Of the Białowieża Forest (Ne Poland)

Total Page:16

File Type:pdf, Size:1020Kb

Of the Białowieża Forest (Ne Poland) Polish Botanical Journal 60(2): 217–292, 2015 DOI: 10.1515/pbj-2015-0034 AN ANNOTATED AND ILLUSTRATED CATALOGUE OF POLYPORES (AGARICOMYCETES) OF THE BIAŁOWIEŻA FOREST (NE POLAND) Dariusz Karasiński1 & Marek Wołkowycki Abstract. The Białowieża Forest (BF) is one of the best-preserved lowland deciduous and mixed forest complexes in Europe, rich in diverse fungi. This paper summarizes what is known about the poroid fungi of the Polish part of the Białowieża Forest, based on literature data, a re-examination of herbarium materials, and the authors’ studies from 1990–2014. An annotated catalogue of polypores recorded in the forest is presented, including 80 genera with 210 species. All literature and herbarium records are enumerated, and 160 species are illustrated with color pictures. Fourteen species previously reported in the literature have uncertain status because they lack voucher specimens and were not confirmed in recent field studies.Antrodiella subradula (Pilát) Niemelä & Miettinen, previously known from Asia, is reported for the first time from Europe. Fourteen species are newly reported from the Białowieża Forest (mainly from Białowieża National Park), including 8 species with first records in Poland (Antrodia hyalina Spirin, Miettinen & Kotir., Antrodia infirma Renvall & Niemelä, Antrodiella subradula, Junghuhnia fimbriatella (Peck) Ryvarden, Postia folliculocystidiata (Kotl. & Vampola) Niemelä & Vampola, Postia minusculoides (Pilát ex Pilát) Boulet, Skeletocutis chrysella Niemelä, Skeletocutis papyracea A. David), and 6 species reported previously from other localities in Poland [Antrodiella faginea Vampola & Pouzar, Dichomitus campestris (Quél.) Domański & Orlicz, Loweomyces fractipes (Berk. & M. A. Curtis) Jülich, Oxyporus latemarginatus (Durieu & Mont.) Donk, Perenniporia narymica (Pilát) Pouzar, Phellinus nigricans (Fr.) P. Karst.]. Several very rare European polypores already reported from the Białowieża Forest in the 20th century, such as Antrodia albobrunnea (Romell) Ryvarden, Antrodiella foliaceodentata (Nikol.) Gilb. & Ryvarden, Buglossoporus pulvinus (Pers.) Donk, Dichomitus albidofuscus (Domański) Domański and Gelatoporia subvermispora (Pilát) Niemelä, were found at new localities, confirming their continuous occurrence in this forest. Key words: Basidiomycota, Biosphere Reserve, fungal diversity, Poland, poroid fungi, primeval forests, UNESCO World Heritage Site Dariusz Karasiński, Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; e-mail: [email protected] Marek Wołkowycki, Białystok University of Technology, Faculty of Forestry in Hajnówka, Piłsudskiego 8, 17-200 Hajnówka, Poland Introduction The Białowieża Forest (BF) is one of the best pre- and covers an area of 646 km2, including 105 km2 served lowland deciduous and mixed forest com- protected since 1921 as the Białowieża National plexes in Europe (Faliński 1986; Peterken 1996; Park (BNP) and ca 120 km2 protected as a forest Jędrzejewska & Jędrzejewski 1998). It is reported reserve (Faliński 2002; Okołów 2012). Białowieża as an example of a European non-fragmented National Park was declared a Biosphere Reserve virgin forest community (e.g., Parviainen 2005) or in 1977 and in 1979 was designated a UNESCO as a remnant of culturally modified ancient forest World Heritage Site (Okołów 