Antibiotics Guide

Total Page:16

File Type:pdf, Size:1020Kb

Antibiotics Guide Injectable Antibiotics Active ingredient Trade/Product names Ampicillin none Amoxicillin none Ceftiofur Excede®, Excenel®, CeftiFlex® and Naxcel® Enrofloxacin Baytril® 100 and Enroflox® 100 Erythromycin none Florfenicol none Gentamicin Gentamicin Piglet Injection, Lincomycin LincoBac™ 300, LincoMed® 100, LincoMed® 300, Lincomix®, Lincomycin 300 300 PRO LA , Agrimycin® 200, Bio-Mycin® 200, Clostratox® Ultra C 1300, Duramycin Oxytetracycline 72-200, Liquamycin® LA-200®, Noromycin 300 LA, Oxybiotic™-200, Oxytetracycline Injection 200, Terra-Vet® 200 and Vetrimycin™ 200. Penicillin benzathine none Agri-Cillin®, Bactracillin G®, Norocillin, Pen-Aqueous®, Penicillin Injectable, Penject, Procaine Penicillin G PenOne Pro™ and PenOne™ RWT. ® Pen G Pro-Pen-G Injection, ® ® Tulathromycin Draxxin 25, Draxxin Macrosyn and Increxxa ® ® Tylosin Tylan 50, Tylan 200, TyloVed, Water Antibiotics Active ingredient Trade/Product names Amoxicillin none Bacitracin Methylene Disalicylate BMD® soluble Bacitracin zinc none Aureomycin® Soluble Powder Concentrate, Chloronex® Soluble Powder and Chlortetracycline Pennchlor 64® Soluble Powder Concentrate Chlortetracyline/sulphamethazine none Florcon, Florvio™ 2.3% Concentrate Solution and Nuflor® 2.3% Concentrate Florfenicol Solution Gentamicin Gen-Gard® Soluble Powder and GentaMed™ Soluble Powder Lincomix® Soluble Powder, Lincomycin Hydrochloride Soluble Powder, Lincomycin Lincosol Soluble Powder and LinxMed-SP® Soluble Powder Lincomycin/Spectinomycin none-only for chickens NeoMed® 325 Soluble Powder, Neomycin Liquid, Neomycin Oral Solution, Neomycin Neo-Sol® 50, Neosol Oral, Neosol Soluble Powder, Neovet®, Agrimycin®-343, Oxytet® Soluble, Pennox 343® Soluble Powder, Tetroxy® 25 Soluble Powder, Tetroxy® 343 Soluble Powder, Tetroxy® HCA-280, Oxytetracycline Tetroxy® HCA-1400 and Tetroxy® HCA-1772 Pen G Potassium none Spectinomycin none Sulfachlorpyridazine none Sulfadimethoxine none-only for avian and bovine Sulfamethazine Sulmet® Soluble Powder Sulfaquinoxaline none Duramycin 324, TC Vet 324™ Tetracyline Hydrochloride Powder, Tetra- Bac® 324, Tetracycline Hydrochloride Soluble Powder-324, TetraMed® 324 Tetracycline HCA Soluble Powder and Tetrasol Soluble Powder Tiamulin Denagard® Liquid Concentrate 12.5% and Triamulox™ Tilmicosin none Trimethoprim/Sulfadiazine none BiloVet™ Soluble Powder, Tylan® Soluble, Tylosin Soluble Powder, Tylosin Tylosin Tartrate Soluble Powder and Tylovet® Soluble Tylvalosin Aivlosin® Water Soluble Granules Feed Antibiotics Active ingredient Trade/Product names Avilamycin Kavault™ Bacitracin Methylene Disalicylate BMD® 30, BMD® 30 Granular A, BMD® 50 and BMD® 60 BMD/Chlortetracycline none Bacitracin Zinc Albac® 50 Granular Bambermycin Flavomycin® 4 Carbadox Mecadox® 10 Carbadox/Oxytetracycline none Aureomycin® 50 Granular, Aureomycin® 50 Granular A, Aureomycin® 50 Granular Blend, Aureomycin® 90 Granular, Aureomycin® 90 Meal, Aureomycin® 100 Granular, ChlorMax® 50, Deracin® 50 Meal, Deracin 90® Meal, Deracin 100® Meal, Pennchlor 50®, Pennchlor 50 G®, Pennchlor 90 G®, Pennchlor 100 Chlortetracycline G® and Pennchlor 100 Hi-Flo® Aureomix® S 10/10 Granular, Aureomix® S 40/40 Granular, Aureo Chlortetracycline/Sulfamethazine S 700® Granular 35G, Pennchlor S 10/10® and Pennchlor S 40/40® Chlortetracycline/Tiamulin Denagard Plus® Florfenicol Nuflor®, Lincomycin Lincomix® 20 and Lincomix® 50 Narasin Skycis™ 100 Neomycin/Terramycin Neo-Terramycin® 50/50 and Neo-Terramycin® 100/100 Neomycin/Oxytetracycline Neo-Oxy 10/10®, Neo-Oxy 50/50® Pennox 100 Hi-Flo®, Pennox 200 Hi-Flo®, Pennox 50®, Terramycin® 50, Terramycin® 100, Terramycin® 200 and Oxytetracycline Terramycin® 200 Granular Tiamulin Denagard® 10 Tilmicosin Pulmotil® 18, Pulmotil® 90 and Tilmovet® 90 Tylosin Tylan™ 40, Tylan™ 100 and Tylovet® 100 Tylosin/Sulfamethazine Tylan™ 40 Sulfa-G™, Tylvalosin Aivlosin® 17% Virginiamycin Stafac® 20 and Stafac® 50 .
