IAEA Safety Standards Radiation Safety of Gamma, Electron and X

Total Page:16

File Type:pdf, Size:1020Kb

IAEA Safety Standards Radiation Safety of Gamma, Electron and X IAEA Safety Standards Safety through international standards for protecting people and the environment The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. Safety IAEA Standards Series No. SSG-8 Radiation Safety This fundamental safety objective of protecting people — individually and collectively — and the environment has to be achieved without unduly limiting the operation of facilities or the conduct of activities that of Gamma, Electron give rise to radiation risks. — Fundamental Safety Principles: Safety Fundamentals, and X Ray Irradiation IAEA Safety Standards Series No. SF-1 (2006) Facilities Specific Safety Guide No. SSG-8 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92 –0–103710–7 ISSN 1020–525X 10-09131_P1454_cover.indd 1 2010-07-26 13:35:49 RELATED PUBLICATIONS IAEA SAFETY RELATED PUBLICATIONS FUNDAMENTAL SAFETY PRINCIPLES IAEA Safety Standards Series No. SF-1 IAEA SAFETY STANDARDS STI/PUB/1273 (37 pp.; 2006) ISBN 92–0–110706–4 Price: €25.00 Under the terms of Article III of its Statute, the IAEA is authorized to establish INTERNATIONAL BASIC SAFETY STANDARDS or adopt standards of safety for protection of health and minimization of danger to life FOR PROTECTION AGAINST IONIZING RADIATION and property, and to provide for the application of these standards. The publications by means of which the IAEA establishes standards are issued in AND FOR THE SAFETY OF RADIATION SOURCES the IAEA Safety Standards Series. This series covers nuclear safety, radiation safety, Safety Series No. 115 STI/PUB/996 (322 pp.; 1996) transport safety and waste safety. The publication categories in the series are Safety ISBN 92-0-104295-7 Price: €78.50 Fundamentals, Safety Requirements and Safety Guides. Information on the IAEA’s safety standards programme is available at the IAEA SAFETY OF RADIATION GENERATORS AND Internet site SEALED RADIOACTIVE SOURCES http://www-ns.iaea.org/standards/ IAEA Safety Standards Series No. RS-G-1.10 The site provides the texts in English of published and draft safety standards. The STI/PUB/1258 (71 pp.; 2006) texts of safety standards issued in Arabic, Chinese, French, Russian and Spanish, the ISBN 92–0–107506–5 Price: €25.00 IAEA Safety Glossary and a status report for safety standards under development are CATEGORIZATION OF RADIOACTIVE SOURCES also available. For further information, please contact the IAEA at PO Box 100, 1400 Vienna, Austria. IAEA Safety Standards Series No. RS-G-1.9 STI/PUB/1227 (70 pp.; 2005) All users of IAEA safety standards are invited to inform the IAEA of experience ISBN 92–0–103905–0 Price: €18.00 in their use (e.g. as a basis for national regulations, for safety reviews and for training courses) for the purpose of ensuring that they continue to meet users’ needs. MANAGEMENT OF WASTE FROM THE USE OF Information may be provided via the IAEA Internet site or by post, as above, or by RADIOACTIVE MATERIAL IN MEDICINE, INDUSTRY, email to [email protected]. AGRICULTURE, RESEARCH AND EDUCATION IAEA Safety Standards Series No. WS-G-2.7 STI/PUB/1217 (88 pp.; 2005) OTHER SAFETY RELATED PUBLICATIONS ISBN 92–0–113704–4 Price: €20.00 The IAEA provides for the application of the standards and, under the terms of REGULATORY CONTROL OF RADIATION SOURCES Articles III and VIII.C of its Statute, makes available and fosters the exchange of IAEA Safety Standards Series No. GS-G-1.5 information relating to peaceful nuclear activities and serves as an intermediary among STI/PUB/1192 (83 pp.; 2004) its Member States for this purpose. ISBN 92–0–105004–6 