Male Incubation Feeding in Songbirds Responds Differently to Nest Predation Risk Across Hemispheres

Total Page:16

File Type:pdf, Size:1020Kb

Male Incubation Feeding in Songbirds Responds Differently to Nest Predation Risk Across Hemispheres Animal Behaviour 82 (2011) 1347e1356 Contents lists available at SciVerse ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Male incubation feeding in songbirds responds differently to nest predation risk across hemispheres Beata Matysioková a,*, Andrew Cockburn b,1, Vladimír Remes a a Laboratory of Ornithology, Palacký University b Division of Evolution, Ecology and Genetics, Australian National University article info Evolution of parental care behaviour has been of considerable interest to behavioural ecologists for Article history: a long time. Incubation feeding, where an individual incubating eggs is provisioned by another indi- Received 10 May 2011 vidual, is an important component of avian parental care. It may be critical for breeding success by Initial acceptance 1 July 2011 allowing the incubating bird to spend more time on the eggs. However, very little is known about Final acceptance 7 September 2011 environmental factors shaping incubation feeding, and incubation behaviour in general, of tropical and Available online 19 October 2011 southern hemisphere birds, and how this differs compared to northern hemisphere species. We MS. number: 11-00386 collated available data on the rate of incubation feeding in Australian, New Zealand and North American songbirds (78 species from 25 families). There was a strong positive relationship between Keywords: female incubation attentiveness and incubation feeding by males; however, female attentiveness was comparative analysis higher in North America than in Australia and New Zealand for the same intensity of male incubation incubation feeding feeding. Incubation feeding was not related to species body mass, social organization, geographical life history fi nest predation latitude or ambient temperature. It differed signi cantly between families, but overall was not different parental care between regions. Incubation feeding rate was related to nest predation rate, but differently in the two songbird regions. It increased with nest predation rate in Australia and New Zealand, but decreased with nest predation rate in North America. We suggest that this may be caused by different predatoreprey interactions in North America versus Australia and New Zealand, which could have shaped the evolution of incubation feeding differently. Ó 2011 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. Understanding why species differ in patterns and intensity of be critical for maintaining female condition and incubation effort parental care is a major focus of evolutionary behavioural studies (von Haartman 1958; Røskaft 1983; Lyon & Montgomerie 1985). (Clutton-Brock 1991). One of the key components of parental care in Incubation feeding is widespread in birds (Kendeigh 1952), but egg-laying organisms is caring for eggs (Deeming 2002). In birds, species differ in the intensity of this behaviour (Martin & incubation of eggs is energetically demanding (Williams 1996; Ghalambor 1999). This interspecific variability could be related Thomson et al. 1998) and thus it can negatively influence condition to various environmental selective forces. For example, latitude is and/or survival of the incubating individual (de Heij et al. 2006). In a strong predictor of life history characteristics, including clutch bird species with uniparental incubation, the female is usually size and adult survival (Ghalambor & Martin 2001). Thus, given responsible for incubating the eggs (Deeming 2002). Hence, she faces that life history theory predicts a positive correlation between a trade-off between time- and energy-consuming incubation parental effort and adult mortality (Roff 1992), we might expect behaviour and foraging for self-maintenance (Drent 1975; Mertens higher incubation feeding rates in areas with low adult survival. 1977). Species breeding in thermally extreme environments must Males may feed the female during incubation (incubation protect their progeny from the negative effects of extreme feeding; Cottam 1941; Matysioková 2010), and this behaviour may temperatures. This effect could be even stronger during incuba- tion, because the developing embryo is sensitive to both very low (below 26 C) and very high (above 40.5 C) temperatures (Webb 1987; Conway & Martin 2000a). Thus, we might expect higher * Correspondence: B. Matysioková, Laboratory of Ornithology, Department of incubation feeding rates in species experiencing extreme ambient Zoology, Palacký University, Tr. Svobody 26, 77146 Olomouc, Czech Republic. temperatures. Species might differ in parental care on the basis of E-mail address: [email protected] (B. Matysioková). their social organization as well. Males in species with helpers 1 A. Cockburn is at the Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT 0200, could be able to provide incubating females with more food that Australia. those that breed in pairs. Alternatively, male breeders in social 0003-3472/$38.00 Ó 2011 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.anbehav.2011.09.018 1348 B. Matysioková et al. / Animal Behaviour 82 (2011) 1347e1356 species might take advantage of helping and decrease their own For data concerning incubation behaviour in Australia and rate of incubation feeding, so there is no overall difference New Zealand we started with the Handbook of Australian, between cooperative and pair-breeding species (Hatchwell 1999). New Zealand, and Antarctic Birds (HANZAB) volumes 5, 6 and 7 Finally, the risk of nest depredation might select for low activity (Higgins et al. 2001, 2006; Higgins & Peter 2002). We searched around the nest that could lure nest predators (Ghalambor & Web of Science in the same way we did for North American species. Martin 2001). Thus, we may expect a negative correlation Because the sample size obtained in this way was much lower between nest predation rate and incubation feeding intensity than that for North American passerines, we additionally exam- (Martin & Ghalambor 1999). ined all volumes of major local Australian and New Zealand Understanding factors shaping the occurrence and intensity of zoological journals (Australian Bird Watcher, Australian Field incubation feeding across species has been hindered by the Ornithology, Australian Journal of Zoology, Australian Zoologist, paucity of broadscale, interspecific studies focusing on potential Canberra Bird Notes, Corella, Notornis, Pacific Conservation Biology, environmental selective forces. Moreover, studies conducted so South Australian Ornithologist, Sunbird, VOGR Notes and Western far have focused on North American songbirds (Martin & Australian Naturalist published after 2000), many of which are not Ghalambor 1999; Conway & Martin 2000b; Fontaine et al. 2007), indexed in Web of Science. with the exception of Auer et al. (2007) who studied birds of Original studies often provided only qualitative, verbal subtropical Argentina. The only two studies dealing with quanti- descriptions of the intensity of incubation feeding, rather than tative estimates of actual rates of incubation feeding were field precise figures. These qualitative data were regarded as subjective studies and hence included only a limited number of species and not comparable across studies; thus we included only articles (N ¼ 19 species, Martin & Ghalambor 1999; N ¼ 13 species, that reported quantitative information (i.e. the number of feeds Fontaine et al. 2007). The remaining studies reported just pres- per hour of observation). To ensure comparability, we included ence or absence of incubation feeding (Auer et al. 2007), or cate- only species with female-only incubation. As most studies gorized the relative frequency of incubation feeding according to provided information on only the rate of incubation feeding of qualitative descriptions gained from the literature (Conway & females sitting on the nest, we excluded all studies where we Martin 2000b). could not distinguish between on- and off-nest incubation To advance our understanding of male parental effort during feeding, or studies describing only off-nest incubation feeding. We incubation in birds, we performed the first broadscale compara- also excluded those studies where we were not able to distinguish tive study of incubation feeding; moreover, we included both between the feeding having occurred before the incubation and northern hemisphere species and the generally less studied that occurring during incubation, as the former could be associ- southern hemisphere species of songbirds. We used all published ated with courtship. In order not to include species in which information to obtain the rate of incubation feeding in 78 species incubation feeding does not occur at all, we excluded studies of Australian, New Zealand and North American songbirds. We reporting zero rate of incubation feeding. investigated behavioural, life history and environmental corre- We obtained data on nest attentiveness and nest losses caused lates of incubation feeding across species using contemporary by nest predators from a comprehensive literature search similar phylogenetic hypotheses and phylogenetically informed statistical to that used for incubation feeding (B. Matysioková & V. Remes, approaches. We expected higher incubation feeding rates in unpublished data). Nest attentiveness was defined as the species living in areas indicative of low adult survival (northern percentage
Recommended publications
  • When and How to Study the Nesting Biology of Indian Birds: Research Needs, Ethical Considerations, and Best Practices
