Origin of the Solar System 49 5.1

Total Page:16

File Type:pdf, Size:1020Kb

Origin of the Solar System 49 5.1 Introduction to Planetary Science Introduction to Planetary Science The Geological Perspective GUNTER FAURE The Ohio State University, Columbus, Ohio, USA TERESA M. MENSING The Ohio State University, Marion, Ohio, USA A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN-13 978-1-4020-5233-0 (HB) ISBN-13 978-1-4020-5544-7 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com Cover art: The planets of the solar system. Courtesy of NASA. A Manual of Solutions for the end-of-chapter problems can be found at the book’s homepage at www.springer.com Printed on acid-free paper All Rights Reserved © 2007 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. In memory of Dr. Erich Langenberg, David H. Carr, and Dr. Robert J. Uffen who showed me the way. Gunter Faure For Professor Tom Wells and Dr. Phil Boger who taught me to reach for the stars. Teresa M. Mensing Table of Contents Preface xvii 1. The Urge to Explore 1 1.1. The Exploration of Planet Earth 2 1.2. Visionaries and Rocket Scientists 4 1.3. Principles of Rocketry and Space Navigation 7 1.4. Summary 9 1.5. Science Briefs 10 1.6. Problems 11 1.7. Further Reading 11 2. From Speculation to Understanding 13 2.1. The Geocentric Cosmology of Ancient Greece 13 2.2. The Scientific Method 14 2.3. Units of Measurement 16 2.3.1. Distance 16 2.3.2. Time 17 2.3.3. Velocity and Speed 17 2.3.4. Mass 18 2.3.5. Temperature 18 2.3.6. Pressure 19 2.4. Summary 19 2.5. Science Briefs 20 2.6. Problems 21 2.7. Further Reading 21 3. The Planets of the Solar System 23 3.1. The Sun and the Planets of the Solar System 23 3.2. The Titius-Bode Rule 25 3.3. Average Orbital Velocities 27 3.4. Surface Temperatures 28 3.5. Bulk Densities 28 3.6. Summary 32 3.7. Science Briefs 32 3.8. Problems 34 3.9. Further Reading 34 4. Life and Death of Stars 35 4.1. The Big Bang 35 4.2. Stellar Evolution 39 4.3. Nucleosynthesis 41 vii viii table of contents 4.4. The Milky Way Galaxy 44 4.5. Summary 45 4.6. Science Briefs 46 4.7. Problems 47 4.8. Further Reading 48 5. Origin of the Solar System 49 5.1. The Solar Nebula 49 5.2. Origin of the Sun and Planets 50 5.3. The Sun 53 5.3.1. Internal Structure 53 5.3.2. Energy Production 56 5.3.3. Magnetism and Sunspots 57 5.3.4. Effect on Space 59 5.3.5. Life and Death of the Sun 59 5.4. Summary 61 5.5. Science Briefs 62 5.6. Problems 62 5.7. Further Reading 63 6. Earth: Model of Planetary Evolution 65 6.1. Growth from Planetesimals 65 6.2. Internal Differentiation 67 6.3. Atmosphere 69 6.4. Interior of the Earth 72 6.4.1. Temperature 72 6.4.2. Melting of Peridotite 72 6.4.3. Mantle Plumes 73 6.4.4. Plate Tectonics 74 6.4.5. Magnetic Field 76 6.5. Interactions with the Solar Wind 79 6.6. Summary 81 6.7. Science Briefs 82 6.8. Problems 85 6.9. Further Reading 85 7. The Clockwork of the Solar System 87 7.1. The Pioneers of Astronomy 87 7.2. Elliptical Orbits of Planets 89 7.2.1. Eccentricity 89 7.2.2. Average Distance 90 7.2.3. Revolution and Rotation 90 7.2.4. Plane of the Ecliptic 91 7.2.5. Axial Obliquity 91 7.2.6. Conjunctions and Oppositions 92 7.2.7. Sidereal and Synodic Periods of Revolution 95 7.2.8. Solar and Lunar