ABSTRACT FLOYD, LEAH EVELYN. Reservoir Hosts and Vectors of Xylella Fastidiosa, Causal Agent of Pierce's Disease of Grapevines

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT FLOYD, LEAH EVELYN. Reservoir Hosts and Vectors of Xylella Fastidiosa, Causal Agent of Pierce's Disease of Grapevines ABSTRACT FLOYD, LEAH EVELYN. Reservoir Hosts and Vectors of Xylella fastidiosa, Causal Agent of Pierce’s Disease of Grapevines, in North Carolina. (Under the direction of Turner Bond Sutton). Pierce’s disease (PD) of grapevines is caused by the xylem-limited bacterium Xylella fastidiosa (Xf) which is transmitted by leafhoppers and spittlebugs. Leafhopper populations were surveyed in six vineyards across North Carolina’s three geographic regions, in 2006 and 2007. Populations of two phloem-feeders, Agallia spp. and Paraphlepsius irroratus were compared with populations of known PD vectors, Graphocephala versuta and Oncometopia orbona as well as other leafhoppers and planthoppers. G. versuta was the dominant species in the Piedmont and Mountain regions in 2007 and in one Coastal Plain vineyard in 2006. Agallia spp. were most common in the Coastal Plain in 2007, and in the two Mountain and Piedmont vineyards in 2006. The possibility that a phloem-feeder may transmit Xf to grapevines was examined. The clover leafhopper, A. sanguinolenta, a phloem-feeder, did not transmit Xf to grapevines and the bacterium was not detected in its mouthparts using RT-PCR analysis. A reservoir host list of Xf was developed for North Carolina. This was developed using ground vegetation surveys conducted in three vineyards in the spring and fall of 2007-08 to identify and quantify plant species growing on the vineyard floor. Plant samples were collected and tested for the presence of Xf with ELISA and PCR. Fourteen of 40 plant species surveyed tested positive with ELISA and two were confirmed with PCR. Plant hosts of Xf identified in this study that have not been previously reported are: Chamaesyce maculata, Trifolium arvense, hop clover, Trifolium spp., Geranium carolinianum, Oxalis stricta, Festuca sp., Setaria sp., Hordeum pusillum, Poa trivialis and Ranunculus sp. Plant hosts of Xf identified that were previously reported to host PD-strains of the bacterium include: Trifolium repens, Plantago lanceolata, Digitaria sp., and Cynodon dactylon. To further examine the importance of potential groundcovers as reservoir hosts, experiments were conducted to find a groundcover that the known PD vector, Graphocephala spp. does not prefer for feeding. None of the plant species tested were found to be poor reservoir hosts, with regard to G. versuta feeding preference. Additionally, the effect of the presence of fungal endophytes on the survival of G. versuta was investigated. Those present in Festuca rubra spp. rubra and Festuca rubra ssp. commutata did not affect the survival of G. versuta. We recommend removing broadleaf weeds from the vineyard floor, and studies to find a suitable groundcover should be continued. Reservoir Hosts and Vectors of Xylella fastidiosa, Causal Agent of Pierce’s Disease of Grapevines, in North Carolina by Leah Evelyn Floyd A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science Plant Pathology Raleigh, North Carolina 2008 APPROVED BY: George G. Kennedy David F. Ritchie Turner B. Sutton Chair of Advisory Committee BIOGRAPHY Leah Evelyn Floyd was born July 16th 1984. She grew up in Oxford, North Carolina and attended J.F. Webb High School. Upon graduation, she began an undergraduate degree in the Department of Botany at North Carolina State University, where she became interested in plant pathology. Leah worked for the NCSU Plant Disease and Insect Clinic and the Department of Plant Pathology’s Fungal Genomics laboratory as an undergraduate. She began working for Dr. Turner Sutton during her senior year, and began her Master of Science degree in Plant Pathology at North Carolina State University in 2006 under his direction. ii ACKNOWLEDGMENTS I would like to thank Dr. Turner Sutton, chair of my advisory committee, for supporting this research, and for all the opportunities to practice extension and develop professionally. The learning experiences have certainly extended above and beyond scientific knowledge. Thanks to Dr. David Ritchie and Dr. George Kennedy, my committee members, for their guidance with this project. Thanks to all current and former members of the Sutton laboratory who have helped with the collection and processing of samples, and advised me along the way. I would also like to thank all of my family and friends for supporting me as I pursued my degree. Most of all, thanks to my parents for allowing me to focus on education throughout the years. iii TABLE OF CONTENTS LIST OF TABLES ………… ……………... ……………..