Systematic Identification of Recognition Motifs for the Hub Protein
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A 1.37-Mb 12P11.22-P11.21 Deletion Coincident with a 367-Kb 22Q11.2
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Taiwanese Journal of Obstetrics & Gynecology 53 (2014) 74e78 Contents lists available at ScienceDirect Taiwanese Journal of Obstetrics & Gynecology journal homepage: www.tjog-online.com Short Communication A 1.37-Mb 12p11.22ep11.21 deletion coincident with a 367-kb 22q11.2 duplication detected by array comparative genomic hybridization in an adolescent girl with autism and difficulty in self-care of menstruation Chih-Ping Chen a,b,c,d,e,f,*, Shuan-Pei Lin b,g,h,i, Schu-Rern Chern b, Peih-Shan Wu j, Jun-Wei Su a,k, Chen-Chi Lee a, Wayseen Wang b,l a Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan b Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan c Department of Biotechnology, Asia University, Taichung, Taiwan d School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan e Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan f Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan g Department of Medicine, Mackay Medical College, New Taipei City, Taiwan h Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan i Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan j Gene Biodesign Co. Ltd, Taipei, Taiwan k Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan l Department of Bioengineering, Tatung University, Taipei, Taiwan article info abstract Article history: Objective: To present an array comparative genomic hybridization (aCGH) characterization of a 12p11.22 Accepted 21 October 2013 ep11.21 microdeletion and 22q11.2 microduplication in an adolescent girl with autism, mental retar- dation, facial dysmorphism, microcephaly, behavior problems, and an apparently balanced reciprocal Keywords: translocation of t(8;12)(q24.3;p11.2). -
9, 2015 Glasgow, Scotland, United Kingdom Abstracts
Volume 23 Supplement 1 June 2015 www.nature.com/ejhg European Human Genetics Conference 2015 June 6 - 9, 2015 Glasgow, Scotland, United Kingdom Abstracts EJHG_OFC.indd 1 4/1/2006 10:58:05 AM ABSTRACTS European Human Genetics Conference joint with the British Society of Genetics Medicine June 6 - 9, 2015 Glasgow, Scotland, United Kingdom Abstracts ESHG 2015 | GLASGOW, SCOTLAND, UK | WWW.ESHG.ORG 1 ABSTRACTS Committees – Board - Organisation European Society of Human Genetics ESHG Office Executive Board 2014-2015 Scientific Programme Committee European Society President Chair of Human Genetics Helena Kääriäinen, FI Brunhilde Wirth, DE Andrea Robinson Vice-President Members Karin Knob Han Brunner, NL Tara Clancy, UK c/o Vienna Medical Academy Martina Cornel, NL Alser Strasse 4 President-Elect Yanick Crow, FR 1090 Vienna Feliciano Ramos, ES Paul de Bakker, NL Austria Secretary-General Helene Dollfus, FR T: 0043 1 405 13 83 20 or 35 Gunnar Houge, NO David FitzPatrick, UK F: 0043 1 407 82 74 Maurizio Genuardi, IT E: [email protected] Deputy-Secretary-General Daniel Grinberg, ES www.eshg.org Karin Writzl, SI Gunnar Houge, NO Treasurer Erik Iwarsson, SE Andrew Read, UK Xavier Jeunemaitre, FR Mark Longmuir, UK Executive Officer Jose C. Machado, PT Jerome del Picchia, AT Dominic McMullan, UK Giovanni Neri, IT William Newman, UK Minna Nyström, FI Pia Ostergaard, UK Francesc Palau, ES Anita Rauch, CH Samuli Ripatti, FI Peter N. Robinson, DE Kristel van Steen, BE Joris Veltman, NL Joris Vermeesch, BE Emma Woodward, UK Karin Writzl, SI Board Members Liaison Members Yasemin Alanay, TR Stan Lyonnet, FR Martina Cornel, NL Martijn Breuning, NL Julie McGaughran, AU Ulf Kristoffersson, SE Pascal Borry, BE Bela Melegh, HU Thomas Liehr, DE Nina Canki-Klain, HR Will Newman, UK Milan Macek Jr., CZ Ana Carrió, ES Markus Nöthen, DE Tayfun Ozcelik, TR Isabella Ceccherini, IT Markus Perola, FI Milena Paneque, PT Angus John Clarke, UK Dijana Plaseska-Karanfilska, MK Hans Scheffer, NL Koen Devriendt, BE Trine E. -
Lineage Relationship of Gleason Patterns in Gleason Score 7 Prostate Cancer
