Land and Resource Management Plan

Total Page:16

File Type:pdf, Size:1020Kb

Land and Resource Management Plan , Department of Agriculture Land and Resource Forest Service Pacific Management Plan Northwest Region Deschutes National Forest [Deschutes National Forest Deschutes National Forest Land and Resource Management Plan This National Forest Land and Resource Management Plan (Forest Plan or Pian) was developed to guide all natural resource management activities and establish standards/guidelines for the Deschutes National Forest. The purpose of the Plan is to provide for the use and protectionof Forest resources, fulfill legislative requirements, and address local, regional, and national issues and concems. To accomplish this, the Forest Plan: Establishes the management direction and associated long-range goals and objectives for the Forest for the next 10 to 15 years; Sets the allowable sale quantity for timber and identlfies land sultable for timber management; Specifies standards/guldelines for Forest-wide application; Creates management areas with goals, themes and objectives and additional standards/guideiines: Calls for a monitoring and evaluation program to ensure that the direction is carried out. It includes measures which must be taken if outputs and environmental effects are other than those which were predicted. This Forest Plan has been prepared according to Secretary of Agriculture regulations (36 CFR 219) which are based on the Forest and Rangeland Renewable Resources Planning Act (RPA) as amended by the National Forest Management Act of 1976 (NFMA). The plan has aim been developed in accordance with regulations (40 CFR 1500) for implementing the National Environmental Policy Act (NEPA). Because this plan is considered a major Federal action significantly affecting the qualrty of the human environment, a detailed environmental impact statement has been prepared as required by the NEPA. The Forest Plan represents the Preferred Altemative as identfied in the Final Environmental Impact Statement (FEIS or EIS) for the Plan. If any particular provision of this Forest Plan or its application to any person or circumstance, is hela invalid, the remainder of the Forest Plan and ts application to other persons or circumstances shall not be affected thereby. Addtional information about this plan is available from the: Forest Supervisor Deschutes National Forest 1645 Highway 20 East Bend, OR. 97701 TABLE OF C0"TS PAGE 1- Chapter 1 Introduction to the Forest Plan ........................... 1 Introduction/Purpose of the Forest Plan .......................... 1 Relationship to the EIS and ROD ................................... 1 Relationship to Other Plans ..................................... 1 Relationship to Special Area Plans .............................. 2 Relationship to FEIS for Managing Competing ti Unwanted Vegetation.2 Plan Structure and Organization ................................ 2 Forest Description........................................... 3 Map 1 Deschutes National Forest Location Map ..................... 4 PAGE 2- Chapter 2 Summary of the Analysis of the Management Situation .......1 Introduction ................................................... 1 Social Economic Overview ......................................... 1 Population ................................................. 1 Local Economy ............................................ 2 Agriculture ............................................... 2 Recreation and Tourism ............................. 2 Manufacturing ....................................... 2 Primary Processing or Milling ..................... 2 Secondary Manufacturing ........................ 2 Social Environment ............................................ 3 Rural Industrial Communities ................................ 3 Rural Recreation and Residential Communities ..................3 Central Oregon Urban Center .................................. 3 Westside Communities ....................................... 3 Resource Supply Conditions ................................... 4 Resource Demand Projections ..................................... 7 Recreation .................................................. 7 Timber .................................................... 7 Range ............................................... 9 Wildlife ................................................ 9 Information and Research Needs ................................. 11 Long-term Site Productivity (LTSP) ......................... 11 Uneven-aged Management .................................. 11 Growth and Yield .......................................... 11 Forest Insects and Diseases ................................. 11 Ponderosa Pine Products .................................... 11 Wildlife ................................................... 12 Conifer Regeneration .................................... 12 Cone Production...................................... 12 Ecology Program ......................................... 12 Additional Needs ......................................... 13 PAGE 3- Chapter 3 Response to Issues. Concerns. and Opportunities ............1 PAGE 4- Chapter 4 Forest Management Direction ............................... 1 Introduction................................................... 1 Forest Management Goals ..................................... ....2 ......... Desired Future Condition ................................... .3 Forest Management Objectives/Proposed Outputs ..................... 8 Resource Summaries .......................................... ...11 Timber ................................................ ... Recreation ......................................... ...17 Wildlife/Fisheries Habitat ................................ ...19 Range ................................................. ...20 Transportation . Construction Proiects, Nat . Funded Progr~ .22 Resea;ch Natural Areas ...........1. ...................... 28 Land Exchange Program ..................................... 28 Special Uses .............................................. 28 Forest Wide Standards/Guidelines ..................................... 31 Recreation .................................................... 31 Cave Management.(CV) ......................................... 31 Trail System Mgm.(TR) ..................................... 32 Cultural Resources.(CR) ..................................... 34 Wild & Scenic Rivers.(WS) ................................ 36 Forest Health.(FH) .............. .... .................... 36 Timber Management.(TM) ....................................... 37 Range.(RG) .................................................... 49 Wildlife.(WL). ............................................. 51 Threatened, Endangered. and Sensitive Plant Species (TE) ........60 Riparian Areas.(RP) ........................................... 61 Fisheries.(FI) ................................................... 67 Minerals.(MN) ................................................. 68 Water. Soils, Best Management Practices.(WT) ..................... 69 Soils.(SL) ................................................. 70 Fuelwood.(FL) ............................................... 71 Transportation System.(TS) .................................. 71 Fire and Fuels Mgm.(FF) ..................................... 73 Special Uses.(SU) ............. ........................... 74 Energy Resources . Oil. Gas. Geothermal.(EN) ...................77 Energy Resources - Newberry Caldera KGRA.(EN) .................83 Human Rights.(HM) ............................................. 83 Law Enforcement.(LE) ............................................. 84 Administrative Buildings and Sites.(AD) ......................... 86 Land Adjustments.(LA) .......................................... 87 Management Areas and Prescriptions................................... 88 M1 - Special Interest Areas ................................. 90 M2 - Research Natural Areas .................................... 92 M3 - Bald Eagle ................................................. 94 M4 . Northern Spotted Owl ................................... 97 M5 - Osprey ................................................. 100 M6 - Wilderness .............................................. 103 M7 - Deer Habitat .......................................... 113 ME - General Forest ......................................... 117 M9 - Scenic Views ........................................... 121 M10- Bend Municipal Watershed ................................ 132 M11- Intensive Recreation ................................... 135 M12- Dispersed Recreation ..................................... 140 M13- Winter Recreation ....................................... 143 M14- Oregon Cascade Recreation Area ........................... 146 M15- Old Growth .............................................. 149 M16- Experimental Forest ...................................... 152 M17- Wild and Scenic Rivers .................................. 155 M18- Front Country ............................................ 159 Metolius Conservation Area .......................................... 164 M19- Metolius Heritage ........................................ 165 M20- Metolius Wildlife/Primitive .............................. 169 M21- Metolius Black Butte Scenic .............................. 173 M22- Metolius Special Forest .................................. 178 M23- Metolius Special Interest ........ .................... 183 M24- Metolius Research Natural Area ........................... 185 M25- Metolius Spotted Owl ..................................... 187 M26- Metolius Scenic Views ..................................
Recommended publications
  • Factors Influencing Land Management Practices on Conservation Easement Protected Landscapes
    Society & Natural Resources An International Journal ISSN: 0894-1920 (Print) 1521-0723 (Online) Journal homepage: http://www.tandfonline.com/loi/usnr20 Factors Influencing Land Management Practices on Conservation Easement Protected Landscapes Dianne Stroman & Urs P. Kreuter To cite this article: Dianne Stroman & Urs P. Kreuter (2015) Factors Influencing Land Management Practices on Conservation Easement Protected Landscapes, Society & Natural Resources, 28:8, 891-907, DOI: 10.1080/08941920.2015.1024365 To link to this article: http://dx.doi.org/10.1080/08941920.2015.1024365 Published online: 04 Jun 2015. Submit your article to this journal Article views: 337 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=usnr20 Download by: [Texas A&M University Libraries] Date: 07 September 2016, At: 09:22 Society & Natural Resources, 28:891–907 Copyright # 2015 Taylor & Francis Group, LLC ISSN: 0894-1920 print=1521-0723 online DOI: 10.1080/08941920.2015.1024365 Factors Influencing Land Management Practices on Conservation Easement Protected Landscapes DIANNE STROMAN AND URS P. KREUTER Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas, USA The goal of this article is to investigate factors influencing conservation-oriented land management practices on land holdings with conservation easements. We report the results of a mail survey that produced responses from 251 out of a total of 518 landowners with a permanent conservation easement on their property. We predicted that landowner satisfaction with their easement and good relationships between land- owners and easement holders would be positively correlated with the amount of conservation-oriented land management practices.