Eclipses 96 7.2.9. Orbital Velocities 96 7.2.10. Launching Satellites into Orbit 98 7.2.11. Lagrange Points 99 7.3. Celestial Mechanics of the Earth 100 7.3.1. Rising and Setting of the Sun 100 7.3.2. Change in the Period of Rotation 101 7.3.3. Seasons of the Northern Hemisphere 101 table of contents ix 7.3.4. The Earth at Summer Solstice 101 7.3.5. Autumnal and Vernal Equinoxes 102 7.3.6. Milankovitch Cycles 103 7.4. The Gregorian Calendar 104 7.5. Summary 105 7.6. Science Briefs 105 7.7. Problems 107 7.8. Further Reading 107 8. Meteorites and Impact Craters 109 8.1. Classification and Mineralogy of Meteorites 110 8.2. Carbonaceous Chondrites 112 8.3. Tektites 114 8.4. Meteorite Parent Bodies 115 8.5. Celestial Mechanics 116 8.6. Falls and Finds 118 8.7. Age Determinations 120 8.8. Meteorite Impacts 122 8.8.1. Formation of Craters 122 8.8.2. Classification of Craters 123 8.8.3. Modification of Craters 124 8.8.4. Frequency of Impacts 125 8.8.5. Environmental Consequences (Tunguska, 1908) 126 8.9. Meteor Crater: Memorial to E.M. Shoemaker 127 8.10. Summary 131 8.11. Science Briefs 131 8.12. Problems 135 8.13. Further Reading 135 9. The Earth-Moon System 139 9.1. Landforms of the Lunar Surface 141 9.1.1. Highlands 141 9.1.2. Maria 142 9.1.3. Impact Craters 143 9.1.4. Regolith 143 9.1.5. Water 143 9.2. Isotopic Dating 145 9.3. Geology of the Near Side 145 9.4. Lunar Meteorites 149 9.5. Internal Structure 150 9.6. Origin of the Moon 152 9.7. Celestial Mechanics 154 9.7.1. Spin-Orbit Coupling 154 9.7.2. Lunar Orbit 155 9.8. Tides 156 9.8.1. Ocean Tides 156 9.8.2. Body Tides 157 9.9. Research Stations on the Moon 158 9.9.1. Weighing the Risks and Benefits 158 9.9.2. Utilization of Lunar Resources 159 9.10. Space Law 160 9.10.1. United Nations: Laws for States 160 x table of contents 9.10.2. NASA: Code of Conduct for Astronauts 161 9.11. Summary 162 9.12. Science Briefs 163 9.13. Problems 166 9.14. Further Reading 166 10. Mercury: Too Hot for Comfort 167 10.1. Surface Features 167 10.1.1. Impact Craters and Cliffs 167 10.1.2. Regolith 169 10.1.3. Atmosphere 169 10.1.4. Water 170 10.1.5. Surface Temperatures 170 10.2. Internal Structure 171 10.2.1. Iron Core 171 10.2.2. Magnetic Field 172 10.2.3. Geological Activity 173 10.3. Origin of Mercury 174 10.4. Celestial Mechanics 175 10.4.1. Spin-Orbit Coupling 176 10.4.2. The Solar Transit 177 10.4.3. Rotation of the Long Axis of the Orbit 177 10.5. Summary 178 10.6. Science Briefs 178 10.7. Problems 179 10.8. Further Reading 181 11. Venus; Planetary Evolution Gone Bad 183 11.1. Surface Features 184 11.2. Geological Processes 187 11.2.1. Volcanic Activity 187 11.2.2. Tectonic Activity 192 11.2.3. Impact Craters 194 11.3. Atmosphere and Climate 195 11.3.1. Chemical Composition and Structure 195 11.3.2. Circulation 197 11.3.3. Greenhouse Warming 197 11.3.4. Evolution of the Surface Environment 198 11.3.5. Carbon Cycles of Venus and the Earth 199 11.4. Internal Structure 201 11.4.1. The Core and Magnetism 201 11.4.2. Episodic Resurfacing 202 11.5. Celestial Mechanics 203 11.5.1. Retrograde Rotation 203 11.5.2. Phases, Conjunctions, and Transits 204 11.6. Summary 205 11.7. Science Briefs 206 11.8. Problems 209 11.9. Further Reading 209 12. Mars: The Little