Published OnlineFirst May 21, 2013; DOI: 10.1158/0008-5472.CAN-12-2803 Cancer Molecular and Cellular Pathobiology Research Lineage Relationship of Gleason Patterns in Gleason Score 7 Prostate Cancer Irina V. Kovtun1, John C. Cheville2, Stephen J. Murphy3, Sarah H. Johnson3, Shabnam Zarei3, Farhad Kosari3, William R. Sukov2, R. Jeffrey Karnes4, and George Vasmatzis3 Abstract Gleason score 7 (GS7) prostate cancer [tumors with both Gleason patterns 3 (GP3) and 4 (GP4)] portends a significantly more aggressive tumor than Gleason score 6 (GS6). It is, therefore, critical to understand the molecular relationship of adjacent GP3 and GP4 tumor cell populations and relate molecular abnormalities to disease progression. To decipher molecular relatedness, we used laser capture microdissection (LCM) and whole- genome amplification (WGA) to separately collect and amplify DNA from adjacent GP3 and GP4 cell populations from 14 cases of GS7 prostate cancer. We then carried out massively parallel mate-pair next generation sequencing (NGS) to examine the landscape of large chromosomal alterations. We identified four to 115 DNA breakpoints in GP3 and 17 to 480 in GP4. Our findings indicate that while GP3 and GP4 from the same tumor each possess unique breakpoints, they also share identical ones, indicating a common origin. Approximately 300 chromosomal breakpoints were localized to the regions affected in at least two tumors, whereas more than 3,000 were unique within the set of 14 tumors. TMPRSS2–ERG was the most recurrent rearrangement present in eight cases, in both GP3 and GP4. PTEN rearrangements were found in five of eight TMPRSS2–ERG fusion–positive cases in both GP3 and GP4. -
Alterações De Número De Cópias Genômicas Em Hepatoblastomas: Microarranjos Genômicos E Sequenciamento De Nova Geração
Juliana Sobral de Barros Alterações de número de cópias genômicas em hepatoblastomas: microarranjos genômicos e sequenciamento de nova geração Chromosomal copy number changes in hepatoblastomas: genomic microarrays and next generation sequencing São Paulo 2019 Juliana Sobral de Barros Alterações de número de cópias genômicas em hepatoblastomas: microarranjos genômicos e sequenciamento de nova geração Chromosomal copy number changes in hepatoblastomas: genomic microarrays and next generation sequencing Dissertação apresentada ao Departamento de Genética e Biologia Evolutiva do Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Mestre como requisito para obtenção do título de Mestre em Ciências, na área de concentração Biologia (Genética). Orientadora: Prof.ª Dr.ª Ana Cristina Victorino Krepischi EXEMPLAR CORRIGIDO O original encontra-se disponível no Instituto de Biociências. São Paulo 2019 FICHA CATALOGRÁFICA Barros, Juliana Sobral de Alterações de número de cópias genômicas em hepatoblastomas: microarranjos genômicos e sequenciamento de nova geração / Juliana Sobral de Barros; orientadora: Ana Cristina Victorino Krepischi. - São Paulo, 2019. 136 f. Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Genética e Biologia evolutiva. 1. Hepatoblastoma. 2. Alteração de número de cópias. 3. Microarranjo genômico. 4. Sequenciamento de nova geração. 5. Tumor embrionário. I. Universidade de São Paulo. Instituto de Biociências. Departamento de Genética e Biologia evolutiva. -
W O 2015/092737 a L 2 5 June 2015 (25.06.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2015/092737 A l 2 5 June 2015 (25.06.2015) P O P C T (51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07K 16/00 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/IB20 14/067076 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 18 December 2014 (18. 12.2014) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 61/ 19,340 20 December 201 3 (20. 12.20 13) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant (for all designated States except US) : NO- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, VARTIS A G [CH/CH]; Lichtstrasse 35, CH-4056 Basel SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (CH). -
XPC Is an RNA Polymerase II Cofactor Recruiting ATAC to Promoters by Interacting with E2F1
ARTICLE DOI: 10.1038/s41467-018-05010-0 OPEN XPC is an RNA polymerase II cofactor recruiting ATAC to promoters by interacting with E2F1 B. Bidon 1,2,3,4, I. Iltis1,2,3,4, M. Semer1,2,3,4, Z. Nagy1,2,3,4, A. Larnicol1,2,3,4, A. Cribier5, M. Benkirane5, F. Coin1,2,3,4, J-M. Egly1,2,3,4 & N. Le May 1,2,3,4 The DNA damage sensor XPC is involved in nucleotide excision repair. Here we show that in the absence of damage, XPC co-localizes with RNA polymerase II (Pol II) and active post- 1234567890():,; translational histone modifications marks on a subset of class II promoters in human fibro- blasts. XPC depletion triggers specific gene down-expression due to a drop in the deposition of histone H3K9 acetylation mark and pre-initiation complex formation. XPC interacts with the histone acetyltransferase KAT2A and specifically triggers the recruitment of the KAT2A- containing ATAC complex to the promoters of down-expressed genes. We show that a strong E2F1 signature characterizes the XPC/KAT2A-bound promoters and that XPC inter- acts with E2F1 and promotes its binding to its DNA element. Our data reveal that the DNA repair factor XPC is also an RNA polymerase II cofactor recruiting the ATAC coactivator complex to promoters by interacting with the DNA binding transcription factor E2F1. 1 Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163 Illkirch Cedex, 67404 C.U. Strasbourg, France. 2 Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France. 3 Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France. -
