Pdf (781.76 K)

Total Page:16

File Type:pdf, Size:1020Kb

Pdf (781.76 K) Sohag University Sohag Medical Journal Faculty of Medicine Saussurea costus may help in the treatment of COVID-19 Mahmoud Saif-Al-Islam Tropical Medicine and Gastroenterology Department, Sohag University Hospital, Faculty of Medicine, Egypt. Abstract Coronavirus disease 2019 (COVID-19) is an emerging disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causing an ongoing pandemic and is considered as a national public health emergency. The signs and symptoms of COVID-19 vary from mild symptoms to a fulminating disease with acute respiratory distress syndrome (ARDS) and multi-organ failure, which may culminate into death with no available vaccines or specific antiviral treatments. God provides us with important medicinal plants. Here I shall shed the light on one of these plants that may help in the treatment of COVID-19 or may even cure it. Saussurea costus (S. costus) is a popular plant with medical importance, the roots of which are widely used for healing purposes throughout human history with great safety and effectiveness. Previous studies revealed the presence of many bioactive phytochemical molecules that has antiseptic, antibacterial, antifungal, antiviral, anti- inflammatory, antioxidant, anti-lipid peroxidation, immunostimulant, immunom- odulating, analgesic, bronchodilor, hepatoprotective and antihepatotoxic properties. S. Costus has immunomodulatory effects on cytokine release and has complement- inhibitor substances helpful in the treatment of some diseases related to marked activation of the complement system, like respiratory distress. Keywords: Saussurea costus, COVID-19, respiratory distress. Background: S. costus (synonymous with widely investigated6. Various compo- Saussurea lappa), belongs to family unds isolated from the plant have Asteraceae, widely distributed in diff- medicinal properties including terp- erent regions in the world; however, enes, alkaloids, anthraquinones, and numerous species are found in India1, favonoids. The plant has many terpe- in Pakistan, and some parts of nes with anti-inflammatory and antitu- Himalayas2. The plant is well-known mor properties, such as costunolide, about 2500 years ago. It is used in dihydrocostunolide, 12-methoxydihy- different ancient systems of medicine drocostunolide, dehydrocostus lactone, such as Ayurveda, Unani, and Siddha3. dihydrocostus lactone7,α-hydroxydeh- S. costus is well Known in Islamic ydrocostus lactone, β-hydroxydehy- medicine, which enlisted in the Holy drocostus lactone, lappadilactone8, Ahadith said by Prophet Muhammad betulinic acid, betulinic acid methyl (Peace be upon him). It is known in ester, mokko lactone9, reynosin, Arab countries as Al-Kost Al-Hindi4, santamarine, cynar-opicrin10, saussur- Al-Kust, and Al-Qust5, and used by eamines A-C11, alantolactone, isoalan- traditional healers since the era of tolactone, α-cycloco-stunolide12, β- Islamic civilization4. cyclocostunolide, isodihydro- In scientific literature, the biological costunolide13, 1β-hydroxy arbusculin activities of the roots of S. costus are A9, arbusculin B6. Also, it contains 6 SOHAG MEDICAL JOURNAL Saussurea costus may help in the treatment of COVID-19 Vol. 24 No. 3 July 2020 Mahmoud Saif-Al-Islam pregnenolone, β-sitosterol, daucosterol, ensin converting enzyme (ACE) 12-octadecadienoic acid14, costic acid, inhibitor (myrcene15), diuretic myrcene, p-cymene, tannin, caryophy- (friedelin15), antiedemic(caryophylline llene-oxide, octanoic acid, stigma- oxide, lupeol, taraxasterol15), antirhe- asterol, lupeol,botulin, caryophyllene, umatic (lupeol15), antidermatitis (cary- palmitic acid, oleic acid, inulin, camp- ophyllene15), anticancer3,13,24,27,39,47,51-55 hene, alphaphellandrene, hexanoic (caryophyllene oxide, caryophyllene, acid, saussurine, acetic