Price: €25.00 Reports on safety and protection in nuclear activities are issued as Safety Reports, which provide practical examples and detailed methods that can be used in BUILDING COMPETENCE IN RADIATION PROTECTION support of the safety standards. AND THE SAFE USE OF RADIATION SOURCES Other safety related IAEA publications are issued as Radiological Assessment IAEA Safety Standards Series No. RS-G-1.4 Reports, the International Nuclear Safety Group’s INSAG Reports, Technical Reports STI/PUB/1108 (44 pp.; 2001) and TECDOCs. The IAEA also issues reports on radiological accidents, training ISBN 92–0–100701–9 Price: €13.00 manuals and practical manuals, and other special safety related publications. Security OCCUPATIONAL RADIATION PROTECTION related publications are issued in the IAEA Nuclear Security Series. IAEA Safety Standards Series No. RS-G-1.1 STI/PUB/1081 (83 pp.; 1999) ISBN 92–0–102299–9 Price: €14.50 www.iaea.org/books 10-09131_P1454_cover.indd 2 2010-07-26 13:35:50 RADIATION SAFETY OF GAMMA, ELECTRON AND X RAY IRRADIATION FACILITIES Safety standards survey The IAEA welcomes your response. Please see: http://www-ns.iaea.org/standards/feedback.htm The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NORWAY ALBANIA GREECE OMAN ALGERIA GUATEMALA PAKISTAN ANGOLA HAITI PALAU ARGENTINA HOLY SEE PANAMA ARMENIA HONDURAS PARAGUAY AUSTRALIA HUNGARY PERU AUSTRIA ICELAND PHILIPPINES AZERBAIJAN INDIA POLAND BAHRAIN INDONESIA PORTUGAL BANGLADESH IRAN, ISLAMIC REPUBLIC OF QATAR BELARUS IRAQ REPUBLIC OF MOLDOVA BELGIUM IRELAND ROMANIA BELIZE ISRAEL RUSSIAN FEDERATION BENIN ITALY BOLIVIA JAMAICA SAUDI ARABIA BOSNIA AND HERZEGOVINA JAPAN SENEGAL BOTSWANA JORDAN SERBIA BRAZIL KAZAKHSTAN SEYCHELLES BULGARIA KENYA SIERRA LEONE BURKINA FASO KOREA, REPUBLIC OF SINGAPORE BURUNDI KUWAIT SLOVAKIA CAMBODIA KYRGYZSTAN SLOVENIA CAMEROON LATVIA SOUTH AFRICA CANADA LEBANON SPAIN CENTRAL AFRICAN LESOTHO SRI LANKA REPUBLIC LIBERIA SUDAN CHAD LIBYAN ARAB JAMAHIRIYA SWEDEN CHILE LIECHTENSTEIN SWITZERLAND CHINA LITHUANIA SYRIAN ARAB REPUBLIC COLOMBIA LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA MALAWI THE FORMER YUGOSLAV CÔTE D’IVOIRE MALAYSIA REPUBLIC OF MACEDONIA CROATIA MALI TUNISIA CUBA MALTA TURKEY CYPRUS MARSHALL ISLANDS UGANDA CZECH REPUBLIC MAURITANIA UKRAINE DEMOCRATIC REPUBLIC MAURITIUS UNITED ARAB EMIRATES OF THE CONGO MEXICO DENMARK MONACO UNITED KINGDOM OF DOMINICAN REPUBLIC MONGOLIA GREAT BRITAIN AND ECUADOR MONTENEGRO NORTHERN IRELAND EGYPT MOROCCO UNITED REPUBLIC EL SALVADOR MOZAMBIQUE OF TANZANIA ERITREA MYANMAR UNITED STATES OF AMERICA ESTONIA NAMIBIA URUGUAY ETHIOPIA NEPAL UZBEKISTAN FINLAND NETHERLANDS VENEZUELA FRANCE NEW ZEALAND VIETNAM GABON NICARAGUA YEMEN GEORGIA NIGER ZAMBIA GERMANY NIGERIA ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA SAFETY STANDARDS SERIES No. SSG-8 RADIATION SAFETY OF GAMMA, ELECTRON AND X RAY IRRADIATION FACILITIES SPECIFIC SAFETY GUIDE INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2010 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2010 Printed by the IAEA in Austria July 2010 STI/PUB/1454 IAEA Library Cataloguing in Publication Data Radiation safety of gamma, electron and x ray irradiation facilities : specific safety guide. — Vienna : International Atomic Energy Agency, 2010. p. ; 24 cm. — (IAEA safety standards series, ISSN 1020–525X ; no. SSG-8) STI/PUB/1454 ISBN 978– 92–0–103710–7 Includes bibliographical references. 1. Irradiation plants. 2. Irradiation devices. 3. Gamma ray sources. 4. Work environment — Safety measures. I. International Atomic Energy Agency. II. Series. IAEAL 10–00641 FOREWORD The IAEA’s Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property — standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA’s assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA’s safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA’s safety services — which range in scope from engineering safety, operational safety,