2002, 2009). Since (e.g., Bobiec 2012). The whole forest complex 2005 the Biosphere Reserve has been expanded to covers an area of 1250 km2 and is located at the cover the whole Polish part of the Białowieża Forest border between Poland and Belarus. The Polish part (Okołów 2012). Glaciofluvial sands, gravels and lies between 52°39′–52°48′N and 23°34′–23°38′E clays built the flat, undulating plain on which the forest is situated at 135–190 m a.s.l. (Kwiatkowski 1 Corresponding author 1994). The local climate has both continental and 218 POLISH BOTANICAL JOURNAL 60(2). 2015 Atlantic features (Faliński 1986). During the last 2013, 2014). Niemelä (2013) published a manual for 50 years the mean annual temperature was 6.9ºC identification of polypores of the Białowieża Forest, (January mean –3ºC, July mean 18.3ºC), snow including descriptions and a list of species found by cover lasted 92 days on average, and mean an- his team during inventory work in 2008–2012. This nual precipitation was 627 mm (Malzahn et al. manual gives information on 177 poroid species 2009). The Białowieża Forest consists of a mosaic reported from the study area – 142 species found of various forest communities determined by the during the inventory and 35 species from reports in variation of topography, soil and hydrology. Conif- the literature. The literature data are given without erous and mixed coniferous stands dominated by revision of the herbarium materials, which in some Pinus sylvestris L. and Picea abies (L.) H. Karst. cases results in duplication of unverified and some- cover ca 50% of the forest area in the Polish part times wrong information mainly from Domański of the Białowieża Forest. Wet deciduous forest with (records based on misidentified specimens; some Alnus glutinosa Gaertn. and Fraxinus excelsior L. of them corrected here). covers ca 20%, rich mesic deciduous stands with This work summarizes what is known about Quercus robur L., Carpinus betulus L., Tilia cor- the poroid fungi of the Polish part of the Biało- data Mill. and Acer platanoides L. cover 15%, and wieża Forest in the form of an annotated and il- early successional stands with Betula pendula Roth lustrated catalogue. It is based on literature data, and Populus tremula L. cover 13% of the forest a re-examination of some herbarium materials, area (Jędrzejewska & Jędrzejewski 1998). The especially for species whose concept has changed, Białowieża Forest differs from Western European and our studies from 1990–2014. forests in the absence of Fagus sylvatica L. The abundance of Quercus robur differentiates it from Eastern European forests. Picea abies occurs in Material and methods almost every forest community (Pawlaczyk 2009). The original as-yet unpublished material was collected The first published data on the polypores of the in different areas of the Białowieża Forest by the first th Białowieża Forest date to the 19 century (Błoński author in 2005–2014 during a few short collecting trips et al. 1888). Over the last 127 years about 100 publi- in 2005–2008, 2011, 2013 and 2014, and extensive in- cations have included information on these fungi, im- ventory work in 2009–2010 for the ‘Conservation plan plying that the diversity of the polypores of that area for species of macrofungi in the Białowieża National is relatively well known, but poroid species new to Park’ (Karasiński et al. 2010). In total, more than 1100 science are