acid, beta- costunolide, lupeol, tannin, betulin15), ionone, friedelin, taraxasterol15, and sedating16, and anticonvulsant many other constituents14,15. properties3,23,27,28,56 (myrcene15). S.costus has antiseptic16, antibacterial S. costus is used to treat, fever, head- 17,18(costicacid,dehydrocotuslactone,m ache, pain, cough, bronchial asth- yrcene,pcymene, tannin15), antif- ma16,28,57-59, bacterial infections17, dia- ungal19,20 (caryophylleneoxide, myrc- rrhea23, cholera57,59, typhoid23,24, tube- ene, octanoicacid,pcymene15), antiv- rculosis, leprosy23,24,27, vomiting, dysp- iral3,17,21-25(p-cymene,stigmasterol, epsia23,28, hiccups27, gastric tannin15), antiflu (lupeol, p-cymene15), ulcer3,23,43,44,60,61, abdominal pain23,28, anti-Epstein-barr virus(lupeol, diarrhea23, tenesmus23, arthritis3,24, rhe- betulin15), antinematodal23,26, anthe- umatoid arthritis, systemic lupus ery- lmintic23,27,28 (tannin15), anti-trypan0- themaatosus, respiratory distress41, osoma6,anti-malarial23,27 (lupeol15), chronic skin diseases57,59, itching28, anti-leishmanic (caryophyllene15), scabies, ringworm, bruises, cuts28,62,63, antiinflammatory23,29-35, antioxidant36,37 and diabetes mellitus50. (myrcene, palmitic acid, stigmasterol, tannin15), anti-lipid peroxidation37, COVID-19 antileukotriene-D4 (oleic acid15), COVID-19 has emerged as a pandemic immunostimulant37,38 (inulin15), and a public health crisis. The immunomodulating23,39-41, causative agent was named SARS- analgesic27,28,35 (myrcene, p-cymene15), CoV-2 and was detected from throat antipyretic(beta-sitosterol15), swab samples64. It enters the cells by bronchodilating16 (caryophyllene15), endocytosis after attachment to the expectorant (camphene, inulin, alpha- angiotensin-converting enzyme-2 phellandrene, caryophyllene, hexanoic (ACE2) receptors on cells in the lung, acid15), gastic cytoprotective42-45 gastrointestinal tract, blood vessels, (caryophyllene15), antiulcer (tannin15), heart, and kidney65. Many countries try choleretic (oleic acid15), cholagogic46, to find a cure or vaccine to this disease. carminative16,28,antispasmodic23,47 Clinical features of COVID-19 include (myrcene,saussurine15), tiredness, fever, dry cough, shortness antidiarrheal23,48(tannin15),antibacillary of breath, myalgia, aches, nasal (p-cymene, acetic acid, alpha-phellan- congestion, sore throat, nausea, drene, beta-ionone, beta-sitosterol, vomiting, and diarrhea66-68. About 2- caryophyllene15) astringent16, 10% of COVID-19 infected patients hepatoprotective1,3,23,24,28 (tannin, p- have diarrhea, and the RNA of the cymene15), antihepatotoxic49 (tannin15), virus could be detected in stool and hypoglycaemic23 (inulin15), anti- blood samples69. Some cases are hyperglycemic(lupeol15), asymptomatic or lacking the typical hypolipidemic50(beta-sitosterol15), symptoms of fever, dry cough and, hypocholesterolemic(inulin, oleic acid, fatigue, and the diagnosis is based on stigmasterol, beta-sitosterol15), angiot- detection of the viral RNA in throat 7 SOHAG MEDICAL JOURNAL Saussurea costus may help in the treatment of COVID-19 Vol. 24 No. 3 July 2020 Mahmoud Saif-Al-Islam swab samples70. In the majority of ARDS, pulmonary edema, septic cases, the course of infection remains shock, and organ failure can occur66. mild71,72, and the patients resolve In some patients with SARS-CoV-2, spontaneously66. The patients can there is overexpression of inflam- develop bacterial and fungal infections matory mediators which is known as as the disease progresses. Therefore, cytokine storm syndrome (CSS) which antibiotic or antifungal treatment may also occurs in other inflammatory con- be given as appropriate73. Individuals ditions such as sepsis. It is unknown with multiple comorbid conditions are who will develop the cytokine storm. prone to severe infection67. CRP, serum ferritin, and IL-6 are early Fever can be treated with antipyretic biomarkers that may predict the drugs such as paracetamol, and patients evolution of CSS. These patients have with non-productive cough can be a much higher incidence of a rapid given expectorants such as guaife- deterioration of health and death81. The nesin74. Empirical early antibiotics cytokine storm is triggered by an were given for possible bacterial pneu- imbalanced response of type 1 and type monia75. 