Recommended publications
  • Effects of Acute and Chronic Gamma Irradiation on the Cell Biology and Physiology of Rice Plants
    plants Article Effects of Acute and Chronic Gamma Irradiation on the Cell Biology and Physiology of Rice Plants Hong-Il Choi 1,† , Sung Min Han 2,†, Yeong Deuk Jo 1 , Min Jeong Hong 1 , Sang Hoon Kim 1 and Jin-Baek Kim 1,* 1 Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; [email protected] (H.-I.C.); [email protected] (Y.D.J.); [email protected] (M.J.H.); [email protected] (S.H.K.) 2 Division of Ecological Safety, National Institute of Ecology, Seocheon 33657, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-63-570-3313 † Both authors contributed equally to this work. Abstract: The response to gamma irradiation varies among plant species and is affected by the total irradiation dose and dose rate. In this study, we examined the immediate and ensuing responses to acute and chronic gamma irradiation in rice (Oryza sativa L.). Rice plants at the tillering stage were exposed to gamma rays for 8 h (acute irradiation) or 10 days (chronic irradiation), with a total irradiation dose of 100, 200, or 300 Gy. Plants exposed to gamma irradiation were then analyzed for DNA damage, oxidative stress indicators including free radical content and lipid peroxidation, radical scavenging, and antioxidant activity. The results showed that all stress indices increased immediately after exposure to both acute and chronic irradiation in a dose-dependent manner, and acute irradiation had a greater effect on plants than chronic irradiation. The photosynthetic efficiency and growth of plants measured at 10, 20, and 30 days post-irradiation decreased in irradiated plants, Citation: Choi, H.-I.; Han, S.M.; Jo, Y.D.; Hong, M.J.; Kim, S.H.; Kim, J.-B.
    [Show full text]
  • Effects of Gamma-Irradiation of Seed Potatoes on Numbers of Stems and Tubers
    Netherlands Journal of Agricultural Science 39 (1991) 81-90 Effects of gamma-irradiation of seed potatoes on numbers of stems and tubers A. J. HAVERKORT1, D. I. LANGERAK2 & M. VAN DE WAART1 1 Centre for Agrobiological Research (CABO-DLO), P.O. Box 14, NL 6700 AA Wagenin- gen, Netherlands 2 State Institute for Quality Control of Agricultural Products (RIKILT), P.O. Box 230, NL 6700 AE Wageningen, Netherlands Received 28 november 1990; accepted 8 February 1991 Abstract In field trials with the cultivars Bintje, Jaerla and Spunta, whose seed potatoes were treated with gamma-rays from a ^Co source with doses varying from 0.5 to 27 Gy, tuber yield, har­ vest index, and number of stems and tubers were determined. A dose of 3 Gy increased the number of tubers by 30 % in Spunta in two out of three trials and by 17 % in one trial in Jaer­ la, but it did not increase number of tubers in Bintje. Doses of 9 or 10 Gy did not influence the number of tubers nor stems, and decreased harvest index. A dose of 27 Gy yielded off-type plants with reduced yield and number of tubers. Gamma-radiation affected the growth of the apex of the sprout allowing lateral buds or divisions of the affected apex to develop into stems. To achieve larger numbers of tuber-bearing stems, tubers should preferably be irra­ diated at the start of sprout growth, about 5 months before planting. Keywords: harvest index, gamma irradiation, seed potatoes Introduction Effects of different doses of gamma-rays on potato tubers have been studied exten­ sively, especially in the 1960s.