still being described from the Białowieża specimens of polypores were collected and studied. The Forest (Niemelä et al. 2012; Miettinen et al. 2012). material is preserved mainly in the personal reference collection of the first author (abbreviated D.K.), with Our knowledge of polypore diversity has not been duplicates in KRAM F. The second author has collected deliberately summarized for a long time, although polypores in the Białowieża Forest since 1990. The col- some information was included in publications lection includes ca 350 specimens stored in the Herbarium from Stanisław Domański (e.g., Domański 1965, of Marek Wołkowycki (abbreviated H.M.W. M). Other 1967, 1972b; Domański et al. 1967, 1973). Up to specimens examined (ca 150) were obtained from KRA 2013 these publications were the primary source of and mostly from KRAM F-SD (collection of Stanisław knowledge on polypore diversity in the Białowieża Domański in KRAM F, containing mainly polypores col- Forest. Some records of a number of rare poroid lected in the Białowieża Forest in 1955–1970). species given by Stanisław Domański have not been For micromorphological studies, thin freehand confirmed by any subsequent researchers. Recently sections were cut with a razor blade from fresh or dry basidiomata under a Nikon SMZ-2T microscope, some new records of selected poroid species (but mounted in water, 3% aqueous potassium hydroxide mostly common ones) were published based on with 1% aqueous phloxine, and Melzer’s reagent or material collected for fungal exhibits organized 0.1% cotton blue in 60% lactic acid (Kirk et al. 2008), yearly in September by Białowieża National Park and examined under a Nikon Eclipse E-400 microscope (e.g., Szczepkowski et al. 2010, 2011; Gierczyk et al. at magnification up to 1250×. Color photographs were D. KARASIŃSKI & M. WOŁKOWYCKI: CATALOGUE OF POLYPORES OF THE BIAŁOWIEŻA FOREST 219 ew Nar Nar Nar 742 ewka Eliaszuki ew 748 746 755 Siemianówka 753 NAREW 751 Makówka 1 760 758 4 766 Lewkowo 764 6 8 771 769 P 767 odrzeczka 14 16 18 775 Belarus Krzywiec 23 25 27 781 Olchówko 777 779 Łosinka 37 39 41 Mikłaszewo 55 48 50 52 Borysówka Narewka Skupowo 59 61 63 65 69 Masiewo 74 76 82 84 96 98 100 105 106 108 110 111 118 120 122 123 124 126 128 130 132 133 134 135 136 Nowosady 147 149 151 153 155 157 158 159 161 163 165 Nowy Kornin 179 181 182 183 185 187 189 193 194 195 197 Czyżyki 210 212 214 216 218 220 221 224 225 226 228 Dubiny Hwoźn Leśna Prawa 243 245 247 249 251 253 254 255 256 257 258 a 260 Nar 261 279 288 272 273 275 277 281 282 ewka 284 285 286 287 289 290 Lutow nia 320 303 305 306 307 311 313 314 315 316 317 318 319 HAJNÓWKA Orłówk 339 a 343 345 346 329 330 332 334 335 Budy 337 340 341 342 344 368 375 Górna 356 358 360 362 364 Teremiski 367 369 370 371 372 373 374 Pogorzelce 394 396 398 399 400 401 402 403 404 383 384 385 386 387 388 390 392 421 423 425 BIAŁOWIEŻA 428 429 411 412 413 414 415 416 417 418 419 451 435 437 438 439 440 441 442 443 444 445 447 476 461 462 463 464 466 468 470 472 474 487 489 490 492 494 496 498 500 501 Orzeszkowo 484 485 486 488 Łazica 513 516 517 519 521 523 525 527 535 537 539 542 544 546 548 550 566 568 570 572 574 575 576 578 580 582 54o 595 596 597 599 601 Leśna Prawa603 605 607 609 627 628 629 631 632 633 635 637 639 641 Orl a o 661 663 665 666 667 668 669 671 673 52 694 695 697 698 699 702 703 730 725 728 o 50 Policzn 0 123 4 5 km a Belarus 16o 20o 24o Fig.
