medical Applications Company names, product/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation or its affiliates, whether or not they are used with trademark symbol “TM” or “®”. Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services. Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own. For Research Use Only. Not for use in diagnostic procedures. The contents of this publication are provided to you “as is” without warranty of any kind, and are subject to change without notice. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. www.shimadzu.com/an/ © Shimadzu Corporation, 2013 Printed in Japan 3655-10225-30AIT Shimadzu Material Testing Machines Support the Development of Advanced Medical Treatments Although the world's population was just two billion in 1927, it reached seven billion in 2011 and is expected to hit ten billion by the end of the 21st century. Advanced countries such as Japan are becoming aging societies. Autograph AG Series EZTest Series Autograph AGS Series Autograph AG Series Such dramatic growth in population and life-expectancy is said to result from more sophisticated medicine, Precision Universal Tester, Table-Top Type Compact Table-Top Universal Tester Precision Universal Tester, Table-Top Type Precision Universal Tester, Floor Type which, in turn, will require more advanced medical technology.
    [Show full text]
  • Bioceramic Materials
    Bioceramic Materials María González Esguevillas MacMillan Group Meeting April 18, 2019 Introduction to Bioceramics Bioceramic: Any ceramic, glass, or glass-ceramic used as a biomaterial, which is a material intended to interface with biological systems to evaluate, treat, augment, or replace any tissue, organ, or function of the body. bio- -ceramic greek [keramikos] greek [bios] — relating to products made from clay, — life — pottery and brick — Baino, F. et al Frontiers in Bioeng. and Biotech. 2015, 3, 202 Yeoh, F-Y. et al J. Biomaterials App. 2011, 27, 345. Introduction to Bioceramics Bioceramic: A large class of specially designed ceramics for the repair and reconstruction of diseased or damaged parts of the body BONES TISSUES Why are important? What is the difference between these treatments and others? Baino, F. et al Frontiers in Bioeng. and Biotech. 2015, 3, 202 Yeoh, F-Y. et al J. Biomaterials App. 2011, 27, 345. Introduction to Bioceramics WhyBioceramic: are important? BONESA large class of specially designed ceramics for the repair and reconstruction of diseased or damagedTISSUES What is the difference partsbetween of the these body treatments and others? DISEASE TREATMENTS Causes: virus, bacteria, autoimmune, cancer, genetic diseases Target identification Treatment Baino, F. et al Frontiers in Bioeng. and Biotech. 2015, 3, 202 Yeoh, F-Y. et al J. Biomaterials App. 2011, 27, 345. Introduction to Bioceramics WhyBioceramic: are important? BONESA large class of specially designed ceramics for the repair and reconstruction of diseased or damagedTISSUES What is the difference partsbetween of the these body treatments and others? Composition Diseases 25 % water Fractures 30 % Organic mineral: Osteoporosis cells (osteoblast, osteoclast, osteocytes, Osteomyelitis connective tissue) and collagen Osteosarcoma (cancer) 45 % Inorganic mineral calcium phosphates (HA) and carbonates Hyp dysplasia What was the solution for these diseases? capable to regenerate tissues Baino, F.
    [Show full text]
  • GORE ® ENFORM Biomaterial
    OPTIMAL HANDLING AND TISSUE RESPONSE GORE® ENFORM Biomaterial Comprised of synthetic bioabsorbable polyglycolic acid (PGA) and trimethylene carbonate (TMC) copolymer. Completely absorbed, leaving no material behind in the body. Uniquely flexible material Textured surface to improve conformability Material thickness of 2.2 mm 20X Fluid 10–100 µm transfer pore size DESIGNED for optimal Angiogenic1,2 tissue infiltration and fluid transfer Cellular infiltration Small to medium caliber blood vessels throughout Collagen deposition Mature, organized collagen Optimized conformability Unprecedented flexibility of a synthetic soft tissue reinforcement. Conforms to match anatomy and better accommodate the surgeon’s choice of technique. GORE® ENFORM Preperitoneal Biomaterial Feel the difference Comments from surgeons after handling the product in simulated use conditions: Very soft, very friendly handling.” “ Very pliable, don’t think the patient would feel the device at all.” “ Handles easily, pliable, easy to suture wet or dry.” “ Very cloth-like feel, almost feels like cotton fibers. “ Feels easy to handle both wet and dry.” Material is pretty solid, I like it.” “ Feels soft, sutures easy but still solid, very confident.” “ The GORE® ENFORM Biomaterial is designed to reinforce soft tissue during the phases of wound healing by filling soft-tissue deficits. Typical procedures include: • Abdominal wall reconstruction • Hernia repair • Muscle flap (i.e. TRAM, DIEP) procedures 3D matrix ENGINEERED to work with the body during the critical healing phase Tissue healing • Optimal handling • Rapid, high quality tissue promotion • Full and predictable absorption 30 90 180 days days days Device implant site Device Device Muscle 500 µm 500 µm 500 µm Muscle Infiltration Integration Regeneration to enable vascularization to support healthy tissue to leave only healthy tissue formation Uniform, mature collagen replaces the bioabsorbable matrix*, 2 * Results may not correlate to clinical performance in humans.