Planet that Could 211 12.1. Origin and Properties 213 12.1.1. Origin by Accretion of Planetesimals 213 table of contents xi 12.1.2. Physical and Chemical Properties 214 12.1.3. Evolution of the Atmosphere 215 12.1.4. Orbit of Mars 215 12.2. Surface Features: Northern Hemisphere 216 12.2.1. Tharsis Plateau 216 12.2.2. Olympus Mons 218 12.2.3. Young Lava Flows 219 12.2.4. Valles Marineris 220 12.2.5. Utopia Planitia 220 12.2.6. Soil of Utopia and Chryse 222 12.3. Surface Features: Southern Hemisphere 223 12.3.1. Hellas Impact Basin 224 12.3.2. Argyre Impact Basin 225 12.3.3. Isidis Impact Basin 225 12.3.4. Timescale for Mars 225 12.4. Volcanoes of the Southern Hemisphere 227 12.4.1. Syrtis Major Volcano 227 12.4.2. Hespera Planum 227 12.4.3. Hadriaca Patera 228 12.5. Stream Valleys 228 12.5.1. Nanedi Vallis 228 12.5.2. Nirgal Vallis 230 12.5.3. Vedra Valles 231 12.6. Impact Craters 231 12.7. Martian Meteorites 234 12.8. Water on Mars 235 12.8.1. Hydrologic Cycle 236 12.8.2. Phase Diagrams of Water and Carbon Dioxide 238 12.8.3. Polar Ice Caps 239 12.8.4. Mountain Glaciers and Continental Ice Sheets 241 12.9. Life on Mars 241 12.9.1.
Recommended publications
  • Sabbatical Leave Report 2019 – 2020
    Sabbatical Leave Report 2019 – 2020 James MacDevitt, M.A. Associate Professor of Art History and Visual & Cultural Studies Director, Cerritos College Art Gallery Department of Art and Design Fine Arts and Communications Division Cerritos College January 2021 Table of Contents Title Page i Table of Contents ii Sabbatical Leave Application iii Statement of Purpose 35 Objectives and Outcomes 36 OER Textbook: Disciplinary Entanglements 36 Getty PST Art x Science x LA Research Grant Application 37 Conference Presentation: Just Futures 38 Academic Publication: Algorithmic Culture 38 Service and Practical Application 39 Concluding Statement 40 Appendix List (A-E) 41 A. Disciplinary Entanglements | Table of Contents 42 B. Disciplinary Entanglements | Screenshots 70 C. Getty PST Art x Science x LA | Research Grant Application 78 D. Algorithmic Culture | Book and Chapter Details 101 E. Just Futures | Conference and Presentation Details 103 2 SABBATICAL LEAVE APPLICATION TO: Dr. Rick Miranda, Jr., Vice President of Academic Affairs FROM: James MacDevitt, Associate Professor of Visual & Cultural Studies DATE: October 30, 2018 SUBJECT: Request for Sabbatical Leave for the 2019-20 School Year I. REQUEST FOR SABBATICAL LEAVE. I am requesting a 100% sabbatical leave for the 2019-2020 academic year. Employed as a fulltime faculty member at Cerritos College since August 2005, I have never requested sabbatical leave during the past thirteen years of service. II. PURPOSE OF LEAVE Scientific advancements and technological capabilities, most notably within the last few decades, have evolved at ever-accelerating rates. Artists, like everyone else, now live in a contemporary world completely restructured by recent phenomena such as satellite imagery, augmented reality, digital surveillance, mass extinctions, artificial intelligence, prosthetic limbs, climate change, big data, genetic modification, drone warfare, biometrics, computer viruses, and social media (and that’s by no means meant to be an all-inclusive list).