2 T helper cells67,82. Liver injury with various degrees Covid-19 patients had a thrombosis in may occur in patients with COVID-19 the small vessels of multiple organs. and the infection may be caused SARS-CoV-2 facilitates endotheliitis directly by the virus72,76. The incidence that may precipitate thrombosis83. of liver injury ranged from 14.8-53%, Respiratory failure in COVID-19 is not detected mainly by abnormal alanine caused by ARDS alone84, but micro- aminotransferase (ALT)/ aspartate vascular thrombosis may play a role as aminotransferase (AST) levels and well. This has important diagnostic and mild elevation of bilirubin levels67. therapeutic implications85. Whether the Gamma-glutamyl transferase and thrombotic process is directly caused alkaline phosphatase were elevated in by the virus or by the local or systemic 54% and 18% of cases77. The inflammation is not completely under- incidence of liver injury in severe stood86. COVID-19 patients was higher than Hypertensive, diabetic, older patients that in mild cases67,78 and signs of and those with coronary heart disease hepatic dysfunction may occur in were at higher risk of mortality71,72. critically ill patients72. One study Patients with myocardial injury are reported that serum ALT and AST older and have a higher prevalence of levels increased up to 7590 U/L and coronary artery disease, hypertension, 1445 U/L, respectively, in a severe heart failure, and diabetes mellitus than COVID-19
Recommended publications
  • Betulinic Acid and Its Derivatives As Anti-Cancer Agent: a Review
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2014, 6 (3):47-58 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Betulinic acid and its derivatives as anti-cancer agent: A review Gomathi Periasamy*, Girma Teketelew, Mebrahtom Gebrelibanos, Biruk Sintayehu, Michael Gebrehiwot, Aman Karim and Gereziher Geremedhin Department of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia _____________________________________________________________________________________________ ABSTRACT Betulinic acid is a known natural product which has gained a lot of attention in the recent years since it exhibits a variety of biological and medicinal properties. This review provides the most important anticancer properties of betulinic acid and its derivatives. _____________________________________________________________________________________________ INTRODUCTION Cancer is a group of diseases that cause cells in the body to change and grow out of control[1]. Cancer cell growth is different from normal cell growth. Instead of dying, cancer cells keep on growing and form new cancer cells. These cancer cells can grow into (invade) other tissues, something that normal cells cannot do. In most cases the cancer cells form a tumor. But some cancers, like leukemia, rarely form tumors. Instead, these cancer cells are in the blood and bone marrow[2]. Cancer cell escape from many of the normal homeostatic mechanism that control proliferation. They invade surrounding tissues, gets into the body’s circulating system and set up areas of proliferation away from the site of their original appearance[3]. Cancer is the second most important disease leading to death in both the developing and developed countries nowadays. The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries[4].