……………………………... v LIST OF FIGURES ………................................................................................................ vi CHAPTER 1 ....................................................................................................................... 1 Introduction ............................................................................................................ 1 Materials and Methods ........................................................................................... 3 Leafhopper Population Surveys ................................................................. 3 Transmission Experiments ......................................................................... 4 RT-PCR Analyses ...................................................................................... 5 Results .................................................................................................................... 7 Leafhopper Population Surveys ................................................................. 7 Transmission Experiments ......................................................................... 9 RT-PCR Analyses ...................................................................................... 9 Discussion .............................................................................................................. 10 Literature Cited ...................................................................................................... 13 CHAPTER 2 ...................................................................................................................... 14 Introduction ............................................................................................................ 14 Materials and Methods ........................................................................................... 17 Ground Vegetation Surveys ....................................................................... 17 Testing Potential Reservoir Hosts for Xf ................................................... 17 Host Plant Suitability Studies .................................................................... 19 Fungal Endophyte Effects on Leafhopper Survival ……………………... 21 Results .................................................................................................................... 24 Ground Vegetation Surveys ....................................................................... 24 Testing Potential Reservoir Hosts for Xf ................................................... 25 Host Plant Suitability Studies …………………………............................. 25 Fungal Endophyte Effects on Leafhopper Survival ……………………… 25 Discussion .............................................................................................................. 26 Literature Cited ...................................................................................................... 32 APPENDIX ........................................................................................................................ 55 iv LIST OF TABLES CHAPTER 2 Table 1. Vineyard floor vegetative composition in 2007 in (A) Polk, (B) Yadkin and (C) Guilford counties, NC...........................................46 Table 2. Vineyard floor vegetative composition in 2008 in (A) Polk, (B) Yadkin and (C) Guilford counties, NC…………………...............48 Table 3. Plant species tested for Xf with ELISA, locations and dates for which samples were taken, and frequency with which species tested positive ....................................................………...........................50 v LIST OF FIGURES CHAPTER 1 Figure 1. Proportion of leafhoppers found in Polk Co. NC vineyard # 1 in (A) 2006 and (B) 2007…………………………………………….35 Figure 2. Proportion of leafhoppers found in Polk Co. NC vineyard # 2 in (A) 2006 and (B) 2007…………………………………………….36 Figure 3. Proportion of leafhoppers found in Alamance Co. NC vineyard in (A) 2006 and (B) 2007…………………………………...........................37 Figure 4. Proportion of leafhoppers found in Wake Co. NC vineyard in (A) 2006 and (B) 2007…………………………………………….38 Figure 5. Proportion of leafhoppers found in Currituck Co. NC vineyard # 1 in (A) 2006 and (B) 2007……………………………….........................39 Figure 6. Proportion of leafhoppers found in Currituck Co. NC vineyard # 2 in (A) 2006 and (B) 2007……………………………….........................40 Figure 7. Average number of Agallia spp. per trap across all vineyards in (A) 2006 and (B) 2007…………………………………………….41 Figure 8. Average number of Paraphlepsius irroratus per trap across all vineyards in (A) 2006 and (B) 2007…………………………………42 Figure 9. Average number of Graphocephala versuta per trap across all vineyards in (A) 2006 and (B) 2007…………………………………43 Figure 10. Average number of Oncometopia orbona per trap across all vineyards in (A) 2006 and (B) 2007…………………………………44 Figure 11. Average number of “other” leafhoppers per trap across all vineyards in (A) 2006 and (B) 2007…………………………………45 CHAPTER