Recommended publications
  • Five Polypore Species New to India
    CZECH MYCOLOGY 72(2): 151–161, JULY 24, 2020 (ONLINE VERSION, ISSN 1805-1421) Five polypore species new to India 1 2 1 RAMANDEEP KAUR ,GURPREET KAUR ,AVNEET PAL SINGH *, 1 GURPAUL SINGH DHINGRA 1 Department of Botany, Punjabi University, Patiala, IN-147002, Punjab, India 2 Department of Agriculture, Khalsa College, Amritsar, IN-143002, Punjab, India *corresponding author: [email protected] Kaur R., Kaur G., Singh A.P., Dhingra G.S. (2020): Five polypore species new to India. – Czech Mycol. 72(2): 151–161. In continuation of the exploration of the diversity of polyporoid fungi in north-west India, five polypores identified as Antrodia leucaena, A. pulvinascens, Fomitiporia apiahyna, Inocutis ludoviciana and Inonotus venezuelicus are presented as new to India. These species are reported based on material collected from localities in the Sirmaur District (Himachal Pradesh) and Patiala District (Punjab). Descriptions, photographs and line drawings of the new records from India are provided. Key words: Agaricomycetes, Polyporales, Hymenochaetales, white-rot fungi, north-west Himalaya, Punjab. Article history: received 24 April 2020, revised 21 June 2020, accepted 29 June 2020, published on- line 24 July 2020. DOI: https://doi.org/10.33585/cmy.72202 Kaur R., Kaur G., Singh A.P., Dhingra G.S. (2020): Pět druhů chorošů nových pro Indii. – Czech Mycol. 72(2): 151–161. V rámci pokračujícího výzkumu diverzity chorošotvarých hub v severozápadní Indii bylo objeve- no pět druhů, které jsou nové pro Indii: Antrodia leucaena, A. pulvinascens, Fomitiporia apiahyna, Inocutis ludoviciana a Inonotus venezuelicus. Jejich výskyt byl zaznamenán a materiál sebrán na lo- kalitách v okresu Sirmaur (stát Himáčalpradéš) a okresu Patiala (stat Paňdžáb).
    [Show full text]
  • Phellinus Species on Betula. Mating Tests, RFLP Analysis of Enzymatically Amplified Rdna, and Relations to Phellinus Alni
    Karstenia 35:67-84, 1995 Phellinus species on Betula. Mating tests, RFLP analysis of enzymatically amplified rDNA, and relations to Phellinus alni MICHAEL FISCHER and MANFRED BINDER FISCHER, M. & BINDER, M. 1994: Phellinus species on Betula Mating tests, RFLP analysis of enzymatically amplified rDN , and relations to Phellinus alni. - Karstenia 35:67-84. Helsinki. ISSN 0453-3402 Mainly based on collections from Fennoscandia, Estonia, and Central Europe, four species of the genus Phellinus Que!. (Hymenochaetaceae), all belonging to the P. igniarius (L.:Fr.) Que!. group, are shown to occur on Betula L. These species are P. nigricans (Fr.) P.Karsten, P. cine reus (Niemela) Fischer, P. laevigatus (Fr. ex P.Karsten) Bourd. & Galz., and P. lundellii Niemela. The occurrence of P. igniarius and P. alni (Bond. ) Parm. on Betula remains in doubt. P. alni, P. nigricans, P. cinereus, P. laevigatus, and P. lundellii were characteri zed by pairing tests of single spore mycelia and RFLP (restriction fragment length polymorphism) data of enzymatically amplified ribosomal DNA. A unique RFLP phenotype was assignable to each species except P. nigricans, which was identical with P. alni. Distribution of the taxa is throughout the area under study; however, P. nigricans seems to be limited to Fennoscandia. Two stocks from North America pro ed to represent P. cinereus. Pairing relationships between P. nigricans, P. cinereus, and P. alni were examined in detail and were found to differ according to the geographic origin of the stocks. P. nigricans was positive in numerous pairings with P. alni from Fennoscandia, Estonia, and Central Europe. In addition, it is positive with P.
    [Show full text]
  • A New Species of Antrodia (Basidiomycota, Polypores) from China
    Mycosphere 8(7): 878–885 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/7/4 Copyright © Guizhou Academy of Agricultural Sciences A new species of Antrodia (Basidiomycota, Polypores) from China Chen YY, Wu F* Institute of Microbiology, Beijing Forestry University, Beijing 100083, China Chen YY, Wu F 2017 –A new species of Antrodia (Basidiomycota, Polypores) from China. Mycosphere 8(7), 878–885, Doi 10.5943/mycosphere/8/7/4 Abstract A new species, Antrodia monomitica sp. nov., is described and illustrated from China based on morphological characters and molecular evidence. It is characterized by producing annual, fragile and nodulose basidiomata, a monomitic hyphal system with clamp connections on generative hyphae, hyaline, thin-walled and fusiform to mango-shaped basidiospores (6–7.5 × 2.3– 3 µm), and causing a typical brown rot. In phylogenetic analysis inferred from ITS and nLSU rDNA sequences, the new species forms a distinct lineage in the Antrodia s. l., and has a close relationship with A. oleracea. Key words – Fomitopsidaceae – phylogenetic analysis – taxonomy – wood-decaying fungi Introduction Antrodia P. Karst., typified with Polyporus serpens Fr. (=Antrodia albida (Fr.) Donk (Donk 1960, Ryvarden 1991), is characterized by a resupinate to effused-reflexed growth habit, white or pale colour of the context, a dimitic hyphal system with clamp connections on generative hyphae, hyaline, thin-walled, cylindrical to very narrow ellipsoid basidiospores which are negative in Melzer’s reagent and Cotton Blue, and causing a brown rot (Ryvarden & Melo 2014). Antrodia is a highly heterogeneous genus which is closely related to Fomitopsis P.