    [Show full text]
  • UNITED STATES DISTRICT COURT NORTHERN DISTRICT of INDIANA SOUTH BEND DIVISION in Re FEDEX GROUND PACKAGE SYSTEM, INC., EMPLOYMEN
    USDC IN/ND case 3:05-md-00527-RLM-MGG document 3279 filed 03/22/19 page 1 of 354 UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF INDIANA SOUTH BEND DIVISION ) Case No. 3:05-MD-527 RLM In re FEDEX GROUND PACKAGE ) (MDL 1700) SYSTEM, INC., EMPLOYMENT ) PRACTICES LITIGATION ) ) ) THIS DOCUMENT RELATES TO: ) ) Carlene Craig, et. al. v. FedEx Case No. 3:05-cv-530 RLM ) Ground Package Systems, Inc., ) ) PROPOSED FINAL APPROVAL ORDER This matter came before the Court for hearing on March 11, 2019, to consider final approval of the proposed ERISA Class Action Settlement reached by and between Plaintiffs Leo Rittenhouse, Jeff Bramlage, Lawrence Liable, Kent Whistler, Mike Moore, Keith Berry, Matthew Cook, Heidi Law, Sylvia O’Brien, Neal Bergkamp, and Dominic Lupo1 (collectively, “the Named Plaintiffs”), on behalf of themselves and the Certified Class, and Defendant FedEx Ground Package System, Inc. (“FXG”) (collectively, “the Parties”), the terms of which Settlement are set forth in the Class Action Settlement Agreement (the “Settlement Agreement”) attached as Exhibit A to the Joint Declaration of Co-Lead Counsel in support of Preliminary Approval of the Kansas Class Action 1 Carlene Craig withdrew as a Named Plaintiff on November 29, 2006. See MDL Doc. No. 409. Named Plaintiffs Ronald Perry and Alan Pacheco are not movants for final approval and filed an objection [MDL Doc. Nos. 3251/3261]. USDC IN/ND case 3:05-md-00527-RLM-MGG document 3279 filed 03/22/19 page 2 of 354 Settlement [MDL Doc. No. 3154-1]. Also before the Court is ERISA Plaintiffs’ Unopposed Motion for Attorney’s Fees and for Payment of Service Awards to the Named Plaintiffs, filed with the Court on October 19, 2018 [MDL Doc.
    [Show full text]
  • DATING the RESURFACING EVENTS of the HARMAKHIS VALLIS SOURCE REGIONS, MARS: PRELIMINARY RESULTS. S. Kukkonen and V.-P
    44th Lunar and Planetary Science Conference (2013) 2140.pdf DATING THE RESURFACING EVENTS OF THE HARMAKHIS VALLIS SOURCE REGIONS, MARS: PRELIMINARY RESULTS. S. Kukkonen and V.-P. Kostama, Astronomy, Department of Physics, P.O. Box 3000, FI-90014 University of Oulu, Finland ([email protected]). Introduction: Harmakhis Vallis is one of the four [e.g., 15–17]. Usually they have been excluded from major outflow channel systems that cut the eastern Hel- the crater counts because of the uncertainty of their las rim region of Mars (Fig. 1). It is ~800 km long and origin (primary vs. secondary crater). However, small located ~450 km south of Hadriaca Patera starting craters accumulate to the surface more quickly than close to the end of another valley, Reull Vallis. Due to larger ones, and thus the high spatial resolution is nec- the close position to the volcanic features, the channels essary in dating younger surfaces or small units where are suggested to have been formed by the mobilization there are only few large craters. In the case of Harma- and release of subsurface volatiles by volcanic heat [1– khis Vallis, the region has experienced significant re- 5]. Because Harmakhis Vallis cuts the surrounding cent modification and degradation, and thus, we can massifs of the cratered terrains, it is clearly one of the assume that the small crater population mostly post- youngest features in the region [6, 7]. dates the secondary craters forming larger impacts lo- cated in the older regions. Therefore, only the obvious clusters of secondary craters were excluded from the counts.