Recommended publications
  • OVIPOSICIÓN Y ASPECTOS BIOLÓGICOS DEL HUEVO DE Oncometopia Clarior (HEMIPTERA: CICADELLIDAE) EN Dioscorea Rotundata
    OVIPOSICIÓN Y ASPECTOS BIOLÓGICOS DEL HUEVO DE Oncometopia clarior (HEMIPTERA: CICADELLIDAE) EN Dioscorea rotundata OVIPOSITION AND BIOLOGICAL ASPECTS OF Oncometopia clarior (HEMIPTERA: CICADELLIDAE) EGG IN Dioscorea rotundata Deivys M. Alvarez1*, Wendy Y. Arroyo1, Antonio M. Pérez2, Javier D. Beltrán3 Recibido para publicación: Noviembre 6 de 2012 - Aceptado para publicación: Diciembre 2 de 2012 RESUMEN Los Cicadellidae son insectos de importancia agrícola por ser vectores de fitopatógenos. Oncometopia clarior es responsable de la transmisión del Virus del mosaico suave del ñame que causa pérdidas en la producción en los cultivos de ñame. Este estudio describe la biología del huevo del cicadélido Oncometopia clarior. Se recolectaron hembras adultas en cultivos de ñame y se confinaron en jaulas de oviposición con plantas de Dioscorea rotundata, se retiraron las hojas con posturas y se incubaron los huevos. Se encontró que la oviposición ocurre en el envés de las hojas y de forma endofítica. Los huevos fueron puestos en filas de 4 a 25 y cubiertos con brochosoma. Su tamaño fue de 2,39 mm ± 0,1197 de longitud y 0,53 mm ± 0,062 de ancho, son de forma alargada con extremos redondeados. La duración del periodo embrionario fue de 6,58 ± 0,98 días. Palabras clave: chicharrita, período embrionario, ñame. ABSTRACT Cicadellidae are insects of agricultural importance because they are plant pathogens vectors. Oncometopia clarior is responsible for transmission of Yam mild mosaic virus that causes yield losses in yam crops. This study describes the egg biology of leafhopper Oncometopia clarior. Adult females were collected in yam crops and confined in oviposition cages with Dioscorea rotundata plants, the leaf with postures were removed and the eggs were incubated.
    [Show full text]
  • Managing Aboveground Pests: Arthropod Vectors of Citrus Pathogens: Part I February 13, 2019 Lecture Overview
    Managing aboveground pests: Arthropod vectors of citrus pathogens: Part I February 13, 2019 Lecture Overview Part I: • Vector-borne disease concepts • Introduction to Disease Vectors • Taxonomy • Biology • Vector-borne diseases of citrus • Viral Pathogens Part II: • Vector-borne diseases of citrus • Bacterial Pathogens • Case studies: • Citrus Variegated Chlorosis and Citrus greening disease Plant disease epidemics • Can result in large loss of crop yields or decimate entire plant species (e.g. Dutch elm disease) • Approximately 30-40% of damage/loss due to plant diseases Pathogen due to direct or indirect effects of (Vector) transmission and facilitation of pathogens by insects • Three elements needed for disease to occur (‘disease Susceptible Conducive triangle’) host environment • When a pathogen requires a vector to be spread, the vector must be plentiful and active for an epidemic to occur Disease Triangle • Not shown: time (latent period) for disease development Plant disease epidemics Host/Pathogen Relationships • Environmental and physiological factors contribute to the development of disease • Resistance: ability of a host to prevent infection and disease • Virulence: ability of a pathogen to produce disease • Many plant pathogens need to be transmitted by a vector • A pathogen’s host range may be determined by the host range of the vector - it can only infect plants that the insect vector feeds upon Vector/Host Relationships • Generally, the closer the association between vector and host, the greater the suitability of the vector
    [Show full text]
  • Egg-Laying and Brochosome Production Observed in Glassy-Winged Sharps Hooter
    Egg-laying and brochosome production observed in glassy-winged sharps hooter Raymond L. Hix Glassy-winged sharpshooter effective integrated pest management these spots weren’t merely ornaments, (G WSS) females form white spots (IPM) programs, especially aspects re- but he wasn’t sure as to their origin. He on the forewings from secretions lated to insect monitoring. We briefly supposed them to be transferred to the of ultramicroscopic bodies known discuss what is known about GWSS forewings by the hind tibia from the as brochosomes. This occurs af- egg-laying behavior, and present stud- anus. The powdering of the egg mass ter mating of the G WSS and just ies from my laboratory. The implica- was believed to camouflage the eggs prior to egg laying. The first pub- tions of wing-spot