    [Show full text]
  • Industrial Applications of Electron Accelerators
    Industrial applications of electron accelerators M.R. Cleland Ion Beam Applications, Edgewood, NY 11717, USA Abstract This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides. 1 Introduction Radiation processing can be defined as the treatment of materials and products with radiation or ionizing energy to change their physical, chemical or biological characteristics, to increase their usefulness and value, or to reduce their impact on the environment. Accelerated electrons, X-rays (bremsstrahlung) emitted by energetic electrons, and gamma rays emitted by radioactive nuclides are suitable energy sources. These are all capable of ejecting atomic electrons, which can then ionize other atoms in a cascade of collisions. So they can produce similar molecular effects. The choice of energy source is usually based on practical considerations, such as absorbed dose, dose uniformity (max/min) ratio, material thickness, density and configuration, processing rate, capital and operating costs.
    [Show full text]
  • Bio-9 a Comparison of Y-Irradiation and Microwave Treatments on the Lipids and Microbiological Pattern of Beef Liver
    Seventh Conference of Nuclear Sciences & Applications 6-10 February 2000, Cairo, Egypt Bio-9 A comparison of y-irradiation and microwave treatments on the lipids and microbiological pattern of beef liver Farag, R. S .*, Z. Y. Daw2, Farag , S.A 3 and Safaa A. E. ABD El-Wahab3. / Biochemistry Department, Faculty of Agriculture, Cairo University, Giza - Egypt. 2 Microbiology Department. Faculty of Agriculture. Cairo University, Giza - Egypt. 3 Food irradiation Department, National Center for Radiation Research and Technology, Cairo - Egypt. ABSTRACT EG0100123 The effects of y-irradiation treatments (0, 2.5, 5 and, 10 kGy) and microwaves generated from an oven at low and defrost settings for 0.5 , 1 and 2 min on the chemical composition and microbiological aspects of beef liver samples were studied . The chemical and microbiological analyses were performed on the non-treated and treated beef liver immediately after treatments and during frozen storage (-18°C) for 3 months. The chemical analyses of beef liver Hpids showed that acid, peroxide and TBA(Thiobarbituric acid ) values were slightly increased after irradiation treatments and also during frozen storage (-18°C). On the contrary, iodine value of the treated beef liver was decreased. Irradiation treatments remarkably reduced the total bacterial counts in beef liver. The percent reduction of bacterial load for beef liver exposed to microwaves generated from an oven at defrost mode for 2 min and after 3 months at - 18°C was 62% . The bacterial load for beef liver exposed to y-irradiation at 10 kGy after 3 months at - 18°C was decreased by 98%. Hence, y-irradiation treatment was far better than microwave treatment for inhibiting the multiplication of the associated microorganisms with beef liver.