    BARVE ET AL.: Nesting biology of Indian birds 1 When and how to study the nesting biology of Indian birds: Research needs, ethical considerations, and best practices Sahas Barve, T. R. Shankar Raman, Aparajita Datta & Girish Jathar Barve, S., Raman, T. R. S, Datta, A., & Jathar, G., 2020. When and how to study the nesting biology of Indian birds: Research needs, ethical considerations, and best practices. Indian BIRDS 16 (1): 1–9. Sahas Barve, Smithsonian National Museum of Natural History, 10th Street and Constitution Avenue NW, Washington, D.C. 20560. E-mail: [email protected]. [Corresponding author.] T. R. Shankar Raman, Nature Conservation Foundation, 1311, ‘Amritha’, 12th A Main, Vijayanagar 1st Stage, Mysore 570017, Karnataka, India. Aparajita Datta, Nature Conservation Foundation, 1311, ‘Amritha’, 12th A Main, Vijayanagar 1st Stage, Mysore 570017, Karnataka, India. Girish Jathar, Bombay Natural History Society, Hornbill House, Dr Salim Ali Chowk, Shaheed Bhagat Singh Road, Mumbai 400001, Maharashtra, India. Manuscript received on 03 February 2020. Abstract The nesting biology of a bird species is likely the most important component of its life history and it is affected by several ecological and environmental factors. Various components of avian nesting biology have proved to be important traits for testing fundamental ecological and evolutionary hypotheses, and for monitoring the efficacy of biological conservation programs. Despite its significance, the nesting biology of most Indian bird species is still poorly understood. The past few years have, however, seen a significant increase in the number of submissions to Indian BIRDS, of observational studies of avian nesting biology, which promises an exciting new wave of ornithological natural history research in India.
    [Show full text]
  • Disaggregation of Bird Families Listed on Cms Appendix Ii
    Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2.
    [Show full text]
  • Recommended Band Size List Page 1
    Jun 00 Australian Bird and Bat Banding Scheme - Recommended Band Size List Page 1 Australian Bird and Bat Banding Scheme Recommended Band Size List - Birds of Australia and its Territories Number 24 - May 2000 This list contains all extant bird species which have been recorded for Australia and its Territories, including Antarctica, Norfolk Island, Christmas Island and Cocos and Keeling Islands, with their respective RAOU numbers and band sizes as recommended by the Australian Bird and Bat Banding Scheme. The list is in two parts: Part 1 is in taxonomic order, based on information in "The Taxonomy and Species of Birds of Australia and its Territories" (1994) by Leslie Christidis and Walter E. Boles, RAOU Monograph 2, RAOU, Melbourne, for non-passerines; and “The Directory of Australian Birds: Passerines” (1999) by R. Schodde and I.J. Mason, CSIRO Publishing, Collingwood, for passerines. Part 2 is in alphabetic order of common names. The lists include sub-species where these are listed on the Census of Australian Vertebrate Species (CAVS version 8.1, 1994). CHOOSING THE CORRECT BAND Selecting the appropriate band to use combines several factors, including the species to be banded, variability within the species, growth characteristics of the species, and band design. The following list recommends band sizes and metals based on reports from banders, compiled over the life of the ABBBS. For most species, the recommended sizes have been used on substantial numbers of birds. For some species, relatively few individuals have been banded and the size is listed with a question mark. In still other species, too few birds have been banded to justify a size recommendation and none is made.
    [Show full text]
  • House Crow E V
    No. 2/2008 nimal P A e l s a t n A o l i e t 1800 084 881 r a t N Animal Pest Alert F reecall House Crow E V I The House Crow (Corvus splendens) T is also known as the Indian, Grey- A necked, Ceylon or Colombo Crow. It is not native to Australia but has been transported here on numerous occasions on ships. The T N House Crow has signifi cant potential to establish O populations in Australia and become a pest, so it is important to report any found in the wild. NOTN NATIVE PHOTO: PETRI PIETILAINEN E Australian Raven V I T A N Adult Immature PHOTO: DUNCAN ASHER / ALAMY PHOTO: IAN MONTGOMERY Please report all sightings of House Crows – Freecall 1800 084 881 House Crow nimal P A e l s a t n A o l i e t 1800 084 881 r a Figure 1. The distribution of the House Crow including natural t N (blue) and introduced (red) populations. F reecall Description Distribution The House Crow is 42 to 44 cm in length (body and tail). It has The House Crow is well-known throughout much of its black plumage that appears glossy with a metallic greenish natural range. It occurs in central Asia from southern coastal blue-purple sheen on the forehead, crown, throat, back, Iran through Pakistan, India, Tibet, Myanmar and Thailand to wings and tail. In contrast, the nape, neck and lower breast southern China (Figure 1). It also occurs in Sri Lanka and on are paler in colour (grey tones) and not glossed (Figure 3).