formation and from predators and parasites. lished reports of wing spots were brochosome secretions are discussed The makeup, origin and function of made by Riley and Howard in in the context of IPM programs. All white spots in certain leafhoppers 1893. The behaviors associated GWSS brochosome secretions are ei- ther grayish translucent or opaque with brochosome formation could white in comparison to the clear excre- have important implications for in- ment often referred to as “hopper tegrated pest management (IPM) rain.” programs to control G WSS, an im- portant vector of the bacterium Historical perspective that causes Pierce’s disease in Before the turn of the 20th century, grapevines and other crops. Riley and Howard (1893) dispatched Nathan Banks and F.W. Mally to ince 1997, wineries near Temecula Shreveport, La., to investigate prob- Shave lost 20% to 30% of their vines lems in cotton with the GWSS, re- to Pierce‘s disease, which is caused by ferred to locally as a ”sharpshooter” the bacterium Xylellafustidiosa Wells attack.
    [Show full text]
  • The Leafhoppers of Minnesota
    Technical Bulletin 155 June 1942 The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station Accepted for publication June 19, 1942 CONTENTS Page Introduction 3 Acknowledgments 3 Sources of material 4 Systematic treatment 4 Eurymelinae 6 Macropsinae 12 Agalliinae 22 Bythoscopinae 25 Penthimiinae 26 Gyponinae 26 Ledrinae 31 Amblycephalinae 31 Evacanthinae 37 Aphrodinae 38 Dorydiinae 40 Jassinae 43 Athysaninae 43 Balcluthinae 120 Cicadellinae 122 Literature cited 163 Plates 171 Index of plant names 190 Index of leafhopper names 190 2M-6-42 The Leafhoppers of Minnesota John T. Medler INTRODUCTION HIS bulletin attempts to present as accurate and complete a T guide to the leafhoppers of Minnesota as possible within the limits of the material available for study. It is realized that cer- tain groups could not be treated completely because of the lack of available material. Nevertheless, it is hoped that in its present form this treatise will serve as a convenient and useful manual for the systematic and economic worker concerned with the forms of the upper Mississippi Valley. In all cases a reference to the original description of the species and genus is given. Keys are included for the separation of species, genera, and supergeneric groups. In addition to the keys a brief diagnostic description of the important characters of each species is given. Extended descriptions or long lists of references have been omitted since citations to this literature are available from other sources if ac- tually needed (Van Duzee, 1917).
    [Show full text]
  • 2003Session3.Pdf
    THE SITUATION OF GRAPEVINE YELLOWS AND CURRENT RESEARCH DIRECTIONS: DISTRIBUTION, DIVERSITY, VECTORS, DIFFUSION AND CONTROL E. Boudon-Padieu Biologie et écologie des phytoplasmes, UMR 1088 Plante Microbe Environnement, INRA – Université de Bourgogne, Domaine d’Epoisses, BP 86510 – 21065 Dijon Cedex France Grapevine yellows (GY) are known now for 50 years. After the first appearance of Flavescence dorée (FD) in West-South France in the 1950’s, similar diseases have been observed in vineyards of other regions or countries (22) in Europe, North-America, Asia Minor and Australia. Typical symptoms are leaf rolling and discoloration of veins and laminae, uneven or total lack of lignification of canes, flower abortion or berry withering. Eventually, severe decline and death occur with sensitive varieties or with particular GY diseases. All these diseases have been associated with phytoplasmas. Phytoplasmas, discovered in 1967, are wall-less intracellular bacterias restricted to phloem sieve tubes and transmitted only by vector insects in which they multiply and circulate. Recently, comparisons of conserved regions in their genomic DNA, have permitted to classify all known phytoplasmas into about 20 groups and subgroups within a monophyletic clade in the Class Mollicutes, closest to the Acholeplasma clade (57, 78). Numerous DNA probes have been designed that permit diagnosis and identification of phytoplasmas in plant tissues and in insects. This, together with transmission assays, has also permitted the recent identification of new phytoplasma vectors. Though Koch’s postulate cannot be fully satisfied with non-culturable pathogen agents, it is now considered that phytoplasmas are responsible for typical GY symptoms. These conclusions have been reached because of transmission experiments with natural vectors in the case of Flavescence dorée (FD) and Bois noir (BN), of the similarity of symptoms caused world wide by GY diseases on numerous grapevine cultivars and of consistent detection of phytoplasmas in affected grapevines and in infective insect vectors.