    [Show full text]
  • Antiviral Activities of Oleanolic Acid and Its Analogues
    molecules Review Antiviral Activities of Oleanolic Acid and Its Analogues Vuyolwethu Khwaza, Opeoluwa O. Oyedeji and Blessing A. Aderibigbe * Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa; [email protected] (V.K.); [email protected] (O.O.O) * Correspondence: [email protected]; Tel.: +27-406022266; Fax: +08-67301846 Academic Editors: Patrizia Ciminiello, Alfonso Mangoni, Marialuisa Menna and Orazio Taglialatela-Scafati Received: 27 July 2018; Accepted: 5 September 2018; Published: 9 September 2018 Abstract: Viral diseases, such as human immune deficiency virus (HIV), influenza, hepatitis, and herpes, are the leading causes of human death in the world. The shortage of effective vaccines or therapeutics for the prevention and treatment of the numerous viral infections, and the great increase in the number of new drug-resistant viruses, indicate that there is a great need for the development of novel and potent antiviral drugs. Natural products are one of the most valuable sources for drug discovery. Most natural triterpenoids, such as oleanolic acid (OA), possess notable antiviral activity. Therefore, it is important to validate how plant isolates, such as OA and its analogues, can improve and produce potent drugs for the treatment of viral disease. This article reports a review of the analogues of oleanolic acid and their selected pathogenic antiviral activities, which include HIV, the influenza virus, hepatitis B and C viruses, and herpes viruses. Keywords: HIV; influenza virus; HBV/HCV; natural product; triterpenoids; medicinal plant 1. Introduction Viral diseases remain a major problem for humankind. It has been reported in some reviews that there is an increase in the number of viral diseases responsible for death and morbidity around the world [1,2].
    [Show full text]
  • Possible Fungistatic Implications of Betulin Presence in Betulaceae Plants and Their Hymenochaetaceae Parasitic Fungi Izabela Jasicka-Misiak*, Jacek Lipok, Izabela A
    Possible Fungistatic Implications of Betulin Presence in Betulaceae Plants and their Hymenochaetaceae Parasitic Fungi Izabela Jasicka-Misiak*, Jacek Lipok, Izabela A. S´wider, and Paweł Kafarski Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland. Fax: +4 87 74 52 71 15. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 65 c, 201 – 206 (2010); received September 23/October 26, 2009 Betulin and its derivatives (especially betulinic acid) are known to possess very interesting prospects for their application in medicine, cosmetics and as bioactive agents in pharmaceu- tical industry. Usually betulin is obtained by extraction from the outer layer of a birch bark. In this work we describe a simple method of betulin isolation from bark of various species of Betulaceae trees and parasitic Hymenochaetaceae fungi associated with these trees. The composition of the extracts was studied by GC-MS, whereas the structures of the isolated compounds were confi rmed by FTIR and 1H NMR. Additionally, the signifi cant fungistatic activity of betulin towards some fi lamentous fungi was determined. This activity was found to be strongly dependent on the formulation of this triterpene. A betulin-trimyristin emul- sion, in which nutmeg fat acts as emulsifi er and lipophilic carrier, inhibited the fungal growth even in micromolar concentrations – its EC50 values were established in the range of 15 up to 50 μM depending on the sensitivity of the fungal strain. Considering the lack of fungistatic effect of betulin applied alone, the application of ultrasonic emulsifi cation with the natural plant fat trimyristin appeared to be a new method of antifungal bioassay of water-insoluble substances, such as betulin.