    [Show full text]
  • Breeding Biology and Behaviour of the Scarlet
    Corella, 2006, 30(3/4):5945 BREEDINGBIOLOGY AND BEHAVIOUROF THE SCARLETROBIN Petroicamulticolor AND EASTERNYELLOW ROBIN Eopsaltriaaustralis IN REMNANTWOODLAND NEAR ARMIDALE, NEW SOUTH WALES S.J. S.DEBUS Division of Zoology, University of New England, Armidale, New South Wales 2351 E-mail: [email protected] Received:I3 January 2006 The breeding biology and behaviour of the Scarlet Robin Petroica multicolor and Eastern Yellow Robin Eopsaltria australis were studied at lmbota Nature Reserve, on the New England Tableland of New South Wales,in 200G-2002by colour-bandingand nest-monitoring.Yellow Robins nested low in shelteredpositions, in plants with small stem diameters(mostly saplings,live trees and shrubs),whereas Scarlet Robins nested high in exposed positions, in plants with large stem diameters (mostly live trees, dead branches or dead trees).Yellow Robin clutch size was two or three eggs (mean 2.2; n = 19). Incubationand nestling periods were 15-17 days and 11-12 days respectively(n = 6) for the Yellow Robin, and 16-18 days (n = 3) and 16 days (n = 1) respectivelyfor the ScarletRobin. Both specieswere multi-brooded,although only YellowRobins successfully raised a second brood. The post-fledging dependence period lasted eight weeks for Yellow Robins, and six weeks for Scarlet Robins. The two robins appear to differ in their susceptibilityto nest predation, with corresponding differences in anti-predator strategies. INTRODUCTION provides empirical data on aspects that may vary geographicallywith seasonalconditions, or with habitator The
    [Show full text]
  • Translocations of North Island Tomtits (Petroica Macrocephala Toitoi) and North Island Robins (P
    63 Notornis, 2013, Vol. 60: 63-69 0029-4470 © The Ornithological Society of New Zealand, Inc. Translocations of North Island tomtits (Petroica macrocephala toitoi) and North Island robins (P. longipes) to Zealandia-Karori Sanctuary, an urban sanctuary. What have we learned? RAEWYN EMPSON* Karori Sanctuary Trust, P.O. Box 9267, Wellington 6141, New Zealand DENISE FASTIER Department of Conservation, P.O. Box 644, Napier 4140, New Zealand Abstract Transfers of North Island robin (Petroica longipes) and North Island tomtit (P. macrocephala toitoi) were undertaken from various sites around the Wellington region to within the mammal-proof fence at the Zealandia-Karori Sanctuary from 2001-2004. Differing methodologies were trialled to test translocation protocols for these species. Robin translocations (34 males and 42 females from Kapiti I translocated in 2000 and 2001) were straightforward and robins established in the sanctuary despite the fence not being a physical barrier to dispersal. They bred from the first season and numbers have since increased rapidly. Tomtits were transferred from 2 source populations (Kapiti I and Akatarawas; 39 males and 12 females over 4 years from 2001-2004) but failed to establish. To hold tomtits in an aviary and avoid aggression it was necessary to keep sexes apart. Although successful tomtit breeding was observed both within and outside the sanctuary, predation pressure was higher outside the sanctuary. A progressive move of tomtit territories out of the sanctuary may have been a response to increasing aggression from the expanding robin population. Empson, R.; Fastier, D. 2013. Translocations of North Island tomtits (Petroica macrocephala toitoi) and North Island robins (P.