    [Show full text]
  • Observations on the Occurrence of Chalky Deposits on Forewings of Oncometopia Orbona (F) (Homoptera: Cicadellidae) Mark A
    Journal of the Arkansas Academy of Science Volume 35 Article 24 1981 Observations on the Occurrence of Chalky Deposits on Forewings of Oncometopia orbona (F) (Homoptera: Cicadellidae) Mark A. Mayse University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Zoology Commons Recommended Citation Mayse, Mark A. (1981) "Observations on the Occurrence of Chalky Deposits on Forewings of Oncometopia orbona (F) (Homoptera: Cicadellidae)," Journal of the Arkansas Academy of Science: Vol. 35 , Article 24. Available at: http://scholarworks.uark.edu/jaas/vol35/iss1/24 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 35 [1981], Art. 24 DALY, J., J. H.E. FARRIS and H.M.MATTHEWS. 1976. Pseudo- HYMAN,L.H. 1954. Some land planarians of the United States and parasitism of dogs and cats by the land planarian, Bipalium Europe, with remarks on nomenclature. Araer. Mus. Nov. No kewense. VM/SAC71:1540-1542. 1667, 21pp. DALY,J.
    [Show full text]
  • The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae) Taxonomy, Biology, and Virus Transmission
    /«' THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, CICADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION Technical Bulletin No. 1382 Agricultural Research Service UMTED STATES DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS Many individuals gave valuable assistance in the preparation of this work, for which I am deeply grateful. I am especially indebted to Miss Julianne Rolfe for dissecting and preparing numerous specimens for study and for recording data from the literature on the subject matter. Sincere appreciation is expressed to James P. Kramer, U.S. National Museum, Washington, D.C., for providing the bulk of material for study, for allowing access to type speci- mens, and for many helpful suggestions. I am also grateful to William J. Knight, British Museum (Natural History), London, for loan of valuable specimens, for comparing type material, and for giving much useful information regarding the taxonomy of many important species. I am also grateful to the following persons who allowed me to examine and study type specimens: René Beique, Laval Univer- sity, Ste. Foy, Quebec; George W. Byers, University of Kansas, Lawrence; Dwight M. DeLong and Paul H. Freytag, Ohio State University, Columbus; Jean L. LaiFoon, Iowa State University, Ames; and S. L. Tuxen, Universitetets Zoologiske Museum, Co- penhagen, Denmark. To the following individuals who provided additional valuable material for study, I give my sincere thanks: E. W. Anthon, Tree Fruit Experiment Station, Wenatchee, Wash.; L. M. Black, Uni- versity of Illinois, Urbana; W. E. China, British Museum (Natu- ral History), London; L. N. Chiykowski, Canada Department of Agriculture, Ottawa ; G. H. L. Dicker, East Mailing Research Sta- tion, Kent, England; J.
    [Show full text]
  • Conservation Assessment for the Reflexed Indiangrass Leafhopper (Flexamia Reflexa (Osborn and Ball))
    Conservation Assessment for the Reflexed Indiangrass Leafhopper (Flexamia reflexa (Osborn and Ball)) USDA Forest Service, Eastern Region October 18, 2005 James Bess OTIS Enterprises 13501 south 750 west Wanatah, Indiana 46390 This document is undergoing peer review, comments welcome This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 1 ACKNOWLEDGEMENTS............................................................................................................ 1 NOMENCLATURE AND TAXONOMY ..................................................................................... 2 DESCRIPTION OF SPECIES.......................................................................................................