    [Show full text]
  • Beam–Material Interactions
    Beam–Material Interactions N.V. Mokhov1 and F. Cerutti2 1Fermilab, Batavia, IL 60510, USA 2CERN, Geneva, Switzerland Abstract This paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications. Keywords Particle physics simulation; material irradiation effects; accelerator design. 1 Introduction The next generation of medium- and high-energy accelerators for megawatt proton, electron, and heavy- ion beams moves us into a completely new domain of extreme energy deposition density up to 0.1 MJ/g and power density up to 1 TW/g in beam interactions with matter [1, 2]. The consequences of controlled and uncontrolled impacts of such high-intensity beams on components of accelerators, beamlines, target stations, beam collimators and absorbers, detectors, shielding, and the environment can range from minor to catastrophic. Challenges also arise from the increasing complexity of accelerators and experimental set-ups, as well as from design, engineering, and performance constraints. All these factors put unprecedented requirements on the accuracy of particle production predictions, the capability and reliability of the codes used in planning new accelerator facilities and experiments, the design of machine, target, and collimation systems, new materials and technologies, detectors, and radiation shielding and the minimization of radiation impact on the environment.
    [Show full text]
  • Particle Accelerators and Detectors for Medical Diagnostics and Therapy Arxiv:1601.06820V1 [Physics.Med-Ph] 25 Jan 2016
    Particle Accelerators and Detectors for medical Diagnostics and Therapy Habilitationsschrift zur Erlangung der Venia docendi an der Philosophisch-naturwissenschaftlichen Fakult¨at der Universit¨atBern arXiv:1601.06820v1 [physics.med-ph] 25 Jan 2016 vorgelegt von Dr. Saverio Braccini Laboratorium f¨urHochenenergiephysik L'aspetto pi`uentusiasmante della scienza `eche essa incoraggia l'uomo a insistere nei suoi sogni. Guglielmo Marconi Preface This Habilitation is based on selected publications, which represent my major sci- entific contributions as an experimental physicist to the field of particle accelerators and detectors applied to medical diagnostics and therapy. They are reprinted in Part II of this work to be considered for the Habilitation and they cover original achievements and relevant aspects for the present and future of medical applications of particle physics. The text reported in Part I is aimed at putting my scientific work into its con- text and perspective, to comment on recent developments and, in particular, on my contributions to the advances in accelerators and detectors for cancer hadrontherapy and for the production of radioisotopes. Dr. Saverio Braccini Bern, 25.4.2013 i ii Contents Introduction 1 I 5 1 Particle Accelerators and Detectors applied to Medicine 7 2 Particle Accelerators for medical Diagnostics and Therapy 23 2.1 Linacs and Cyclinacs for Hadrontherapy . 23 2.2 The new Bern Cyclotron Laboratory and its Research Beam Line . 39 3 Particle Detectors for medical Applications of Ion Beams 49 3.1 Segmented Ionization Chambers for Beam Monitoring in Hadrontherapy 49 3.2 Proton Radiography with nuclear Emulsion Films . 62 3.3 A Beam Monitor Detector based on doped Silica Fibres .
    [Show full text]
  • Radiation Basics
    Environmental Impact Statement for Remediation of Area IV \'- f Susana Field Laboratory .A . &at is radiation? Ra - -.. - -. - - . known as ionizing radiatios bScause it can produce charged.. particles (ions)..- in matter. .-- . 'I" . .. .. .. .- . - .- . -- . .-- - .. What is radioactivity? Radioactivity is produced by the process of radioactive atmi trying to become stable. Radiation is emitted in the process. In the United State! Radioactive radioactivity is measured in units of curies. Smaller fractions of the curie are the millicurie (111,000 curie), the microcurie (111,000,000 curie), and the picocurie (1/1,000,000 microcurie). Particle What is radioactive material? Radioactive material is any material containing unstable atoms that emit radiation. What are the four basic types of ionizing radiation? Aluminum Leadl Paper foil Concrete Adphaparticles-Alpha particles consist of two protons and two neutrons. They can travel only a few centimeters in air and can be stopped easily by a sheet of paper or by the skin's surface. Betaparticles-Beta articles are smaller and lighter than alpha particles and have the mass of a single electron. A high-energy beta particle can travel a few meters in the air. Beta particles can pass through a sheet of paper, but may be stopped by a thin sheet of aluminum foil or glass. Gamma rays-Gamma rays (and x-rays), unlike alpha or beta particles, are waves of pure energy. Gamma radiation is very penetrating and can travel several hundred feet in air. Gamma radiation requires a thick wall of concrete, lead, or steel to stop it. Neutrons-A neutron is an atomic particle that has about one-quarter the weight of an alpha particle.