    [Show full text]
  • Basidiomycota) in Finland
    Mycosphere 7 (3): 333–357(2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/7/3/7 Copyright © Guizhou Academy of Agricultural Sciences Extensions of known geographic distribution of aphyllophoroid fungi (Basidiomycota) in Finland Kunttu P1, Kulju M2, Kekki T3, Pennanen J4, Savola K5, Helo T6 and Kotiranta H7 1University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland 2Biodiversity Unit P.O. Box 3000, FI-90014 University of Oulu, Finland 3Jyväskylä University Museum, Natural History Section, P.O. BOX 35, FI-40014 University of Jyväskylä, Finland 4Pentbyntie 1 A 2, FI-10300 Karjaa, Finland 5The Finnish Association for Nature Conservation, Itälahdenkatu 22 b A, FI-00210 Helsinki, Finland 6Erätie 13 C 19, FI-87200 Kajaani, Finland 7Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland Kunttu P, Kulju M, Kekki T, Pennanen J, Savola K, Helo T, Kotiranta H 2016 – Extensions of known geographic distribution of aphyllophoroid fungi (Basidiomycota) in Finland. Mycosphere 7(3), 333–357, Doi 10.5943/mycosphere/7/3/7 Abstract This article contributes the knowledge of Finnish aphyllophoroid funga with nationally or regionally new species, and records of rare species. Ceriporia bresadolae, Clavaria tenuipes and Renatobasidium notabile are presented as new aphyllophoroid species to Finland. Ceriporia bresadolae and R. notabile are globally rare species. The records of Ceriporia aurantiocarnescens, Crustomyces subabruptus, Sistotrema autumnale, Trechispora elongata, and Trechispora silvae- ryae are the second in Finland. New records (or localities) are provided for 33 species with no more than 10 records in Finland. In addition, 76 records of aphyllophoroid species are reported as new to some subzones of the boreal vegetation zone in Finland.
    [Show full text]
  • A Phylogenetic Overview of the Antrodia Clade (Basidiomycota, Polyporales)
    Mycologia, 105(6), 2013, pp. 1391–1411. DOI: 10.3852/13-051 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales) Beatriz Ortiz-Santana1 phylogenetic studies also have recognized the genera Daniel L. Lindner Amylocystis, Dacryobolus, Melanoporia, Pycnoporellus, US Forest Service, Northern Research Station, Center for Sarcoporia and Wolfiporia as part of the antrodia clade Forest Mycology Research, One Gifford Pinchot Drive, (SY Kim and Jung 2000, 2001; Binder and Hibbett Madison, Wisconsin 53726 2002; Hibbett and Binder 2002; SY Kim et al. 2003; Otto Miettinen Binder et al. 2005), while the genera Antrodia, Botanical Museum, University of Helsinki, PO Box 7, Daedalea, Fomitopsis, Laetiporus and Sparassis have 00014, Helsinki, Finland received attention in regard to species delimitation (SY Kim et al. 2001, 2003; KM Kim et al. 2005, 2007; Alfredo Justo Desjardin et al. 2004; Wang et al. 2004; Wu et al. 2004; David S. Hibbett Dai et al. 2006; Blanco-Dios et al. 2006; Chiu 2007; Clark University, Biology Department, 950 Main Street, Worcester, Massachusetts 01610 Lindner and Banik 2008; Yu et al. 2010; Banik et al. 2010, 2012; Garcia-Sandoval et al. 2011; Lindner et al. 2011; Rajchenberg et al. 2011; Zhou and Wei 2012; Abstract: Phylogenetic relationships among mem- Bernicchia et al. 2012; Spirin et al. 2012, 2013). These bers of the antrodia clade were investigated with studies also established that some of the genera are molecular data from two nuclear ribosomal DNA not monophyletic and several modifications have regions, LSU and ITS. A total of 123 species been proposed: the segregation of Antrodia s.l.