    [Show full text]
  • H-1703-4, Project Management
    2 H-1703-4 PROJECT MANGEMENT HANDBOOK (Public) This page intentionally left blank. BLM Handbook Rel. 1-1711 04/09/2008 3 H-1703-4 PROJECT MANGEMENT HANDBOOK (Public) This Handbook does not create any right or benefit, or trust responsibility, substantive or procedural, enforceable at law or equity by a party, person, or any entity against the United States, its agencies or instrumentalities, its officers, or employees, or any other person or entity. This Handbook does not alter or amend any requirement under statute, regulation, or Executive Order. At the time this Handbook was written, the various hyperlinks referenced in this document were active and accurate. Because of the frequent changes to Websites, it is possible that some of the hyperlinks might become inaccurate and not link to the indicated document or Website. BLM Handbook Rel. 1-1711 04/09/2008 4 H-1703-4 PROJECT MANGEMENT HANDBOOK (Public) TABLE OF CONTENTS 1.0 INTRODUCTION 6 2.0 PROJECT MANAGEMENT OVERVIEW 7 2.1. Project Management in General 7 2.2. Applicable BLM Projects 7 2.3. Purpose and Goals of BLM Project Management 8 2.4. Laws, Regulations, and Authorities 9 3.0 PROJECT LIFECYCLE 11 3.1. Initiation and Development 11 3.1.1. Project Goals and Objectives 15 3.1.2. Site Description, Background, History 15 3.1.3. Programmatic Framework 15 3.1.4. Regulatory Framework/Enforcement Actions 16 3.1.5. Organizational Structure 17 3.1.6. Statement of Work (SOW) 17 3.1.7. Project Team Identification and Responsibilities 18 3.1.7.1.
    [Show full text]
  • Study on the Organizational Structure of Rural Land Stock Cooperative System Based on Game Theory and Network Data
    International Journal of Security and Its Applications Vol. 10, No. 3 (2016), pp.333-344 http://dx.doi.org/10.14257/ijsia.2016.10.3.29 Study on the Organizational Structure of Rural Land Stock Cooperative System based on Game Theory and Network Data Liang Xiao School of economics and management, Suzhou University, Suzhou city, Anhui province, 234000, China Abstract With the development of economy and society, the agricultural land stock cooperation system is a typical system innovation, which has a significant effect on rural production efficiency. In this paper, we research on the organizational structure of rural land stock cooperative system based on game theory; the result shows that the economic performance of land circulation stock cooperative system is much higher than other land transfer mode. At the same time, the mode of joint-stock cooperative system also has high social performance. By using game theory, we find that farmers tend to passively accept unfair treatment in enterprises based on the consideration of individual benefit, so that governments should effectively implement the macro management functions, and make punishment for the behavior of the enterprise managers' untrue disclosure. In order to improve the agricultural land stock cooperation system, the government should make clear the property right of farmland; promote the scale management of agricultural land and enhance the industrialization of rural areas. Keywords: Rural land circulation; Stock Corporation; Scale operation; Empirical analysis 1. Introduction The rural land stock cooperative system is the reform and innovation of the rural land property rights system in China, and it is a kind of land circulation mode which is explored in practice.