    [Show full text]
  • Assessment of Betulinic Acid Cytotoxicity and Mitochondrial Metabolism Impairment in a Human Melanoma Cell Line
    International Journal of Molecular Sciences Article Assessment of Betulinic Acid Cytotoxicity and Mitochondrial Metabolism Impairment in a Human Melanoma Cell Line Dorina Coricovac 1,2,† , Cristina Adriana Dehelean 1,2,†, Iulia Pinzaru 1,2,* , Alexandra Mioc 1,2,*, Oana-Maria Aburel 3,4, Ioana Macasoi 1,2, George Andrei Draghici 1,2 , Crina Petean 1, Codruta Soica 1,2, Madalina Boruga 3, Brigitha Vlaicu 3 and Mirela Danina Muntean 3,4 1 Faculty of Pharmacy, “Victor Babes, ” University of Medicine and Pharmacy Timis, oara, Eftimie Murgu Square No. 2, RO-300041 Timis, oara, Romania; [email protected] (D.C.); [email protected] (C.A.D.); [email protected] (I.M.); [email protected] (G.A.D.); [email protected] (C.P.); [email protected] (C.S.) 2 Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timis, oara, Eftimie Murgu Square No. 2, RO-300041 Timis, oara, Romania 3 Faculty of Medicine “Victor Babes, ” University of Medicine and Pharmacy Timis, oara, Eftimie Murgu Square No. 2, RO-300041 Timis, oara, Romania; [email protected] (O.-M.A.); [email protected] (M.B.); [email protected] (B.V.); [email protected] (M.D.M.) 4 Center for Translational Research and Systems Medicine, Faculty of Medicine,” Victor Babes, ” University of Medicine and Pharmacy Timis, oara, Eftimie Murgu Sq. no. 2, RO-300041 Timis, oara, Romania * Correspondence: [email protected] (I.P.); [email protected] (A.M.); Tel.: +40-256-494-604 † Authors with equal contribution. Citation: Coricovac, D.; Dehelean, Abstract: Melanoma represents one of the most aggressive and drug resistant skin cancers with C.A.; Pinzaru, I.; Mioc, A.; Aburel, poor prognosis in its advanced stages.
    [Show full text]
  • Review Article Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2015, Article ID 238482, 26 pages http://dx.doi.org/10.1155/2015/238482 Review Article Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development Charu Sharma,1 Bassem Sadek,2 Sameer N. Goyal,3 Satyesh Sinha,4 Mohammad Amjad Kamal,5,6 and Shreesh Ojha2 1 Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE 2Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE 3DepartmentofPharmacology,R.C.PatelInstituteofPharmaceuticalEducation&Research,Shirpur,Mahrastra425405,India 4Department of Internal Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA 5King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia 6Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia Correspondence should be addressed to Shreesh Ojha; [email protected] Received 24 April 2015; Accepted 24 August 2015 Academic Editor: Ki-Wan Oh Copyright © 2015 Charu Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are 9 numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ - tetrahydrocannabinol mediates its action through CB1/CB2 receptors.
    [Show full text]
  • Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: a Route to New Bioactive Compounds
    Review Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds Joana L. C. Sousa 1,2,*, Carmen S. R. Freire 2, Armando J. D. Silvestre 2 and Artur M. S. Silva 1,* 1 QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal 2 CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (C.S.R.F.); [email protected] (A.J.D.S.) * Correspondence: [email protected] (J.L.C.S.); [email protected] (A.M.S.S.); Tel.: +351-234-370-714 (A.M.S.S.) Received: 29 December 2018; Accepted: 17 January 2019; Published: 19 January 2019 Abstract: Betulinic acid (BA) and its natural analogues betulin (BN), betulonic (BoA), and 23- hydroxybetulinic (HBA) acids are lupane-type pentacyclic triterpenoids. They are present in many plants and display important biological activities. This review focuses on the chemical transformations used to functionalize BA/BN/BoA/HBA in order to obtain new derivatives with improved biological activity, covering