    [Show full text]
  • 2021 Transpacific Yacht Race Event Program
    TRANSPACTHE FIFTY-FIRST RACE FROM LOS ANGELES 2021 TO HONOLULU 2 0 21 JULY 13-30, 2021 Comanche: © Sharon Green / Ultimate Sailing COMANCHE Taxi Dancer: © Ronnie Simpson / Ultimate Sailing • Hamachi: © Team Hamachi HAMACHI 2019 FIRST TO FINISH Official race guide - $5.00 2019 OVERALL CORRECTED TIME WINNER P: 808.845.6465 [email protected] F: 808.841.6610 OFFICIAL HANDBOOK OF THE 51ST TRANSPACIFIC YACHT RACE The Transpac 2021 Official Race Handbook is published for the Honolulu Committee of the Transpacific Yacht Club by Roth Communications, 2040 Alewa Drive, Honolulu, HI 96817 USA (808) 595-4124 [email protected] Publisher .............................................Michael J. Roth Roth Communications Editor .............................................. Ray Pendleton, Kim Ickler Contributing Writers .................... Dobbs Davis, Stan Honey, Ray Pendleton Contributing Photographers ...... Sharon Green/ultimatesailingcom, Ronnie Simpson/ultimatesailing.com, Todd Rasmussen, Betsy Crowfoot Senescu/ultimatesailing.com, Walter Cooper/ ultimatesailing.com, Lauren Easley - Leialoha Creative, Joyce Riley, Geri Conser, Emma Deardorff, Rachel Rosales, Phil Uhl, David Livingston, Pam Davis, Brian Farr Designer ........................................ Leslie Johnson Design On the Cover: CONTENTS Taxi Dancer R/P 70 Yabsley/Compton 2019 1st Div. 2 Sleds ET: 8:06:43:22 CT: 08:23:09:26 Schedule of Events . 3 Photo: Ronnie Simpson / ultimatesailing.com Welcome from the Governor of Hawaii . 8 Inset left: Welcome from the Mayor of Honolulu . 9 Comanche Verdier/VPLP 100 Jim Cooney & Samantha Grant Welcome from the Mayor of Long Beach . 9 2019 Barndoor Winner - First to Finish Overall: ET: 5:11:14:05 Welcome from the Transpacific Yacht Club Commodore . 10 Photo: Sharon Green / ultimatesailingcom Welcome from the Honolulu Committee Chair . 10 Inset right: Welcome from the Sponsoring Yacht Clubs .
    [Show full text]
  • DID MARS EVER HAVE a LIVELY UNDERGROUND SCENE? Joseph
    Third Conference on Early Mars (2012) 7060.pdf DID MARS EVER HAVE A LIVELY UNDERGROUND SCENE? Joseph. R. Michalski, Natural History Mu- seum, London, UK and Planetary Science Institute, Tucson, AZ, USA. [email protected] Introduction: Prokaryotes comprise more than are investigating environments that might never have 50% of the Earth’s organic carbon, and the amount of been inhabited on a planet that is very much habitable. prokaryote biomass in the deep subsurface is 10-15 Spectroscopic results over the last 5-10 years have times the combined mass of prokaryotes that inhabit revealed significant diversity, abundance, and distribu- the oceans and terrestrial surface combined [1]. We do tion of alteration minerals that formed from aqueous not know when the first life occurred on Earth, but the processes on ancient Mars (recently summarized by first evidence is found in some of the oldest preserved Ehlmann et al. [6]). The mineralogy and context of rocks dating to 3.5 or, as much as 3.8 Ga [2]. While the these altered deposits indicates that deep hydrothermal concept of a “tree of life” breaks down in the Archean processes have operated on Mars, and might have per- [3], it seems likely that the most primitive ancestors of sisted from the Noachian into the Hesperian or later. In all life on Earth correspond to thermophile this work, I consider the implications of recent results chemoautotrophs. Perhaps these are the only life forms for the habitability of the subsurface, the occurrence of that survived intense heat flow during the Late Heavy groundwater, and the possibility to access materials Bombardment or perhaps they actually represent the representing subsurface biological processes.