    [Show full text]
  • Auchenorrhyncha Monitoring and Proposal of Management Measures for Potential Pests on Peach Orchards in Beira Interior Region
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL Auchenorrhyncha monitoring and proposal of management measures for potential pests on peach orchards in Beira Interior region Patrícia Monteiro Nascimento Mestrado em Biologia Humana e Ambiente Dissertação orientada por: Prof. Doutora Maria Teresa Rebelo (FCUL) 2020 Agradecimentos/ Acknowledgments ▪ à Professora Teresa Rebelo pela orientação, constante disponibilidade e boa disposição, por esclarecer as minhas dúvidas e por todas as sugestões, conselhos e revisões da tese; ▪ à Mestre Carina Neto por toda a ajuda na identificação dos insectos, pelos conselhos dados e por esclarecer as minhas dúvidas; ▪ a Joaquim Martins Duarte & Filhos, Lda por ter permitido a colocação das placas nos seus pomares para a amostragem e construção do presente trabalho; ▪ à Engenheira Anabela Barateiro pela recolha e envio de amostras, disponibilização de informação dos pomares e dados meteorológicos da região; ▪ ao Professor José Pereira Coutinho pelo envio de amostras e disponibilização de fotografias dos pomares e informação; ▪ à Unidade de Microscopia da FCUL que faz parte da Plataforma Portuguesa de Bioimaging (PPBI-POCI-01-0145-FEDER-022122) por ter disponibilizado o equipamento necessário para a aquisição de imagens dos insectos; ▪ à minha mãe, por toda a paciência, carinho, compreensão e apoio incondicional; ▪ às minhas amigas Inês Alves, Margarida Castelão e Catarina Ramos pela partilha da fase académica, pela companhia e pelas visitas, e à minha amiga Joana Cotrim por todo o apoio, paciência e companhia ao longo desta etapa. i Abstract The Auchenorrhyncha suborder comprises several species considered to be pests of economically important crops whether as a result of the direct damage caused by their feeding process or through some species ability to act as vectors for plant pathogens such as viruses and phytoplasmas.
    [Show full text]
  • Insecticides Sought to Control Adult Glassy-Winged Sharpshooter
    These observations lay the ground- work for future studies on antimicro- bial roles of brochosomes and the ef- fect of brochosomes on predator and parasitoid behavior. Furthermore, it may be advantageous to collect fe- males with white spots to establish and augment GWSS colonies and bio- assays because these females are mated and will lay eggs within a few hours to a couple of days. R. L. Hix is Extension Specialist and En- tomologist, Department of Entomology, UC Riverside. Videofiles compatible with the latest version of the Windows Media player are available from the author for anointing, ball-rolling, and powdering of the egg mass with brochosomes. References Day MF, Briggs M. 1958. The origin and structure of brochosomes. J of Ultrastructure Res 2:239-44. Mayse MA. 1981. Observations on the oc- currence of chalky deposits on forewings of Oncometopia orbona (F.) (Homoptera: Cicadellidae). Proc of Ark Ac of Science 35 :84-6. Nielson MW, May CJ, Tingey WM. 1975. Developmental biology of Oncometopia a/- pha. Annals of Entomol SOCof Am 68:401-3. Rakitov RA. 1996. Post-moulting behaviour associated with Malpighian tubule secretions in leafhoppers and treehoppers (Auchenorrhyncha: Membracoidea). Eur J of Entom 93:167-84. Rakitov RA. 2000. Secretion of Insecticides sought to brochosomes during the ontogenesis of a leafhopper, Oncometopia orbona (F.) (In- sects, Homoptera, Cicadellidae). Tissue and control adult glassy- Cell 32:28-39. Riley CV, Howard LO. 1893. The glassy- winged sharpshooter. Insect Life 5:150-4. winged sharpshooter Smith DS, Littau VG. 1960. Cellular specializion in the excretory epithelia of an in- sect, Macrosteles fascifrons stal (Homoptera: David H.