Recommended publications
  • Survey of Tiamulin+Oxytetracyclinein Control of CRD Complex Due to La Sota Vaccine in Broiler Chickens
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library European Journal of Zoological Research, 2013, 2 (4): 45-49 (http://scholarsresearchlibrary.com/archive.html) ISSN: 2278–7356 Survey of Tiamulin+Oxytetracyclinein control of CRD complex due to La Sota vaccine in broiler chickens Adel Feizi Department of Clinical Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran _____________________________________________________________________________________________ ABSTRACT Mycoplasma gallisepticum (MG) is one of the most important diseases of poultry industry in Iran and all over the world. Mortality, poor weight gain and increasing of feed conversion ratio (FCR) were seen in MG infected flocks. Several drugs are used for prevention and control of MG, the purpose of this study was to investigateoxytetracycline + Tiamulinefficacy on MG, and its role on broilers performance.In this study, 240 Ross 308 broilers divided in 2 groups. In one of the groups, oxytetracycline + Tiamulinwere used in days 21 to 30 following La Sota vaccination for controlling vaccination reaction and in the secondgroup, placebo was used and that group mentioned as a control group. Gross lesions, mortality, and growth parameters include body weight gain,feed intake and FCR were calculated in all groups weekly after 21 st day.Results showed that in treatment groups mortality percent was significantly (p<0.05) lower than control group and pericarditis, perihepatitis and airsacculitis was sever in control groups in comparison to antibiotic treated groups. Also body weight and FCR was significantly were different between control group and oxytetracycline + Tiamulin group (p<0.05).It can be concluded that usage of these antibiotics simultaneously could prevent vaccination reaction due to La Sota vaccine and also following MG complications, economical losses in poultry and finally it can be improve broilers performance Key words: Vaccination Reaction, Mycoplasma Gallisepticum, Oxytetracycline, Tiamulin, Ross 308.
    [Show full text]
  • National Antibiotic Consumption for Human Use in Sierra Leone (2017–2019): a Cross-Sectional Study
    Tropical Medicine and Infectious Disease Article National Antibiotic Consumption for Human Use in Sierra Leone (2017–2019): A Cross-Sectional Study Joseph Sam Kanu 1,2,* , Mohammed Khogali 3, Katrina Hann 4 , Wenjing Tao 5, Shuwary Barlatt 6,7, James Komeh 6, Joy Johnson 6, Mohamed Sesay 6, Mohamed Alex Vandi 8, Hannock Tweya 9, Collins Timire 10, Onome Thomas Abiri 6,11 , Fawzi Thomas 6, Ahmed Sankoh-Hughes 12, Bailah Molleh 4, Anna Maruta 13 and Anthony D. Harries 10,14 1 National Disease Surveillance Programme, Sierra Leone National Public Health Emergency Operations Centre, Ministry of Health and Sanitation, Cockerill, Wilkinson Road, Freetown, Sierra Leone 2 Department of Community Health, Faculty of Clinical Sciences, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone 3 Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, 1211 Geneva, Switzerland; [email protected] 4 Sustainable Health Systems, Freetown, Sierra Leone; [email protected] (K.H.); [email protected] (B.M.) 5 Unit for Antibiotics and Infection Control, Public Health Agency of Sweden, Folkhalsomyndigheten, SE-171 82 Stockholm, Sweden; [email protected] 6 Pharmacy Board of Sierra Leone, Central Medical Stores, New England Ville, Freetown, Sierra Leone; [email protected] (S.B.); [email protected] (J.K.); [email protected] (J.J.); [email protected] (M.S.); [email protected] (O.T.A.); [email protected] (F.T.) Citation: Kanu, J.S.; Khogali, M.; 7 Department of Pharmaceutics and Clinical Pharmacy & Therapeutics, Faculty of Pharmaceutical Sciences, Hann, K.; Tao, W.; Barlatt, S.; Komeh, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown 0000, Sierra Leone 8 J.; Johnson, J.; Sesay, M.; Vandi, M.A.; Directorate of Health Security & Emergencies, Ministry of Health and Sanitation, Sierra Leone National Tweya, H.; et al.