    [Show full text]
  • Radiation Safety in Fluoroscopy
    Radiation Safety for New Medical Physics Graduate Students John Vetter, PhD Medical Physics Department UW School of Medicine & Public Health Background and Purpose of This Training . This is intended as a brief introduction to radiation safety from the perspective of a Medical Physicist. Have a healthy respect for radiation without an undue fear of it. The learning objectives are: . To point out the sources of ionizing radiation in everyday life and at work. To present an overview of the health effects of ionizing radiation. To show basic concepts and techniques used to protect against exposure to ionizing radiation. Further training in Radiation Safety can be found at: https://ehs.wisc.edu/radiation-safety-training/ Outline . Ionizing Radiation . Definition, Quantities & Units . Levels of Radiation Exposure . Background & Medical . Health Effects of Radiation Exposure . Stochastic & Deterministic . Limits on Radiation Exposure . Rationale for Exposure Limits . Minimizing Radiation Exposure . Time, Distance, Shielding, Containment Definition of Ionizing Radiation . Radiation can be thought of as energy in motion. Electromagnetic radiation is pure energy that moves at the speed of light in the form of photons and includes: radio waves; microwaves; infrared, visible and ultraviolet light; x-rays and γ-rays. A key difference between these forms of electromagnetic radiation is the amount of energy that each photon carries. Some ultraviolet light, and X-rays and Gamma-rays have enough energy to remove electrons from atoms as they are absorbed, forming positive and negatively charged ions. These forms of radiation are called ionizing radiation. Radio waves, microwaves, infrared and visible light do not have enough energy to ionize atoms.
    [Show full text]
  • Radiation Glossary
    Radiation Glossary Activity The rate of disintegration (transformation) or decay of radioactive material. The units of activity are Curie (Ci) and the Becquerel (Bq). Agreement State Any state with which the U.S. Nuclear Regulatory Commission has entered into an effective agreement under subsection 274b. of the Atomic Energy Act of 1954, as amended. Under the agreement, the state regulates the use of by-product, source, and small quantities of special nuclear material within said state. Airborne Radioactive Material Radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases. ALARA Acronym for "As Low As Reasonably Achievable". Making every reasonable effort to maintain exposures to ionizing radiation as far below the dose limits as practical, consistent with the purpose for which the licensed activity is undertaken. It takes into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, societal and socioeconomic considerations, and in relation to utilization of radioactive materials and licensed materials in the public interest. Alpha Particle A positively charged particle ejected spontaneously from the nuclei of some radioactive elements. It is identical to a helium nucleus, with a mass number of 4 and a charge of +2. Annual Limit on Intake (ALI) Annual intake of a given radionuclide by "Reference Man" which would result in either a committed effective dose equivalent of 5 rems or a committed dose equivalent of 50 rems to an organ or tissue. Attenuation The process by which radiation is reduced in intensity when passing through some material.