    [Show full text]
  • Notes on the Breeding Behaviour of the Red-Capped Robin Petroica Goodenovii
    VOL. 12 (7) SEPTEMBER 1988 209 AUSTRALIAN BIRD WATCHER 1988, 12, 209-216 Notes on the Breeding Behaviour of the Red-capped Robin Petroica goodenovii by PETER COVENTRY, 12 Baroona Avenue, Cooma North, N.S.W. 2630 Summary Three pairs of Red-capped Robins Petroica goodenovii were studied on the Southern Tablelands of' New South Wales during a temporary invasion in 1981-1983, at the end of a drought. The birds arrived in spring, the males ahead of the females, and defended territories against Scarlet Robins P. TTUilticolor. One male Red-capped Robin uttered the Scarlet Robin's song during territory advertisement. After raising one or two broods the birds dispersed for the winter, the adults either at the same time as or after the departure of juveniles. After breeding the adults moulted, the females starting before the males. Nests were built, by females only, at a height of 2-6m (mean 3.6 m), and took 5-9 days (mean 8 days) to complete. Eggs were laid between mid October and late December. Mean clutch size was 1.9 eggs (1-2, mode 2), and mean brood size at fledging was 1.4 (1-2, mode I). Incubation lasted 14 days (three clutches), the nestling period was 11-16 days (mean 12.5 days) and the post fledging dependence period lasted at least two weeks. The breeding success rate was 54% (7 fledglings from 13 eggs), and the nest success rate was 63% (5 nests successful out of 8 for which the outcome was known). Nest-building, courtship, parental behaviour and vocalisations are described.
    [Show full text]
  • The Australian Raven (Corvus Coronoides) in Metropolitan Perth
    Edith Cowan University Research Online Theses : Honours Theses 1997 Some aspects of the ecology of an urban Corvid : The Australian Raven (Corvus coronoides) in metropolitan Perth P. J. Stewart Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Ornithology Commons Recommended Citation Stewart, P. J. (1997). Some aspects of the ecology of an urban Corvid : The Australian Raven (Corvus coronoides) in metropolitan Perth. https://ro.ecu.edu.au/theses_hons/295 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/295 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
    [Show full text]
  • The Effect of Climate Change on the Correlation Between Avian Life-History Traits
    Global Change Biology (2005) 11, 1606–1613, doi: 10.1111/j.1365-2486.2005.01038.x The effect of climate change on the correlation between avian life-history traits CHRISTIAAN BOTH1 andMARCEL E. VISSER Netherlands Institute of Ecology (NIOO-KNAW), PO Box 40, 6666 ZG Heteren, The Netherlands Abstract The ultimate reason why birds should advance their phenology in response to climate change is to match the shifting phenology of underlying levels of the food chain. In a seasonal environment, the timing of food abundance is one of the crucial factors to which birds should adapt their timing of reproduction. They can do this by shifting egg-laying date (LD), and also by changing other life-history characters that affect the period between laying of the eggs and hatching of the chicks. In a long-term study of the migratory Pied Flycatcher, we show that the peak of abundance of nestling food (caterpillars) has advanced during the last two decades, and that the birds advanced their LD. LD strongly correlates with the timing of the caterpillar peak, but in years with an early food peak the birds laid their eggs late relative to this food peak. In such years, the birds advance their hatching date by incubating earlier in the clutch and reducing the interval between laying the last egg to hatching of the first egg, thereby partly compensating for their relative late LD. Paradoxically, they also laid larger clutches in the years with an early food peak, and thereby took more time to lay (i.e. one egg per day).
    [Show full text]
  • Some Vocal Characteristics and Call Variation in the Australian Corvids
    72 AUSTRALIAN FIELD ORNITHOLOGY 2005, 22, 72-82 Some Vocal Characteristics and Call Variation in the Australian Corvids CLARE LAWRENCE School of Zoology, University of Tasmania, Private Bag 5, Hobart, Tasmania 7001 (Email: [email protected]) Summary Some vocal characteristics and call variation in the Australian crows and ravens were studied by sonagraphic analysis of tape-recorded calls. The species grouped according to mean maximum emphasised frequency (Australian Raven Corvus coronoides, Forest Raven C. tasmanicus and Torresian Crow C. orru with lower-freq_uency calls, versus Little Raven C. mellori and Little Crow C. bennetti with higher-frequency calls). The Australian Raven had significantly longer syllables than the other species, but there were no significant interspecific differences in intersyllable length. Calls of Southern C.t. tasmanicus and Northern Forest Ravens C.t. boreus did not differ significantly in any measured character, except for normalised syllable length (phrases with the long terminal note excluded). Northern Forest Ravens had longer normalised syllables than Tasmanian birds; Victorian birds were intermediate. No evidence was found for dialects or regional variation within Tasmania, and calls from the mainland clustered with those from Tasmania. Introduction Owing largely to the definitive work of Rowley (1967, 1970, 1973a, 1974), the diagnostic calls of the Australian crows and ravens Corvus spp. are well known in descriptive terms. The most detailed studies, with sonagraphic analyses, have been on the Australian Raven C. coronoides and Little Raven C. mellori (Rowley 1967; Fletcher 1988; Jurisevic 1999). The calls of the Torresian Crow C. orru and Little Crow C. bennetti have been described (Curry 1978; Debus 1980a, 1982), though without sonagraphic analyses.