    [Show full text]
  • A Re-Evaluation of Neotropical Junghuhnia S.Lat. (Polyporales, Basidiomycota) Based on Morphological and Multigene Analyses
    Persoonia 41, 2018: 130–141 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2018.41.07 A re-evaluation of Neotropical Junghuhnia s.lat. (Polyporales, Basidiomycota) based on morphological and multigene analyses M.C. Westphalen1,*, M. Rajchenberg2, M. Tomšovský3, A.M. Gugliotta1 Key words Abstract Junghuhnia is a genus of polypores traditionally characterised by a dimitic hyphal system with clamped generative hyphae and presence of encrusted skeletocystidia. However, recent molecular studies revealed that Mycodiversity Junghuhnia is polyphyletic and most of the species cluster with Steccherinum, a morphologically similar genus phylogeny separated only by a hydnoid hymenophore. In the Neotropics, very little is known about the evolutionary relation- Steccherinaceae ships of Junghuhnia s.lat. taxa and very few species have been included in molecular studies. In order to test the taxonomy proper phylogenetic placement of Neotropical species of this group, morphological and molecular analyses were carried out. Specimens were collected in Brazil and used for DNA sequence analyses of the internal transcribed spacer and the large subunit of the nuclear ribosomal RNA gene, the translation elongation factor 1-α gene, and the second largest subunit of RNA polymerase II gene. Herbarium collections, including type specimens, were studied for morphological comparison and to confirm the identity of collections. The molecular data obtained revealed that the studied species are placed in three different genera. Specimens of Junghuhnia carneola represent two distinct species that group in a lineage within the phlebioid clade, separated from Junghuhnia and Steccherinum, which belong to the residual polyporoid clade.
    [Show full text]
  • Phylum Order Number of Species Number of Orders Family Genus Species Japanese Name Properties Phytopathogenicity Date Pref
    Phylum Order Number of species Number of orders family genus species Japanese name properties phytopathogenicity date Pref. points R inhibition H inhibition R SD H SD Basidiomycota Polyporales 98 12 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-18 Kumamoto Haru, Kikuchi 40.4 -1.6 7.6 3.2 Basidiomycota Agaricales 171 1 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-16 Hokkaido Shari, Shari 74 39.3 2.8 4.3 Basidiomycota Agaricales 269 1 Agaricaceae Agaricus Agaricus arvensis シロオオハラタケ saprobic "-" 2000-09-25 Gunma Kawaba, Tone 87 49.1 2.4 2.3 Basidiomycota Polyporales 181 12 Agaricaceae Agaricus Agaricus bisporus ツクリタケ saprobic "-" 2004-04-16 Gunma Horosawa, Kiryu 36.2 -23 3.6 1.4 Basidiomycota Hymenochaetales 129 8 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-07-15 Gunma Hirai, Kiryu 64.4 44.4 9.6 4.4 Basidiomycota Polyporales 105 12 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-06-26 Nagano Minamiminowa, Kamiina 70.1 3.7 2.5 5.3 Basidiomycota Auriculariales 37 2 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2001-08-20 Fukushima Showa 67.9 37.8 0.6 0.6 Basidiomycota Boletales 251 3 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2000-09-25 Yamanashi Hakusyu, Hokuto 80.7 48.3 3.7 7.4 Basidiomycota Agaricales 9 1 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 85.9 68.1 1.9 3.1 Basidiomycota Hymenochaetales 129 8 Strophariaceae Agrocybe Agrocybe cylindracea ヤナギマツタケ saprobic "-" 2003-08-23
    [Show full text]
  • Fungal Diversity in the Mediterranean Area
    Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I.