    [Show full text]
  • A La Torre Aaker Aalbers Aaldert Aarmour Aaron
    A LA TORRE ABDIE ABLEMAN ABRAMOWITCH AAKER ABE ABLES ABRAMOWITZ AALBERS ABEE ABLETSON ABRAMOWSKY AALDERT ABEEL ABLETT ABRAMS AARMOUR ABEELS ABLEY ABRAMSEN AARON ABEKE ABLI ABRAMSKI AARONS ABEKEN ABLITT ABRAMSON AARONSON ABEKING ABLOTT ABRAMZON AASEN ABEL ABNER ABRASHKIN ABAD ABELA ABNETT ABRELL ABADAM ABELE ABNEY ABREU ABADIE ABELER ABORDEAN ABREY ABALOS ABELES ABORDENE ABRIANI ABARCA ABELI ABOT ABRIL ABATE ABELIN ABOTS ABRLI ABB ABELL ABOTSON ABRUZZO ABBA ABELLA ABOTT ABSALOM ABBARCROMBIE ABELLE ABOTTS ABSALON ABBAS ABELLS ABOTTSON ABSHALON ABBAT ABELMAN ABRAHAM ABSHER ABBATE ABELS ABRAHAMER ABSHIRE ABBATIELLO ABELSON ABRAHAMI ABSOLEM ABBATT ABEMA ABRAHAMIAN ABSOLOM ABBAY ABEN ABRAHAMOF ABSOLON ABBAYE ABENDROTH ABRAHAMOFF ABSON ABBAYS ABER ABRAHAMOV ABSTON ABBDIE ABERCROMBIE ABRAHAMOVITZ ABT ABBE ABERCROMBY ABRAHAMOWICZ ABTS ABBEKE ABERCRUMBIE ABRAHAMS ABURN ABBEL ABERCRUMBY ABRAHAMS ABY ABBELD ABERCRUMMY ABRAHAMSEN ABYRCRUMBIE ABBELL ABERDEAN ABRAHAMSOHN ABYRCRUMBY ABBELLS ABERDEEN ABRAHAMSON AC ABBELS ABERDEIN ABRAHAMSSON ACASTER ABBEMA ABERDENE ABRAHAMY ACCA ABBEN ABERG ABRAHM ACCARDI ABBERCROMBIE ABERLE ABRAHMOV ACCARDO ABBERCROMMIE ABERLI ABRAHMOVICI ACE ABBERCRUMBIE ABERLIN ABRAHMS ACERO ABBERDENE ABERNATHY ABRAHMSON ACESTER ABBERDINE ABERNETHY ABRAM ACETO ABBERLEY ABERT ABRAMCHIK ACEVEDO ABBETT ABEYTA ABRAMCIK ACEVES ABBEY ABHERCROMBIE ABRAMI ACHARD ABBIE ABHIRCROMBIE ABRAMIN ACHENBACH ABBING ABIRCOMBIE ABRAMINO ACHENSON ABBIRCROMBIE ABIRCROMBIE ABRAMO ACHERSON ABBIRCROMBY ABIRCROMBY ABRAMOF ACHESON ABBIRCRUMMY ABIRCROMMBIE ABRAMOFF
    [Show full text]
  • Cambridge University Press 978-1-108-48303-2 — the Moon in the Greek and Roman Imagination Karen Ní Mheallaigh Index More Information
    Cambridge University Press 978-1-108-48303-2 — The Moon in the Greek and Roman Imagination Karen ní Mheallaigh Index More Information Index Achilles’ shield. See Homer Callimachus, – Aëtius, – celestial bowls, – Aglaonice, – Cicero, Somnium Scipionis, –, , See Alcmaeon of Croton, , – selēnoskopia (or ‘view from Moon’) Alcman Cleomedes, , Partheneia (Maiden Songs), – cognitive estrangement. See selēnoskopia (view from Alexander of Abonouteichos, – Moon) amphiphōntes, Colin Webster, , – analogical drift, Corinna, – Anaxagoras of Clazomenae, , –, –, cup of Helios, – Cyrano de Bergerac, , n Anaximander of Miletus, – Anaximenes of Miletus, – Demetrius Triclinius, n, , – Ancient Greek calendar, See also parapēgmata Democritus of