    [Show full text]
  • Xylem Specialists Colonizing Texas Vineyards: Abundance and Distribution Studied Through Generalized Additive Models
    XYLEM SPECIALISTS COLONIZING TEXAS VINEYARDS: ABUNDANCE AND DISTRIBUTION STUDIED THROUGH GENERALIZED ADDITIVE MODELS Project Leaders: Cooperator: Forrest Mitchell Isabelle Lauzière Simon Sheather Texas Agricultural Experiment Station Texas Agricultural Experiment Station Department of Statistics Texas A&M University Texas A&M University Texas A&M University Stephenville, TX 76401 Fredericksburg, TX 78624 College Station, Texas 77843 Reporting Period: The results reported here are from work conducted April 2007 through October 2007. ABSTRACT Xylem specialists in the Hemiptera: Auchenorrhyncha feed on xylem fluid and exhibit therefore the potential for transmission of Xylella fastidiosa (Xf), the causal agent in Pierce’s disease of grapevine. An increasingly larger survey was initiated in Texas in 2003 and remains ongoing with 45 locations currently monitored. Over 25 insect species belonging in this group were collected from yellow sticky traps. Among these, two leafhoppers and one spittlebug, comprised over 90% of the xylem specialists caught. The glassy-winged sharpshooter Homalodisca vitripennis, the most commonly known vector of Pierce’s disease of grapevine in the U.S. is the most common and abundant insect captured across the state. Insect abundance varied significantly over seasons, and among locations. Residual populations were found overwintering near vineyards, but also in a variety of habitats including urban and vegetation found near natural sources of water. Generalized additive models which were originally developed to analyze complex population data were used with our Central Texas dataset as a tool to identify changes in the distribution of leafhopper and spittlebug species near vineyards. These models helped understanding insect distribution through time. INTRODUCTION Pierce’s disease of grapevine is one of the most important limiting factors to grape production in Texas.
    [Show full text]
  • Detection and Variability of Aster Yellows Phytoplasma Titer in Its Insect Vector, Macrosteles Quadrilineatus (Hemiptera: Cicadellidae)
    ARTHROPODS IN RELATION TO PLANT DISEASE Detection and Variability of Aster Yellows Phytoplasma Titer in Its Insect Vector, Macrosteles quadrilineatus (Hemiptera: Cicadellidae) 1 2 3 K. E. FROST, D. K. WILLIS, AND R. L. GROVES J. Econ. Entomol. 104(6): 1800Ð1815 (2011); DOI: http://dx.doi.org/10.1603/EC11183 ABSTRACT The aster yellows phytoplasma (AYp) is transmitted by the aster leafhopper, Mac- rosteles quadrilineatus Forbes, in a persistent and propagative manner. To study AYp replication and examine the variability of AYp titer in individual aster leafhoppers, we developed a quantitative real-time polymerase chain reaction assay to measure AYp concentration in insect DNA extracts. Absolute quantiÞcation of AYp DNA was achieved by comparing the ampliÞcation of unknown amounts of an AYp target gene sequence, elongation factor TU (tuf), from whole insect DNA extractions, to the ampliÞcation of a dilution series containing known quantities of the tuf gene sequence cloned into a plasmid. The capabilities and limitations of this method were assessed by conducting time course experiments that varied the incubation time of AYp in the aster leafhopper from 0 to 9 d after a 48 h acquisition access period on an AYp-infected plant. Average AYp titer was Ϯ measured in 107 aster leafhoppers and, expressed as Log10 (copies/insect), ranged from 3.53 ( 0.07) to 6.26 (Ϯ0.11) occurring at one and 7 d after the acquisition access period. AYp titers per insect and relative to an aster leafhopper chromosomal reference gene, cp6 wingless (cp6), increased Ϸ100-fold in insects that acquired the AYp. High quantiÞcation cycle values obtained for aster leafhoppers not exposed to an AYp-infected plant were interpreted as background and used to deÞne a limit of detection for the quantitative real-time polymerase chain reaction assay.
    [Show full text]