    [Show full text]
  • <I> Junghuhnia</I> S.Lat
    Persoonia 41, 2018: 130–141 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2018.41.07 A re-evaluation of Neotropical Junghuhnia s.lat. (Polyporales, Basidiomycota) based on morphological and multigene analyses M.C. Westphalen1,*, M. Rajchenberg2, M. Tomšovský3, A.M. Gugliotta1 Key words Abstract Junghuhnia is a genus of polypores traditionally characterised by a dimitic hyphal system with clamped generative hyphae and presence of encrusted skeletocystidia. However, recent molecular studies revealed that Mycodiversity Junghuhnia is polyphyletic and most of the species cluster with Steccherinum, a morphologically similar genus phylogeny separated only by a hydnoid hymenophore. In the Neotropics, very little is known about the evolutionary relation- Steccherinaceae ships of Junghuhnia s.lat. taxa and very few species have been included in molecular studies. In order to test the taxonomy proper phylogenetic placement of Neotropical species of this group, morphological and molecular analyses were carried out. Specimens were collected in Brazil and used for DNA sequence analyses of the internal transcribed spacer and the large subunit of the nuclear ribosomal RNA gene, the translation elongation factor 1-α gene, and the second largest subunit of RNA polymerase II gene. Herbarium collections, including type specimens, were studied for morphological comparison and to confirm the identity of collections. The molecular data obtained revealed that the studied species are placed in three different genera. Specimens of Junghuhnia carneola represent two distinct species that group in a lineage within the phlebioid clade, separated from Junghuhnia and Steccherinum, which belong to the residual polyporoid clade.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • Septal Pore Caps in Basidiomycetes Composition and Ultrastructure
    Septal Pore Caps in Basidiomycetes Composition and Ultrastructure Septal Pore Caps in Basidiomycetes Composition and Ultrastructure Septumporie-kappen in Basidiomyceten Samenstelling en Ultrastructuur (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 17 december 2007 des middags te 16.15 uur door Kenneth Gregory Anthony van Driel geboren op 31 oktober 1975 te Terneuzen Promotoren: Prof. dr. A.J. Verkleij Prof. dr. H.A.B. Wösten Co-promotoren: Dr. T. Boekhout Dr. W.H. Müller voor mijn ouders Cover design by Danny Nooren. Scanning electron micrographs of septal pore caps of Rhizoctonia solani made by Wally Müller. Printed at Ponsen & Looijen b.v., Wageningen, The Netherlands. ISBN 978-90-6464-191-6 CONTENTS Chapter 1 General Introduction 9 Chapter 2 Septal Pore Complex Morphology in the Agaricomycotina 27 (Basidiomycota) with Emphasis on the Cantharellales and Hymenochaetales Chapter 3 Laser Microdissection of Fungal Septa as Visualized by 63 Scanning Electron Microscopy Chapter 4 Enrichment of Perforate Septal Pore Caps from the 79 Basidiomycetous Fungus Rhizoctonia solani by Combined Use of French Press, Isopycnic Centrifugation, and Triton X-100 Chapter 5 SPC18, a Novel Septal Pore Cap Protein of Rhizoctonia 95 solani Residing in Septal Pore Caps and Pore-plugs Chapter 6 Summary and General Discussion 113 Samenvatting 123 Nawoord 129 List of Publications 131 Curriculum vitae 133 Chapter 1 General Introduction Kenneth G.A. van Driel*, Arend F.
    [Show full text]
  • Re-Thinking the Classification of Corticioid Fungi
    mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.
    [Show full text]