Abdera, –, Antiphanes of Berge, – Diogenes of Apollonia, antiphraxis, – dioptra. See Lucian, True Stories Antonius Diogenes, The incredible things beyond Thule earthshine, – and scholarly hoax, – Earthy Moon Theory (EMT), –, –, and the Arctic, – See Plutarch, De facie and the Moon, – problems/challenges, , – narrative complexity, – eclipse Apollo Noumēnios, lunar eclipse, – Apuleius mechanism of eclipse, – lunam despumari, – solar eclipse, , – Aristarchus of Samos, , Empedocles of Acragas, –, , – Aristotle Empedotimus, fire creatures on the Moon, – Endymiones, , – on nature of Moon, Ennius’ dream, – theory of elements, Epimenides of Crete, – Astraeus, Eratosthenes of Cyrene, astral travel. See soul projection Hermes. See selēnoskopia (or ‘view from astronomical observation, , See mountains Moon’) astronomy
    [Show full text]
  • Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
    U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11
    [Show full text]
  • Composition of the L5 Mars Trojans: Neighbors, Not Siblings
    Composition of the L5 Mars Trojans: Neighbors, not Siblings Andrew S. Rivkin a,1, David E. Trilling b, Cristina A. Thomas c,1, Francesca DeMeo c, Timothy B. Spahr d, and Richard P. Binzel c,1 aJohns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd. Laurel, MD 20723 bSteward Observatory, The University of Arizona, Tucson, AZ 85721 cDepartment of Earth, Atmospheric, and Planetary Sciences, M.I.T. Cambridge, MA 02139 dHarvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA 02138 arXiv:0709.1925v1 [astro-ph] 12 Sep 2007 Number of pages: 14 Number of tables: 1 Number of figures: 6 Email address: [email protected] (Andrew S. Rivkin). 1 Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary As- tronomy Program. Preprint submitted to Icarus 29 May 2018 Proposed Running Head: Characterization of Mars Trojans Please send Editorial Correspondence to: Andrew S. Rivkin Applied Physics Laboratory MP3-E169 Laurel, MD 20723-6099, USA. Email: [email protected] Phone: (778) 443-8211 2 ABSTRACT Mars is the only terrestrial planet known to have Trojan (co-orbiting) aster- oids, with a confirmed population of at least 4 objects. The origin of these objects is not known; while several have orbits that are stable on solar-system timescales, work by Rivkin et al. (2003) showed they have compositions that suggest separate origins from one another. We have obtained infrared (0.8-2.5 micron) spectroscopy of the two largest L5 Mars Trojans, and confirm and extend the results of Rivkin et al.