    [Show full text]
  • Biomaterials Science: a Multidisciplinary Endeavor Buddy D
    I NTRODUCTION Biomaterials Science: A Multidisciplinary Endeavor Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack Lemons or implants. Although this is a text on materials, it will quickly BIOMATERIALS AND BIOMATERIALS SCIENCE become apparent that the subject cannot be explored without also considering biomedical devices and the biological response Biomaterials Science: An Introduction to Materials in to them. Indeed, both the effect of the materials/device on the Medicine addresses the properties and applications of materials recipient and that of the host tissues on the device can lead to (synthetic and natural) that are used in contact with biologi- device failure. Furthermore, a biomaterial must always be con- cal systems. These materials are commonly called biomaterials. sidered in the context of its final fabricated, sterilized form. For Biomaterials, an exciting field with steady, strong growth example, when a polyurethane elastomer is cast from a solvent over its approximately half century of existence, encompasses onto a mold to form the pump bladder of a heart assist device, it aspects of medicine, biology, chemistry, and materials science. can elicit different blood reactions than when injection molding It sits on a foundation of engineering principles. There is also a is used to form the same device. A hemodialysis system serv- compelling human side to the therapeutic and diagnostic appli- ing as an artificial kidney requires materials that must function cation of biomaterials. This textbook aims to (1) introduce in contact with a patient’s blood and also exhibit appropriate these diverse elements, particularly focusing on their interrela- membrane permeability and mass transport characteristics.
    [Show full text]
  • Polyetheretherketone As a Biomaterial for Spinal Applications Jeffrey M
    Marquette University e-Publications@Marquette Biomedical Engineering Faculty Research and Biomedical Engineering, Department of Publications 1-1-2006 Polyetheretherketone as a Biomaterial for Spinal Applications Jeffrey M. Toth Marquette University, [email protected] Mei Wang Medical College of Wisconsin Bradley T. Estes Duke University Jeffrey L. Scifert Medical College of Wisconsin Howard B. Seim Colorado State University - Fort Collins See next page for additional authors NOTICE: this is the author’s version of a work that was accepted for publication in Biomaterials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biomaterials, Vol. 27, No. 3 (January 2006): 324-334. DOI. © 2006 Elsevier. Used with permission. Jeffrey M. Toth was affiliated with Medical College of Wisconsin at the time of publication. Authors Jeffrey M. Toth, Mei Wang, Bradley T. Estes, Jeffrey L. Scifert, Howard B. Seim, and A. Simon Turner This article is available at e-Publications@Marquette: https://epublications.marquette.edu/bioengin_fac/574 Marquette University e-Publications@Marquette Biomedical Engineering Faculty Research and Publications/College of Engineering This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation below. Biomaterials, Vol. 27, No. 3 (January 2006): 324-334. DOI. This article is © Elsevier and permission has been granted for this version to appear in e-Publications@Marquette.
    [Show full text]
  • Bioceramics for Hard Tissue Engineering Applications: a Review
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 5 (2018) pp. 2744-2752 © Research India Publications. http://www.ripublication.com Bioceramics for Hard Tissue Engineering Applications: A Review Pawan Kumar1,*, Brijnandan S Dehiya1 and Anil Sindhu2 1Department of Materials Science and Nanotechnology 2Department of Biotechnology Deenbandhu Chhotu Ram University of Science and Technology, Sonipat-131039, India. Email: [email protected] Abstract tissue engineering [3]. In the early years, the focus on anti- infective or antibacterial biomaterials synthesis has been The bioceramics are using as a substitute for hard tissue increasing. It helps to prevent scaffolds or implants from engineering since 1960. A compelling way to deal with hard undesirable infection and keep sterile. It also reduces the risk tissue engineering aims to restore function of diseased or rate of infection during special surgery cases [4]. In cases of damaged bone tissue by combining isolated functional cells and open fractured joints and bone modification surgeries, the biodegradable scaffolds prepared from engineered implants can lead to the microbial disease [5]. The microbe’s bioceramics. Bioceramic materials having better potential to species attached on the surface of materials through different replace the damaged tissues and restore the function of existing mechanisms. According to early stated mechanism, microbe’s tissue. ZrO , Al O based materials and composites presently 2 2 3 adhesion done by passive adsorption through which bacterial used to fabricate implants. Bioceramics including cells exposed to a solid surface of biomaterials, which offers hydroxyapatite, bioglass, and calcium phosphate are using as surface interactions between materials and bacterial cells [6].
    [Show full text]