    [Show full text]
  • Volcanic Vistas Discover National Forests in Central Oregon Summer 2009 Celebrating the Re-Opening of Lava Lands Visitor Center Inside
    Volcanic Vistas Discover National Forests in Central Oregon Summer 2009 Celebrating the re-opening of Lava Lands Visitor Center Inside.... Be Safe! 2 LAWRENCE A. CHITWOOD Go To Special Places 3 EXHIBIT HALL Lava Lands Visitor Center 4-5 DEDICATED MAY 30, 2009 Experience Today 6 For a Better Tomorrow 7 The Exhibit Hall at Lava Lands Visitor Center is dedicated in memory of Explore Newberry Volcano 8-9 Larry Chitwood with deep gratitude for his significant contributions enlightening many students of the landscape now and in the future. Forest Restoration 10 Discover the Natural World 11-13 Lawrence A. Chitwood Discovery in the Kids Corner 14 (August 4, 1942 - January 4, 2008) Take the Road Less Traveled 15 Larry was a geologist for the Deschutes National Forest from 1972 until his Get High on Nature 16 retirement in June 2007. Larry was deeply involved in the creation of Newberry National Volcanic Monument and with the exhibits dedicated in 2009 at Lava Lands What's Your Interest? Visitor Center. He was well known throughout the The Deschutes and Ochoco National Forests are a recre- geologic and scientific communities for his enthusiastic support for those wishing ation haven. There are 2.5 million acres of forest including to learn more about Central Oregon. seven wilderness areas comprising 200,000 acres, six rivers, Larry was a gifted storyteller and an ever- 157 lakes and reservoirs, approximately 1,600 miles of trails, flowing source of knowledge. Lava Lands Visitor Center and the unique landscape of Newberry National Volcanic Monument. Explore snow- capped mountains or splash through whitewater rapids; there is something for everyone.
    [Show full text]
  • Perspectives from Hazards, Disaster, and Emergency Management
    CARRI Research Report 1 COMMUNITY AND REGIONAL RESILIENCE: PERSPECTIVES FROM HAZARDS, DISASTERS, AND EMERGENCY MANAGEMENT Susan L. Cutter,* Lindsey Barnes, Melissa Berry, Christopher Burton, Elijah Evans, Eric Tate, and Jennifer Webb Hazards and Vulnerability Research Institute Department of Geography University of South Carolina Columbia, South Carolina *Carolina Distinguished Professor and Director of the Hazards and Vulnerability Research Institute Date Published: September 2008 Community and Regional Resilience Initiative RESEARCH FINDINGS ABOUT COMMUNITY AND REGIONAL RESILIENCE One of the commitments of the Community and Regional Resilience Initiative (CARRI) is to understand what resilience is and how to get there, based on research evidence. As one resource for this effort, CARRI has commissioned a number of summaries of existing knowledge about resilience, arising from a number of different research traditions. This paper is one in a series of such summaries, which will be integrated with new resilience explorations in several CARRI partner cities and with further discussions with the research community and other stakeholders to serve as the knowledge base for the initiative. For further information about CARRI’s research component, contact Thomas J. Wilbanks, [email protected], or Sherry B. Wright, [email protected]. CARRI Research Report 1 iii Community and Regional Resilience Initiative COMMUNITY AND REGIONAL RESILIENCE INITIATIVE Oak Ridge National Laboratory’s (ORNL) Community and Regional Resilience Initiative (CARRI)
    [Show full text]
  • ECOLOGICAL PRINCIPLES for MANAGING LAND USE the Ecological Society of America’S Committee on Land Use
    ECOLOGICAL PRINCIPLES FOR MANAGING LAND USE The Ecological Society of Americas Committee on Land Use Key ecological principles for land use and management deal with time, species, place, disturbance, and the landscape. The principles result in several guidelines that serve as practical rules of thumb for incorporating ecological principles into making decisions about the land. April 2000 INTRODUCTION DEFINITIONS Humans are the major force of change around the Land cover: the ecological state and physical appearance globe, transforming land to provide food, shelter, and of the land surface (e.g., closed forests, open forests, grasslands). products for use. Land transformation affects many of the planets physical, chemical, and biological systems and Land use: the purpose to which land is put by humans directly impacts the ability of the Earth to continue (e.g., protected areas, forestry for timber products, providing the goods and services upon which humans plantations, row-crop agriculture, pastures, or human settlements). depend. Unfortunately, potential ecological consequences are Ecosystem management: the process of land use not always considered in making decisions regarding land decision-making and land management practice that takes into account the best available understanding of the use. In this brochure, we identify ecological principles that ecosystems full suite of organisms and natural processes. are critical to sustaining ecosystems in the face of land- use change. We also offer guidelines for using these Land management: the way a given land use is principles in making decisions regarding land-use change. administered by humans. This brochure is the first of many activities under a Land Ecological sustainability: the tendency of a system or Use Initiative of the Ecological Society of America.