    [Show full text]
  • 4. Antibacterial/Steroid Combination Therapy in Infected Eczema
    Acta Derm Venereol 2008; Suppl 216: 28–34 4. Antibacterial/steroid combination therapy in infected eczema Anthony C. CHU Infection with Staphylococcus aureus is common in all present, the use of anti-staphylococcal agents with top- forms of eczema. Production of superantigens by S. aureus ical corticosteroids has been shown to produce greater increases skin inflammation in eczema; antibacterial clinical improvement than topical corticosteroids alone treatment is thus pivotal. Poor patient compliance is a (6, 7). These findings are in keeping with the demon- major cause of treatment failure; combination prepara- stration that S. aureus can be isolated from more than tions that contain an antibacterial and a topical steroid 90% of atopic eczema skin lesions (8); in one study, it and that work quickly can improve compliance and thus was isolated from 100% of lesional skin and 79% of treatment outcome. Fusidic acid has advantages over normal skin in patients with atopic eczema (9). other available topical antibacterial agents – neomycin, We observed similar rates of infection in a prospective gentamicin, clioquinol, chlortetracycline, and the anti- audit at the Hammersmith Hospital, in which all new fungal agent miconazole. The clinical efficacy, antibac- patients referred with atopic eczema were evaluated. In terial activity and cosmetic acceptability of fusidic acid/ a 2-month period, 30 patients were referred (22 children corticosteroid combinations are similar to or better than and 8 adults). The reason given by the primary health those of comparator combinations. Fusidic acid/steroid physician for referral in 29 was failure to respond to combinations work quickly with observable improvement prescribed treatment, and one patient was referred be- within the first week.
    [Show full text]
  • SDS: Neomycin and Polymyxin B Sulfates and Bacitracin Zinc Ophthalmic Ointment, USP SAFETY DATA SHEET
    SDS: Neomycin and Polymyxin B Sulfates and Bacitracin Zinc Ophthalmic Ointment, USP SAFETY DATA SHEET 1. Identification Product Identifier: Neomycin and Polymyxin B Sulfates and Bacitracin Zinc Ophthalmic Ointment, USP Synonyms: Bacitracins, zinc complex, Neomycin B Sulfates, Polymyxin B Sulfates. National Drug Code (NDC): 17478-235-35 Recommended Use: Pharmaceutical. Company: Akorn, Inc. 1925 West Field Court, Suite 300 Lake Forest, Illinois 60045 Contact Telephone: 1-800-932-5676 E mail: [email protected] Emergency Phone Number: CHEMTREC 1-800-424-9300 (U.S. and Canada) 2. Hazard(s) Identification Physical Hazards: Not classifiable. Health Hazards: Not classifiable. Symbol(s): None. Signal Word: None. Hazard Statement(s): None. Precautionary Statement(s): None. Hazards Not Otherwise Classified: Not classifiable. Supplementary Information: While this material is not classifiable as hazardous under the OSHA standard, this SDS contains valuable information critical to safe handling and proper use of the product. This SDS should be retained and available for employees and other users of this product. 3. Composition/Information on Ingredients Chemical Name CAS Synonyms Chemical Formula Molecular Percentage Number Weight Neomycin Sulfate 1405-10-3 Neomycin B C23H46N6O13•3H2SO4 908.89 0.35% Sulfate Polymyxin B Sulfate 1405-20-5 Polymyxin B C43H82N16O12•xH2O4S 1701.97 10,000 Units Sulfate of Polymyxin B * The formula also contains Bacitracin Zinc equal to 400 units of Bacitracin units, and White Petrolatum. 1 of 8 SDS: Neomycin and Polymyxin B Sulfates and Bacitracin Zinc Ophthalmic Ointment, USP 4. First Aid Measures Ingestion: May cause irritation and hypersensitivity in some individuals. Ingestion of large quantities may induce gastric disturbances.