    [Show full text]
  • Distribution, Ecology, and Life History of the Pearly-Eyed Thrasher (Margarops Fuscatus)
    Adaptations of An Avian Supertramp: Distribution, Ecology, and Life History of the Pearly-Eyed Thrasher (Margarops fuscatus) Chapter 6: Survival and Dispersal The pearly-eyed thrasher has a wide geographical distribution, obtains regional and local abundance, and undergoes morphological plasticity on islands, especially at different elevations. It readily adapts to diverse habitats in noncompetitive situations. Its status as an avian supertramp becomes even more evident when one considers its proficiency in dispersing to and colonizing small, often sparsely The pearly-eye is a inhabited islands and disturbed habitats. long-lived species, Although rare in nature, an additional attribute of a supertramp would be a even for a tropical protracted lifetime once colonists become established. The pearly-eye possesses passerine. such an attribute. It is a long-lived species, even for a tropical passerine. This chapter treats adult thrasher survival, longevity, short- and long-range natal dispersal of the young, including the intrinsic and extrinsic characteristics of natal dispersers, and a comparison of the field techniques used in monitoring the spatiotemporal aspects of dispersal, e.g., observations, biotelemetry, and banding. Rounding out the chapter are some of the inherent and ecological factors influencing immature thrashers’ survival and dispersal, e.g., preferred habitat, diet, season, ectoparasites, and the effects of two major hurricanes, which resulted in food shortages following both disturbances. Annual Survival Rates (Rain-Forest Population) In the early 1990s, the tenet that tropical birds survive much longer than their north temperate counterparts, many of which are migratory, came into question (Karr et al. 1990). Whether or not the dogma can survive, however, awaits further empirical evidence from additional studies.
    [Show full text]
  • Life History Variation Between High and Low Elevation Subspecies of Horned Larks Eremophila Spp
    J. Avian Biol. 41: 273Á281, 2010 doi: 10.1111/j.1600-048X.2009.04816.x # 2010 The Authors. J. Compilation # 2010 J. Avian Biol. Received 29 January 2009, accepted 10 August 2009 Life history variation between high and low elevation subspecies of horned larks Eremophila spp. Alaine F. Camfield, Scott F. Pearson and Kathy Martin A. F. Camfield ([email protected]) and K. Martin, Centr. for Appl. Conserv. Res., Fac. of Forestry, Univ. of British Columbia, 2424 Main Mall, Vancouver, B.C., Canada, V6T 1Z4. AFC and KM also at: Canadian Wildlife Service, Environment Canada, 351 St. Joseph Blvd., Gatineau, QC K1A 0H3. Á S. F. Pearson, Wildl. Sci. Div., Washington Dept. of Fish and Wildl., 1111 Washington St. SE, Olympia, WA, USA, 98501-1091. Environmental variation along elevational gradients can strongly influence life history strategies in vertebrates. We investigated variation in life history patterns between a horned lark subspecies nesting in high elevation alpine habitat Eremophila alpestris articola and a second subspecies in lower elevation grassland and sandy shoreline habitats E. a. strigata. Given the shorter breeding season and colder climate at the northern alpine site we expected E. a. articola to be larger, have lower fecundity and higher apparent survival than E. a. strigata. As predicted, E. a. articola was larger and the trend was toward higher apparent adult survival for E. a. articola than E. a. strigata (0.69 vs 0.51). Contrary to our predictions, however, there was a trend toward higher fecundity for E. a. articola (1.75 female fledglings/female/year vs 0.91).
    [Show full text]