the period since 2013 to 2018. It is divided by the main chemical transformations reported in the literature, including amination, esterification, alkylation, sulfonation, copper(I)-catalyzed alkyne-azide cycloaddition, palladium-catalyzed cross-coupling, hydroxylation, and aldol condensation reactions. In addition, the synthesis of heterocycle-fused BA/HBA derivatives and polymer‒BA conjugates are also addressed. The new derivatives are mainly used as antitumor agents, but there are other biological applications such as antimalarial activity, drug delivery, bioimaging, among others. Keywords: triterpenes; betulinic acid; betulin; betulonic acid; 23-hydroxybetulinic acid; synthesis; functionalization; derivatization 1.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Terpene Screening Library Item No. 9003370 • Batch No. 0611615 Panels are routinely re-evaluated to include new catalog introductions as the research evolves. Page 1 of 4 Plate Well Contents Item Number 1 A1 Unused 1 A2 Ursolic Acid 10072 1 A3 Forskolin 11018 1 A4 Betulin 11041 1 A5 Lupeol 11215 1 A6 Paxilline 11345 1 A7 β-acetyl-Boswellic Acid 11674 1 A8 Andrographolide 11679 1 A9 Bakuchiol 11684 1 A10 Betulinic Acid 11686 1 A11 β-Elemonic Acid 11712 1 A12 Unused 1 B1 Unused 1 B2 Oleanolic Acid 11726 1 B3 Neoandrographolide 11742 1 B4 Asiatic Acid 11818 1 B5 Madecassic Acid 11854 1 B6 Cafestol 13999 1 B7 Ingenol 14031 1 B8 Bilobalide 14272 1 B9 (−)-Huperzine A 14620 1 B10 Ginkgolide B 14636 1 B11 Cucurbitacin B 14820 1 B12 Unused 1 C1 Unused 1 C2 Cucurbitacin E 14821 1 C3 Polygodial 14979 1 C4 Zerumbone 15400 1 C5 Ingenol-3-angelate 16207 1 C6 Ferutinin 16554 1 C7 Limonin 16932 1 C8 Phytol 17401 1 C9 Dehydrocostus lactone 18485 1 C10 β-Elemene 19641 1 C11 Juvenile Hormone III 19646 1 C12 Unused WARNING CAYMAN CHEMICAL THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE. 1180 EAST ELLSWORTH RD SAFETY DATA ANN ARBOR, MI 48108 · USA This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.
    [Show full text]
  • Biocatalysis in the Chemistry of Lupane Triterpenoids
    molecules Review Biocatalysis in the Chemistry of Lupane Triterpenoids Jan Bachoˇrík 1 and Milan Urban 2,* 1 Department of Organic Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic; [email protected] 2 Medicinal Chemistry, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Hnˇevotínská 5, 779 00 Olomouc, Czech Republic * Correspondence: [email protected] Abstract: Pentacyclic triterpenes are important representatives of natural products that exhibit a wide variety of biological activities. These activities suggest that these compounds may represent potential medicines for the treatment of cancer and viral, bacterial, or protozoal infections. Naturally occurring triterpenes usually have several drawbacks, such as limited activity and insufficient solubility and bioavailability; therefore, they need to be modified to obtain compounds suitable for drug development. Modifications can be achieved either by methods of standard organic synthesis or with the use of biocatalysts, such as enzymes or enzyme systems within living organisms. In most cases, these modifications result in the preparation of esters, amides, saponins, or sugar conjugates. Notably, while standard organic synthesis has been heavily used and developed, the use of the latter methodology has been rather limited, but it appears that biocatalysis has recently sparked considerably wider interest within the scientific community. Among triterpenes, derivatives of lupane play important roles. This review therefore summarizes the natural occurrence and sources of lupane triterpenoids, their biosynthesis, and semisynthetic methods that may be used for the production of betulinic acid from abundant and inexpensive betulin. Most importantly, this article compares chemical transformations of lupane triterpenoids with analogous reactions performed by Citation: Bachoˇrík,J.; Urban, M.