Identification and Functional Analysis of Gene Expression Changes In
Identification and Functional Analysis of Gene Expression Changes in Acute Myeloid Leukaemia KOK Chung Hoow A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy in the School of Paediatrics and Reproductive Health at the University of Adelaide August 2010 Table of Contents List of Figures ……………………………………………………………………………..... i List of Tables ………………………………………………………………………………...v List of Appendix …………………………………………………………………………....vii Abbreviations ……………………………………………………………………………...viii Abstract …………………………………………………………………………………….xii Declaration …………………………………………………………………………………xiv Acknowledgement ………………………………………………………………………….xv Chapter 1: Introduction......................................................................................................1 1.1 Acute Myeloid Leukaemia ................................................................................................. 1 1.1.1 The classification and the prognostic outcome of AML .................................................. 1 1.1.2 Targeted therapies on AML ............................................................................................. 7 1.2 Haemopoiesis: interplay between growth factor signalling and lineage-specific transcription factors ...................................................................................................................... 12 1.2.1 The importance of growth factors in haemopoiesis ....................................................... 12 1.2.2 Transcription factors that determine haemopoietic cell fates........................................ -
YEATS2 Links Histone Acetylation to Tumorigenesis of Non-Small Cell Lung Cancer
ARTICLE DOI: 10.1038/s41467-017-01173-4 OPEN YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer Wenyi Mi 1,2, Haipeng Guan3,4, Jie Lyu 5, Dan Zhao3,4, Yuanxin Xi5, Shiming Jiang1,2, Forest H. Andrews6, Xiaolu Wang1,2, Mihai Gagea 7, Hong Wen1,2, Laszlo Tora 8,9,10,11, Sharon Y.R. Dent1,2,12, Tatiana G. Kutateladze6, Wei Li 5, Haitao Li 3,4 & Xiaobing Shi 1,2,12 Recognition of modified histones by “reader” proteins constitutes a key mechanism reg- ulating diverse chromatin-associated processes important for normal and neoplastic devel- opment. We recently identified the YEATS domain as a novel acetyllysine-binding module; however, the functional importance of YEATS domain-containing proteins in human cancer remains largely unknown. Here, we show that the YEATS2 gene is highly amplified in human non-small cell lung cancer (NSCLC) and is required for cancer cell growth and survival. YEATS2 binds to acetylated histone H3 via its YEATS domain. The YEATS2-containing ATAC complex co-localizes with H3K27 acetylation (H3K27ac) on the promoters of actively tran- scribed genes. Depletion of YEATS2 or disruption of the interaction between its YEATS domain and acetylated histones reduces the ATAC complex-dependent promoter H3K9ac levels and deactivates the expression of essential genes. Taken together, our study identifies YEATS2 as a histone H3K27ac reader that regulates a transcriptional program essential for NSCLC tumorigenesis. 1 Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA. 2 Center for Cancer Epigenetics, The University of Texas M.D. -
The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors. -
Understanding Regulatory Mechanisms Underlying Stem Cells Helps to Identify Cancer Biomarkers
Understanding Regulatory Mechanisms Underlying Stem Cells Helps to Identify Cancer Biomarkers A dissertation submitted towards the degree Doctor of Engineering (Dr.