    [Show full text]
  • Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks
    processes Review Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks Manuel Conde-Cid 1, Avelino Núñez-Delgado 2 , María José Fernández-Sanjurjo 2 , Esperanza Álvarez-Rodríguez 2, David Fernández-Calviño 1,* and Manuel Arias-Estévez 1 1 Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; [email protected] (M.C.-C.); [email protected] (M.A.-E.) 2 Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; [email protected] (A.N.-D.); [email protected] (M.J.F.-S.); [email protected] (E.Á.-R.) * Correspondence: [email protected] Received: 30 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Veterinary antibiotics are widely used worldwide to treat and prevent infectious diseases, as well as (in countries where allowed) to promote growth and improve feeding efficiency of food-producing animals in livestock activities. Among the different antibiotic classes, tetracyclines and sulfonamides are two of the most used for veterinary proposals. Due to the fact that these compounds are poorly absorbed in the gut of animals, a significant proportion (up to ~90%) of them are excreted unchanged, thus reaching the environment mainly through the application of manures and slurries as fertilizers in agricultural fields. Once in the soil, antibiotics are subjected to a series of physicochemical and biological processes, which depend both on the antibiotic nature and soil characteristics. Adsorption/desorption to soil particles and degradation are the main processes that will affect the persistence, bioavailability, and environmental fate of these pollutants, thus determining their potential impacts and risks on human and ecological health.
    [Show full text]
  • Neomycin, Polymyxin B, and Dexamethasone
    PATIENT & CAREGIVER EDUCATION Neomycin, Polymyxin B, and Dexamethasone This information from Lexicomp® explains what you need to know about this medication, including what it’s used for, how to take it, its side effects, and when to call your healthcare provider. Brand Names: US Maxitrol Brand Names: Canada Dioptrol; Maxitrol What is this drug used for? It is used to treat or prevent eye infections. What do I need to tell the doctor BEFORE my child takes this drug? If your child is allergic to this drug; any part of this drug; or any other drugs, foods, or substances. Tell the doctor about the allergy and what signs your child had. If your child has any of these health problems: A fungal infection, TB (tuberculosis), or viral infection of the eye. This is not a list of all drugs or health problems that interact with this drug. Tell the doctor and pharmacist about all of your child’s drugs (prescription or OTC, natural products, vitamins) and health problems. You must check to make Neomycin, Polymyxin B, and Dexamethasone 1/6 sure that it is safe to give this drug with all of your child’s other drugs and health problems. Do not start, stop, or change the dose of any drug your child takes without checking with the doctor. What are some things I need to know or do while my child takes this drug? Tell all of your child’s health care providers that your child is taking this drug. This includes your child’s doctors, nurses, pharmacists, and dentists.
    [Show full text]
  • A Diverse Intrinsic Antibiotic Resistome from a Cave Bacterium
    ARTICLE Received 5 Jul 2016 | Accepted 1 Nov 2016 | Published 8 Dec 2016 DOI: 10.1038/ncomms13803 OPEN A diverse intrinsic antibiotic resistome from a cave bacterium Andrew C. Pawlowski1, Wenliang Wang1, Kalinka Koteva1, Hazel A. Barton2, Andrew G. McArthur1 & Gerard D. Wright1 Antibiotic resistance is ancient and widespread in environmental bacteria. These are there- fore reservoirs of resistance elements and reflective of the natural history of antibiotics and resistance. In a previous study, we discovered that multi-drug resistance is common in bacteria isolated from Lechuguilla Cave, an underground ecosystem that has been isolated from the surface for over 4 Myr. Here we use whole-genome sequencing, functional genomics and biochemical assays to reveal the intrinsic resistome of Paenibacillus sp. LC231, a cave bacterial isolate that is resistant to most clinically used antibiotics. We systematically link resistance phenotype to genotype and in doing so, identify 18 chromosomal resistance elements, including five determinants without characterized homologues and three mechanisms not previously shown to be involved in antibiotic resistance. A resistome comparison across related surface Paenibacillus affirms the conservation of resistance over millions of years and establishes the longevity of these genes in this genus. 1 Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1. 2 Department of Biology, University of Akron, Akron, Ohio 44325, USA. Correspondence and requests for materials should be addressed to G.D.W. (email: [email protected]). NATURE COMMUNICATIONS | 7:13803 | DOI: 10.1038/ncomms13803 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13803 nderstanding the evolution and origins of antibiotic rhizophila (formerly identified as Micrococcus luteus) resistance genes is vital to predicting, preventing and (Supplementary Tables 1 and 2).