    [Show full text]
  • The Sustainable Land Management Mainstreaming Tool
    The Sustainable Land Management Mainstreaming Tool DECISION SUPPORT FOR MAINSTREAMING AND SCALING UP SUSTAINABLE LAND MANAGEMENT Decision Support for Mainstreaming and Scaling Up Sustainable Land Management The Sustainable Land Management Mainstreaming Tool By Soledad Bastidas Fegan FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2019 Required citation: Bastidas Fegan, S. 2019.The DS-SLM Sustainable Land Management Mainstreaming Tool - Decision Support for Mainstreaming and Scaling up Sustainable Land Management. Rome. FAO. 44 pp. Licence: CC BY-NC-SA 3.0 IGO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited.
    [Show full text]
  • Land Degradation and Sustainable Land Management in the Highlands of Ethiopia
    12 Land Degradation and Sustainable Land Management in the Highlands of Ethiopia Hans Hurni1, Solomon Abate2, Amare Bantider3, Berhanu Debele4, Eva Ludi5, Brigitte Portner6, Birru Yitaferu7, and Gete Zeleke8 Abstract The Ethiopian Highlands cover over 50% of the country and are home to more than 90% of Ethiopia’s population of over 80 million people (estimate for 2010); 60% of the livestock and 90% of the area suited for agriculture are also located here. Although more than 90% of the Highlands was once forested, today a mere 20% of this area is covered by trees, and the percent- age of forest cover is less than 4%. This is evidence of a high incidence of degradation of vegetation in the past, which has continued to the present. Land-use and land-cover changes have been particularly dynamic in the 20th century, during which climate change also began to have effects; wildlife in natural habitats have been restricted to those few areas that were preserved naturally due to rugged topography or natural aridity. Soil erosion has been severe throughout the Highlands, but mainly on agricultural land; the cur- rent severity and extent of soil degradation seriously threaten food security. In response, a number of soil and water conservation measures have been successfully implemented over the past 35 years in some parts of the High- lands. This is highly encouraging, but greater emphasis must be given to conservation in the coming decades. Keywords: Ethiopian Highlands; research partnership; land degradation; land-cover change; sustainable land management; soil and water conserva- tion; protected area management.
    [Show full text]
  • Comparative Review of Methods Supporting Decision-Making in Urban Development and Land Management
    land Article Comparative Review of Methods Supporting Decision-Making in Urban Development and Land Management Magdalena Wagner * and Walter Timo de Vries TUM Department of Civil, Geo and Environmental Engineering, Technical University of Munich, 80333 Munich, Germany * Correspondence: [email protected] Received: 3 July 2019; Accepted: 5 August 2019; Published: 7 August 2019 Abstract: This paper discusses how and where technologies supporting decision-making can play, or are already playing, a role in both urban development and land management. The review analyzes and compares three types of technologies: cellular automata (CA), artificial intelligence (AI), and operational research (OR), and evaluates to which extent they can be useful when dealing with various land planning objectives and phases. CA is one of the most useful models for simulating urban growth, AI displays great potential as a solution to capture the dynamics of land change, and OR is useful in decision-making, for example to conduct locational analyses. The evaluation relies on a collection of relevant articles, selected on the basis of both content and actuality. The paper offers new perspectives towards innovative methods in urban planning and land management and highlights where and when which type of tool can be considered useful and valid. The existing gaps, i.e., phases or areas in spatial planning or land management where the methods have not been applied, are also discussed. Keywords: cellular automata; artificial intelligence; operational research; land management; urban development 1. Introduction In today’s fast-moving world, information and communication technologies play important roles in our daily lives, both socially and professionally.
    [Show full text]
  • Field Guides
    Downloaded from fieldguides.gsapubs.org on June 1, 2012 Field Guides The post-Mazama northwest rift zone eruption at Newberry Volcano, Oregon Daniele Mckay, Julie M. Donnelly-Nolan, Robert A. Jensen and Duane E. Champion Field Guides 2009;15;91-110 doi: 10.1130/2009.fld015(05) Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Field Guides Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2009 Geological Society of America Downloaded from fieldguides.gsapubs.org on June 1, 2012 The Geological Society of America Field Guide 15 2009 The post-Mazama northwest rift zone eruption at Newberry Volcano, Oregon Daniele Mckay* Department of Geological Sciences, 1272 University of Oregon, Eugene, Oregon 97403-1272, USA Julie M.