    [Show full text]
  • Beta-Sitosterol [BSS] and Betasitosterol Glucoside [BSSG] As an Adjuvant in the Treatment of Pulmonary Tuberculosis Patients.” TB Weekly (4 Mar 1996)
    Saw Palmetto (Serenoa repens) and One of Its Constituent Sterols -Sitosterol [83-46-5] Review of Toxicological Literature Prepared for Errol Zeiger, Ph.D. National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, North Carolina 27709 Contract No. N01-ES-65402 Submitted by Raymond Tice, Ph.D. Integrated Laboratory Systems P.O. Box 13501 Research Triangle Park, North Carolina 27709 November 1997 EXECUTIVE SUMMARY The nomination of saw palmetto and -sitosterol for testing is based on the potential for human exposure and the limited amount of toxicity and carcinogenicity data. Saw palmetto (Serenoa repens), a member of the palm family Arecaceae, is native to the West Indies and the Atlantic Coast of North America, from South Carolina to Florida. The plant may grow to a height of 20 feet (6.10 m), with leaves up to 3 feet (0.914 m) across. The berries are fleshy, about 0.75 inch (1.9 cm) in diameter, and blue-black in color. Saw palmetto berries contain sterols and lipids, including relatively high concentrations of free and bound sitosterols. The following chemicals have been identified in the berries: anthranilic acid, capric acid, caproic acid, caprylic acid, - carotene, ferulic acid, mannitol, -sitosterol, -sitosterol-D-glucoside, linoleic acid, myristic acid, oleic acid, palmitic acid, 1-monolaurin and 1-monomyristin. A number of other common plants (e.g., basil, corn, soybean) also contain -sitosterol. Saw palmetto extract has become the sixth best-selling herbal dietary supplement in the United States. In Europe, several pharmaceutical companies sell saw palmetto-based over-the-counter (OTC) drugs for treating benign prostatic hyperplasia (BPH).
    [Show full text]
  • Bright” Future?
    UNIVERSITÀ DEGLI STUDI DEL PIEMONTE ORIENTALE “AMEDEO AVOGADRO” DIPARTIMENTO DI SCIENZE DEL FARMACO Dottorato di Ricerca in Chemistry and Biology XXXI cycle PENTACYCLIC TRITERPENIC ACIDS AS MODULATORS OF TRANSCRIPTION FACTORS: OLD SCAFFOLDS WITH A “BRIGHT” FUTURE? Federica Rogati Supervised by Prof. Alberto Minassi Ph.D program co-ordinator Prof. Guido Lingua UNIVERSITÀ DEGLI STUDI DEL PIEMONTE ORIENTALE “AMEDEO AVOGADRO” DIPARTIMENTO DI SCIENZE DEL FARMACO Dottorato di Ricerca in Chemistry and Biology XXXI cycle PENTACYCLIC TRITERPENIC ACIDS AS MODULATORS OF TRANSCRIPTION FACTORS: OLD SCAFFOLDS WITH A “BRIGHT” FUTURE? Federica Rogati Supervised by Prof. Alberto Minassi Ph.D program co-ordinator Prof. Guido Lingua ai miei Nonni, ai miei angeli “una nave è al sicuro nel porto, ma questo non è il posto per cui le navi sono fatte” William G.T Shedd ~ CONTENTS ~ Preface 1 CHAPTER 1: DEOXYGENATION OF URSOLIC, OLEANOLIC AND 9 BETULINIC ACID TO THEIR CORRESPONDING C-28 METHYL DERIVATIVES (α-AMYRIN, β-AMYRIN, LUPEOL) 1.1 Introduction 10 1.2 Rationale of the project 13 1.3 Results and discussion 15 1.3.1 Chemistry 15 1.3.2 Biological evaluation 19 1.3.3 Conclusions 19 1.4 Experimental section 20 1.5 Bibliography 25 CHAPTER 2: TRITERPENOID HYDROXAMATES AS HIF PROLYL 27 HYDROLASE INHIBITORS 2.1 Introduction 28 2.2 Rationale of the project 32 2.3 Results and discussion 33 2.3.1 Chemistry 33 2.3.2 Biological evaluation 46 2.3.3 Conclusions 61 2.4 Experimental section 62 i 2.5 Bibliography 76 CHAPTER 3: STRIGOTERPENOIDS, A CLASS OF CROSS-KINGDOM 81 STRESS RESPONSE MODULATORS 3.1 Introduction 82 3.2 Rationale of the project 90 3.3 Results and discussion 94 3.3.1 Chemistry 94 3.3.2 Biological evaluation 101 3.3.3 Conclusions 104 3.4 Experimental section 105 3.5 Bibliography 118 CHAPTER 4: SYNTHESIS OF 1,2,3- TRIAZOLE ANALOGUES OF 121 ANTI-HIV DRUG BEVIRIMAT 4.1 Introduction 122 4.2 Rationale of the project 131 4.3 Results and discussion 132 4.3.1 Chemistry 132 4.3.2 Conclusions 139 4.4 Experimental section 140 4.5 Bibliography 151 5.