    [Show full text]
  • Use of Antibiotics to Prevent Calf Diarrhea and Septiceinia
    PEER REVIEWED Use of Antibiotics to Prevent Calf Diarrhea and Septiceinia Peter D. Constable, BVSc, PhD, DACVIM Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802 Abstract l'oxytetracycline (0.15 to 6.0 mg/lb [0.32 to 13.2 mg/kg] au 24 h, per os) sont efficaces dans le traitement de la This article reviews studies related to the use of diarrhee chez les veaux et permettent un accroissement antimicrobial agents to prevent calf diarrhea and septi­ du taux de croissance des veaux nourris au lait. De cemia, and discusses whether prophylactic administra­ plus, la chlortetracycline permet la diminution du taux tion of antibiotics in neonatal calves is effective and de mortalite lorsque administree chez les veaux indicated. Orally administered chlortetracycline, oxytet­ nouveau-nes pour prevenir la diarrhee. 11 n'y a pas racycline, tetracycline and neomycin have label claims d'antibiotiques qui promettent de prevenir la in the US for the "control" or "aid in the control" of calf septicemie chez les veaux. Paree qu'il ne semble pas diarrhea caused by bacteria susceptible to the antibi­ exister d'etudes sur l'efficacite de la tetracycline et de otic. Chlortetracycline and oxytetracycline (0.15 to 6.0 la neomycine et parce que !'utilisation hors homologa­ mg/lb [0.32 to 13.2 mg/kg], q 24 h, PO) are efficacious tion des medicaments. n'est pas permise pour la for preventing calf diarrhea and increasing growth rate prevention routiniere des maladies ou !'augmentation in milk-fed calves, and chlortetracycline (3 mg/lb [7 mg/ du taux de croissance et du taux de conversion kg], q 12 h, PO) is efficacious for decreasing mortality alimentaire, selon le code de l'AMDUCA de 1994, seule when administered to prevent diarrhea in neonatal !'administration orale de chlortetracycline et calves.
    [Show full text]
  • Comparison of Thimerosal Effectiveness in the Formulation of Eye Drops Containing Neomycin Sulfate and Chloramphenicol
    International Journal of Applied Pharmaceutics ISSN- 0975-7058 Vol 11, Issue 1, 2019 Original Article COMPARISON OF THIMEROSAL EFFECTIVENESS IN THE FORMULATION OF EYE DROPS CONTAINING NEOMYCIN SULFATE AND CHLORAMPHENICOL MARLINE ABDASSAH1, SRI AGUNG FITRI KUSUMA2* 1Departement of Pharmaceutics, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, Indonesia 45363, 2Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, Indonesia 45363 Email: [email protected] Received: 27 Sep 2018, Revised and Accepted: 19 Nov 2018 ABSTRACT Objective: This study was aimed to compare the preservative efficacy of thimerosal in eye drops formulation containing neomycin sulfate and chloramphenicol as the active agents. Methods: Determination of thimerosal concentration in combinations with chloramphenicol and neomycin sulfate was carried out using the agar diffusion method. Then the thimerosal ineffective and minimal concentration was formulated into eye drops, each with 0.5% neomycin sulfate and 0.5% chloramphenicol as the active ingredient. Evaluation of eye drops was carried out for 28 d, which included: visual observation, pH measurement, sterility, and effectiveness test. Results: Thimerosal at a minimum concentration of 0.001% remain to provide antibacterial activity against common eyes contaminants. Both eyes drops containing neomycin sulfate, and chloramphenicol resulted in clear solution, sterile, and stable in the pH and antibacterial potency,showed the efficacy of thimerosal’s role in eye drops at the lowest concentration. But, the thimerosal stability as a preservative agent was affected by the pH values of the eye drops solution. Therefore, the effectivity of thimerosal in chloramphenicol (pH 7.19-7.22) was better than neomycin sulfate (6.45- 6.60).