    [Show full text]
  • Environment and Natural Resource Management POLICY
    Environment and natural resource management POLICY Resilient livelihoods through the sustainable use of natural assets Enabling poor rural people to overcome poverty IFAD ENRM core principles 10 Reduce Productive and IFAD’s environmental resilient livelihoods footprint Increase and ecosystems smallholder access to Promote role 9 green finance 8 of women and indigenous peoples Promote livelihood 7 diversification Improve 6 governance of natural assets Engage in value chains 5 that drive green growth Build 4 smallholder resilience to risk Promote climate-smart 3 rural Recognize development 2 values of natural assets Scaled-up 1 investment in sustainable agriculture Scaled-up investment in Improved governance of natural assets multiple-benefit approaches for for poor rural people by strengthening land tenure sustainable agricultural intensification and community-led empowerment Recognition and greater awareness Livelihood diversification to reduce vulnerability of the economic, social and cultural and build resilience for sustainable value of natural assets natural resource management ‘Climate-smart’ approaches Equality and empowerment for women to rural development and indigenous peoples in managing natural resources Greater attention to risk and resilience Increased access in order to manage environment- and by poor rural communities natural-resource-related shocks to environment and climate finance Engagement in value chains Environmental commitment through to drive green growth changing its own behaviour A full description of the core principles begins on page 28. Environment and natural resource management Policy Resilient livelihoods through the sustainable use of natural assets Enabling poor rural people to overcome poverty Minor amendments have been included in this document to reflect comments received during Board deliberations and to incorporate the latest data available.
    [Show full text]
  • Division of Water Supply Protection: 2017 Land Management Plan
    Division of Water Supply Protection: 2017 Land Management Plan Clockwise from top left: A view of Quabbin Reservoir looking north from the Administration building; Wachusett Reservoir from South Bay looking north; an aerial view of the Ware River watershed with the river and prison camp fields visible; a view of Sudbury Reservoir from Framingham Road looking north. Massachusetts Department of Conservation and Recreation Division of Water Supply Protection Office of Watershed Management January 2018 ACKNOWLEDGMENTS A variety of individuals contributed to the writing of this plan, but the main authors were Stephen Anderson (Environmental Analyst – Natural Resources, retired), Dan Clark (Regional Director – Quabbin/Ware, formerly Director of Natural Resources), Brian Keevan (Environmental Analyst – Natural Resources), and Joel Zimmerman (Regional Planner, DWSP). Significant contributions to the plan were made by Greg Buzzell (Chief Forester – Wachusett/Sudbury), Herm Eck (Chief Forester – Quabbin/Ware River), Craig Fitzgerald (GIS ‐ Wachusett/Sudbury), and Phil Lamothe (GIS – Quabbin/Ware). Thanks to Thom Snowman (Environmental Analyst – Natural Resources, retired) for his efforts initiating this plan. Review and comments were provided by Pat Austin (Environmental Quality Chief – Wachusett/Sudbury), Derek Beard (Forester – Quabbin), Ken Canfield (Forester – Ware), Dan Crocker (Environmental Analyst – Wachusett/Sudbury), Rebecca Faucher (Environmental Analyst – Quabbin), Sean Fisher (DCR Archivist), Lisa Gustavsen (Assistant Regional Director – Quabbin/Ware), Helen Johnson (Forester – Quabbin), Paul Lyons (Environmental Analyst – Quabbin, retired), Bill Pula (Regional Director – Quabbin/Ware, retired), John Scannell (Regional Director – Wachusett/Sudbury), Jonathan Yeo (former Director, DWSP); Kim Turner (Parks Supervisor – Quabbin), Russ Wilmot (Forester – Wachusett/Sudbury), Steve Wood (Forester – Quabbin), and Maria Janowiak (US Forest Service, Northern Institute of Applied Climate Science).
    [Show full text]