    [Show full text]
  • SPORADIC GROUNDWATER UPWELLING in DEEP MARTIAN CRATERS: EVIDENCE for LACUSTRINE CLAYS and CARBONATES. J. R. Michalski1,2, A. D. Rogers3, S
    SPORADIC GROUNDWATER UPWELLING IN DEEP MARTIAN CRATERS: EVIDENCE FOR LACUSTRINE CLAYS AND CARBONATES. J. R. Michalski1,2, A. D. Rogers3, S. P. Wright4, P. Niles5, and J. Cuadros1, 1Natural History Museum, London, UK 2Planetary Science Institute, Tucson, AZ, USA. 3SUNY Stony Brook, Stony Brook, NY, USA. 4University of New Mexico, Albuquerque, NM, USA. 5NASA Johnson Space Cen- ter, Houston, TX, USA. Introduction: While the surface of Mars may eralogy of deep impact craters was investigated using have had an active hydrosphere early in its history [1], TES, THEMIS, and CRISM data. it is likely that this water retreated to the subsurface Results: We identified ~40 craters of interest in the early on due to loss of the magnetic field and early northern hemisphere, the majority of which occur in atmosphere [2]. This likely resulted in the formation of western Arabia Terra – a potential upwelling zone of two distinct aqueous regimes for Mars from the Late interest [4]. Most of these craters do not contain obvi- Noachian onward: one dominated by redistribution of ous evidence for intra-crater aqueous activity, but surface ice and occasional melting of snow/ice [3], and ~10% contain interior channels and possible lacustrine one dominated by groundwater activity [4]. The exca- features. Most of the craters of interest are blanketed vation of alteration minerals from deep in the crust by by dust, which limits the possibilities for investigating impact craters points to an active, ancient, deep hydro- the mineralogy of intracrater deposits. thermal system [5]. Putative sapping features [6] may One clear exception is McLaughlin Crater (338.6 occur where the groundwater breached the surface.
    [Show full text]
  • Ships of the Star Fleet ONE HUNDRED and NINETIETH EDITION
    Ships of the Star Fleet ONE HUNDRED AND NINETIETH EDITION By Admiral Chris Wallace Star Fleet Operations / Star Fleet Advanced Starship Design Bureau Masthead CHIEF EDITOR AND PUBLISHER Admiral Chris Wallace Chief of Star Fleet Operations LAYOUT CONSULTANT Sakura Shinguji Panda Press Interstellar PROJECT COORDINATOR Captain Belldandy Morisato Star Fleet Advanced Starship Design Bureau STRATEGIC EDITOR Commander Natsumi Tsujimoto Star Fleet Operating Forces PRODUCTION EDITOR Rear Admiral Kurt Roithinger Star Fleet Command TECHNICAL EDITOR Admiral Alex Rosenzweig Star Fleet Department of Technical Services ENGINEERING CONSULTANT Lieutenant Commander Skuld Star Fleet Operating Forces SYSTEMS ANALYST Rear Admiral Carsten Pedersen Star Fleet Offi ce of Research and Development NAVAL LIASON Rear Admiral John Scharmen Star Fleet Operations GRAPHICS Copyright © 2378 by the Star Fleet Spacecraft Design Advisory Commission, Star Fleet Command, Commodore David Pipgras Utopia Planitia Spacedock, Mars. Region Five Offi ce of Graphic Design HISTORICAL CONSULTANT This document prepared and published by Team Neko and Team Kempo for the Starfl eet Lieutenant General Scott A. Akers Spacecraft Design Advisory Commission. Offi ce of the Star Fleet Historian SUPPORT STAFF Memory Alpha Cataloging Data: Doctor Richard Sternbach, PhD. UFPI ITP/SP SOTSF23772378 Doctor Michael Okuda, PhD. Doctor Graham Kennedy, PhD. This edition of Ships of the Star Fleet is authorized for viewing only in member star systems of the Doctor Bernd Schneider, PhD. United Federation of Planets, its territories and possessions, affi liated star systems, and select independent or neutral star systems. This document and its entire contents Copyright © 2005 Panda Productions. All rights reserved. We request that no part of this document be reproduced in any form or by any means, or stored on any electronic server (ftp or http) without the written permission of the publishers.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]