    [Show full text]
  • BD BBL™ Sabouraud Brain Heart Infusion Agar Slants with Chloramphenicol and Gentamicin, Pkg
    BBL™ Sabouraud Brain Heart Infusion Agar Slants with Chloramphenicol and Gentamicin 8806701 • Rev. 02 • April 2015 QUALITY CONTROL PROCEDURES I INTRODUCTION This medium is used in qualitative procedures for the selective isolation and cultivation of pathogenic fungi from clinical and nonclinical specimens. II PERFORMANCE TEST PROCEDURE 1. Inoculate representative samples with the cultures listed below. a. For B. dermatitidis and T. mentagrophytes inoculate directly using a 0.01 mL loopful of fungal broth culture. b. For C. albicans and E. coli inoculate using 0.01 mL of saline suspensions diluted to yield 103 – 104 CFUs. 2. Incubate tubes with loosened caps at 25 ± 2 °C for up to 7 days in an aerobic atmosphere. 3. Expected Results Organisms ATCC® Recovery *Blastomyces dermatitidis 56218 Fair to heavy growth *Candida albicans 10231 Fair to heavy growth *Trichophyton mentagrophytes 9533 Fair to heavy growth *Escherichia coli 25922 Inhibition (partial to complete) *Recommended organism strain for User Quality Control. III ADDITIONAL QUALITY CONTROL 1. Examine the tubes for signs of deterioration as described under “Product Deterioration.” 2. Visually examine representative tubes to assure that any existing physical defects will not interfere with use. 3. Determine the pH potentiometrically at room temperature for adherence to the specification of 6.8 ± 0.2. 4. Incubate uninoculated representative samples at 20 – 25 °C and 30 – 35 °C and examine after 7 days for microbial contamination. PRODUCT INFORMATION IV INTENDED USE This medium is used in qualitative procedures for the selective isolation and cultivation of pathogenic fungi from clinical and nonclinical specimens. V SUMMARY AND EXPLANATION Sabouraud Brain Heart Infusion Agar is based on the formulation of Gorman.1 The combination of Brain Heart Infusion Agar and Sabouraud Dextrose Agar in this medium improves the recovery of fungi compared with the recovery on either medium individually.
    [Show full text]
  • Conjunctivitis Or Worse?
    Red Eye in Dogs and CatS: Conjunctivitis or Worse? Tracy Revoir, DVM Senior Manager of Veterinary Support, Dechra Veterinary Products It should come as no surprise that conjunctivitis is Common Causes of Conjunctivitis the most common ophthalmic disorder in dogs and cats. But because the clinical signs of conjunctivitis If you do confirm conjunctivitis, the next step is can mimic those of more serious ophthalmic identifying the cause. If both eyes are affected and diseases (glaucoma and uveitis), it’s important to abnormal clinical signs are apparent in other body confirm your diagnosis. systems, think underlying systemic disease. If only one eye is affected, rule out infection, tear film What are important clues to the severity of the deficiencies, an irritant, anatomical abnormality, condition? With conjunctivitis, the inflammation or deeper ocular disease. should be limited to the conjunctiva. Hyperemic conjunctival vessels are superficial, branching, In dogs, conjunctivitis can result from anatomical and bright red. They are movable over the deeper disorders, irritants, infection (usually bacterial), or episcleral vessels and can be blanched with topical atopy. Most bacterial infections are secondary dilute phenylephrine. With glaucoma and uveitis, the conditions, most often to allergies. In cats, herpes- episcleral vessels are engorged; they are dark red, virus and Chlamydophila felis are the most common deep, straight, and immobile and do not blanch with causes of conjunctivitis. Atopy can also be topical dilute phenylephrine. With conjunctivitis, an issue in cats. the Schirmer tear test and intraocular pressures are normal. And the cornea should be clear and no aqueous flare should be present. The pupil and Addressing the Problem pupillary responses are normal and intraocular structures should be visible.
    [Show full text]
  • Topical Antibiotics for Impetigo: a Review of the Clinical Effectiveness and Guidelines
    CADTH RAPID RESPONSE REPORT: SUMMARY WITH CRITICAL APPRAISAL Topical Antibiotics for Impetigo: A Review of the Clinical Effectiveness and Guidelines Service Line: Rapid Response Service Version: 1.0 Publication Date: February 21, 2017 Report Length: 23 Pages Authors: Rob Edge, Charlene Argáez Cite As: Topical antibiotics for impetigo: a review of the clinical effectiveness and guidelines. Ottawa: CADTH; 2017 Feb. (CADTH rapid response report: summary with critical appraisal). ISSN: 1922-8147 (online) Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document.
    [Show full text]