    [Show full text]
  • Present and Future Applications of Industrial Accelerators Craig S
    55 Present and Future Applications of Industrial Accelerators Craig S. Nunan Varian Associates, Inc. 56 57 Present and Future Applications of Industrial Accelerators Craig S. Nunan Varian Associates, Inc. Technology transfer - from national laboratories to industry and vice versa ­ implies that concepts, designs, and equipment get transferred. There is also an­ other mode of transfer which historically has been important - the transfer of ex­ perienced people. One of the major things that accelerator physics research laboratories have done is to train physicists and engineers in advanced technol­ ogy. If these people then transfer to industry they can carry with them a level of know-how and creative talent that can be very effective in the on-going applica­ tion of accelerator-based technology to societal needs. A prime example is Ed Ginzton. Ginzton was a professor of physics at Stanford University and co­ founder of SLAC, the Stanford Linear Accelerator Center. He was one of the founders of Varian Associates. People from other accelerator laboratories joined Varian over the years. They came from many U.S. and foreign laboratories. Some of the people subsequently left Varian to found other ac­ celerator companies. A recent example is Bob Hamm, a physicist who trained at Los Alamos Na­ tional Laboratory, spent two years at Varian, founded AccSys Technology Cor­ poration, was joined by other people from Los Alamos, and among other things, built the proton linac injector for the proton therapy synchrotron designed and built by Ferrnilab for Lorna Linda University Medical Center. There are other examples of this form of genesis of accelerators in industry.
    [Show full text]
  • Internal and External Exposure Exposure Routes 2.1
    Exposure Routes Internal and External Exposure Exposure Routes 2.1 External exposure Internal exposure Body surface From outer space contamination and the sun Inhalation Suspended matters Food and drink consumption From a radiation Lungs generator Radio‐ pharmaceuticals Wound Buildings Ground Radiation coming from outside the body Radiation emitted within the body Radioactive The body is equally exposed to radiation in both cases. materials "Radiation exposure" refers to the situation where the body is in the presence of radiation. There are two types of radiation exposure, "internal exposure" and "external exposure." External exposure means to receive radiation that comes from radioactive materials existing on the ground, suspended in the air, or attached to clothes or the surface of the body (p.25 of Vol. 1, "External Exposure and Skin"). Conversely, internal exposure is caused (i) when a person has a meal and takes in radioactive materials in the food or drink (ingestion); (ii) when a person breathes in radioactive materials in the air (inhalation); (iii) when radioactive materials are absorbed through the skin (percutaneous absorption); (iv) when radioactive materials enter the body from a wound (wound contamination); and (v) when radiopharmaceuticals containing radioactive materials are administered for the purpose of medical treatment. Once radioactive materials enter the body, the body will continue to be exposed to radiation until the radioactive materials are excreted in the urine or feces (biological half-life) or as the radioactivity weakens over time (p.26 of Vol. 1, "Internal Exposure"). The difference between internal exposure and external exposure lies in whether the source that emits radiation is inside or outside the body.
    [Show full text]
  • Particle Accelerator Products for Advanced Research and High-Precision Radiation Therapy Equipment Using Accelerator Technology
    Mitsubishi Heavy Industries Technical Review Vol. 51 No. 3 (September 2014) 54 Particle Accelerator Products for Advanced Research and High-precision Radiation Therapy Equipment using Accelerator Technology Advanced Mechanical Systems Sales & Marketing Group Business Development Department Business Strategy Division Machinery, Equipment & Infrastructure Particle accelerators, which are used for advanced research in fields such as high energy physics and radiation physics, accelerate charged particles (e.g., electrons and protons) to nearly the speed of light at which particles possess high energy. Mitsubishi Heavy Industries, Ltd. (MHI) has provided domestic and overseas research institutions with several types of accelerating cavities or structures, which are the heart of an accelerator. We are also internally developing state-of-the-art accelerator manufacturing technologies. The ultra-compact accelerating structure we have thus developed is mounted on our Vero4DRT high-precision radiation therapy equipment (marketed under the MHI-TM2000 Linear Accelerator System brand name). This report introduces our superconducting accelerating cavities, normal-conducting accelerating structures and radiation therapy equipment as applied products thereof. |1. Superconducting accelerating cavities 1.1 Features Superconducting accelerating cavities can lower electrical resistance to nearly zero by cooling the niobium constituting the cavities down to an extremely low temperature by using of refrigerants such as liquid helium and thereby achieving superconductivity.
    [Show full text]