    [Show full text]
  • Mitochondrial Ion Channels As Oncological Targets
    Oncogene (2014) 33, 5569–5581 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW Mitochondrial ion channels as oncological targets L Leanza1, M Zoratti2, E Gulbins3 and I Szabo1 Mitochondria, the key bioenergetic intracellular organelles, harbor a number of proteins with proven or hypothetical ion channel functions. Growing evidence points to the important contribution of these channels to the regulation of mitochondrial function, such as ion homeostasis imbalances profoundly affecting energy transducing processes, reactive oxygen species production and mitochondrial integrity. Given the central role of mitochondria in apoptosis, their ion channels with the potential to compromise mitochondrial function have become promising targets for the treatment of malignancies. Importantly, in vivo evidence demonstrates the involvement of the proton-transporting uncoupling protein, a mitochondrial potassium channel, the outer membrane located porin and the permeability transition pore in tumor progression/control. In this review, we focus on mitochondrial channels that have been assigned a definite role in cell death regulation and possess clear oncological relevance. Overall, based on in vivo and in vitro genetic and pharmacological evidence, mitochondrial ion channels are emerging as promising targets for cancer treatment. Oncogene (2014) 33, 5569–5581; doi:10.1038/onc.2013.578; published online 27 January 2014 Keywords: mitochondria; ion channels; direct targeting; pharmacology MITOCHONDRIA; ION HOMEOSTASIS AND APOPTOSIS; with the idea that the perturbation of ion homeostasis within IMPACTS ON SIGNALING AND CANCER mitochondria leads to cancer cell death via reactive oxygen The mitochondrial inner membrane (IMM) surrounding the matrix species (ROS) production, mitochondrial calcium overload and permits the formation of an electrochemical proton gradient that metabolism changes, but other mechanisms of action might also drives aerobic adenosine triphosphate (ATP) synthesis, and the exist.
    [Show full text]
  • Extraction of High Value Triterpenic Acids from Eucalyptus Globulus Biomass Using Hydrophobic Deep Eutectic Solvents
    molecules Article Extraction of High Value Triterpenic Acids from Eucalyptus globulus Biomass Using Hydrophobic Deep Eutectic Solvents Nuno H. C. S. Silva , Eduarda S. Morais, Carmen S. R. Freire, Mara G. Freire and Armando J. D. Silvestre * CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; [email protected] (N.H.C.S.S.); [email protected] (E.S.M.); [email protected] (C.S.R.F.); [email protected] (M.G.F.) * Correspondence: [email protected] Academic Editor: Mert Atilhan Received: 9 December 2019; Accepted: 31 December 2019; Published: 4 January 2020 Abstract: Triterpenic acids (TTAs), known for their promising biological properties, can be found in different biomass sources and related by-products, such as Eucalyptus globulus bark, and have been extracted using organic volatile solvents such as dichloromethane. Recently, deep eutectic solvents (DES) have been identified as promising alternatives for the extraction of value-added compounds from biomass. In the present work, several hydrophobic DES were tested for the extraction of TTAs from E. globulus bark. Initial solubility studies revealed that DES based on menthol and thymol as the most promising solvents for these compounds given the highest solubilities obtained for ursolic acid (UA) at temperatures ranging from room temperature up to 90 ◦C. Accordingly, an eutectic mixture of menthol:thymol (1:2) was confirmed as the best candidate for the TTAs extraction from E. globulus outer bark, leading to extraction yields (weight of TTA per weight of biomass) at room temperature of 1.8 wt% for ursolic acid, 0.84 wt% for oleanolic acid and 0.30 wt% for betulinic acid.
    [Show full text]