-Ing) of the Faculty of Mathematics and Computer Science of Saarland University by Maryam Nazarieh Saarbrücken, June 2018 i iii Day of Colloquium Jun 28, 2018 Dean of the Faculty Prof. Dr. Sebastian Hack Chair of the Committee Prof. Dr. Hans-Peter Lenhof Reporters First reviewer Prof. Dr. Volkhard Helms Second reviewer Prof. Dr. Dr. Thomas Lengauer Academic Assistant Dr. Christina Backes Acknowledgements Firstly, I would like to thank Prof. Volkhard Helms for offering me a position at his group and for his supervision and support on the SFB 1027 project. I am grateful to Prof. Thomas Lengauer for his helpful comments. I am thankful to Prof. Andreas Wiese for his contribution and discussion. I would like to thank Prof. Jan Baumbach that allowed me to spend a training phase in his group during my PhD preparatory phase and the collaborative work which I performed with his PhD student Rashid Ibragimov where I proposed a heuristic algorithm based on the characteristics of protein-protein interaction networks for solving the graph edit dis- tance problem. I would like to thank Graduate School of Computer Science and Center for Bioinformatics at Saarland University, especially Prof. Raimund Seidel and Dr. Michelle Carnell for giving me an opportunity to carry out my PhD studies. Furthermore, I would like to thank to Prof. Helms for enhancing my experience by intro- ducing master students and working as their advisor for successfully accomplishing their master projects. -
Detection of H3k4me3 Identifies Neurohiv Signatures, Genomic
viruses Article Detection of H3K4me3 Identifies NeuroHIV Signatures, Genomic Effects of Methamphetamine and Addiction Pathways in Postmortem HIV+ Brain Specimens that Are Not Amenable to Transcriptome Analysis Liana Basova 1, Alexander Lindsey 1, Anne Marie McGovern 1, Ronald J. Ellis 2 and Maria Cecilia Garibaldi Marcondes 1,* 1 San Diego Biomedical Research Institute, San Diego, CA 92121, USA; [email protected] (L.B.); [email protected] (A.L.); [email protected] (A.M.M.) 2 Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, CA 92103, USA; [email protected] * Correspondence: [email protected] Abstract: Human postmortem specimens are extremely valuable resources for investigating trans- lational hypotheses. Tissue repositories collect clinically assessed specimens from people with and without HIV, including age, viral load, treatments, substance use patterns and cognitive functions. One challenge is the limited number of specimens suitable for transcriptional studies, mainly due to poor RNA quality resulting from long postmortem intervals. We hypothesized that epigenomic Citation: Basova, L.; Lindsey, A.; signatures would be more stable than RNA for assessing global changes associated with outcomes McGovern, A.M.; Ellis, R.J.; of interest. We found that H3K27Ac or RNA Polymerase (Pol) were not consistently detected by Marcondes, M.C.G. Detection of H3K4me3 Identifies NeuroHIV Chromatin Immunoprecipitation (ChIP), while the enhancer H3K4me3 histone modification was Signatures, Genomic Effects of abundant and stable up to the 72 h postmortem. We tested our ability to use H3K4me3 in human Methamphetamine and Addiction prefrontal cortex from HIV+ individuals meeting criteria for methamphetamine use disorder or not Pathways in Postmortem HIV+ Brain (Meth +/−) which exhibited poor RNA quality and were not suitable for transcriptional profiling. -
Integrated Transcriptome and in Vitro Analysis Revealed Anti-Proliferative
www.nature.com/scientificreports OPEN Integrated transcriptome and in vitro analysis revealed anti-proliferative efect of citral Received: 26 November 2018 Accepted: 5 March 2019 in human stomach cancer through Published: xx xx xxxx apoptosis Sri Renukadevi Balusamy1, Sivasubramanian Ramani 1, Sathishkumar Natarajan 2, Yeon Ju Kim3 & Haribalan Perumalsamy3 Cancer is the second leading cause of death globally, particularly stomach cancer is third most common causes of cancer death worldwide. Citral possesses anti-tumor activity in various cancer cell lines, However its efect toward stomach cancer and its mechanism of action is have yet to be elucidated. The goal of the present study is to elucidate the role of citral in stomach cancer using transcriptome and in vitro approaches. We performed transcriptome analysis using RNA-seq and explored its capability to persuade apoptosis in AGS human stomach cancer cell lines in vitro. Furthermore, the enrichment and KEGG pathway results suggested that there are several genes involved to induce apoptosis pathway. Furthermore, our study also demonstrated that citral arrested colony formation and migration of cancer cells signifcantly than that of untreated cells. RNA-seq revealed a total of 125 million trimmed reads obtained from both control and citral treated groups respectively. A total number of 612 diferentially expressed genes (DEGs) were identifed which includes 216 genes up-regulated and 396 genes down- regulated genes after treatment. The enrichment analysis identifed DEGs genes from transcriptome libraries including cell death, cell cycle, apoptosis and cell growth. The present study showed the signifcant inhibition efect upon citral by regulating various genes involved in signaling pathways, inhibits metastasis, colony formation and induced apoptosis both in silico and in vitro.