Photometric Scaling Relations of Lenticular and Spiral Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Photometric Scaling Relations of Lenticular and Spiral Galaxies Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 30 October 2018 (MN LATEX style file v2.2) Photometric scaling relations of lenticular and spiral galaxies E. Laurikainen1⋆, H. Salo1, R. Buta2, J. H. Knapen3,4 and S. Comer´on3,4 1Division of Astronomy, Department of Physical Sciences, University of Oulu, FIN-90014, Finland 2Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 3Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Tenerife, Spain 4Departamento de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain Accepted: Received: ABSTRACT Photometric scaling relations are studied for S0 galaxies and compared with those obtained for spirals. New two-dimensional multi-component decompositions are pre- sented for 122 early-type disk galaxies, using deep Ks-band images. Combining them with our previous decompositions, the final sample consists of 175 galaxies (Near- Infrared Survey of S0s, NIRS0S: 117 S0s + 22 S0/a and 36 Sa galaxies). As a compar- ison sample we use the Ohio State University Bright Spiral Galaxy Survey (OSUBSGS) of nearly 200 spirals, for which similar multi-component decompositions have previ- ously been made by us. The improved statistics, deep images, and the homogeneous decomposition method used, allows us to re-evaluate the parameters of the bulges and disks. For spirals we largely confirm previous results, which are compared with those obtained for S0s. Our main results are as follows. (1) Important scaling relations are present, indicating that the formative processes of bulges and disks in S0s are coupled o o − (e.g. MK(disk)= 0.63 MK(bulge) 9.3), like has been found previously for spirals (for o o − OSUBSGS spirals MK(disk)= 0.38 MK (bulge) 15.5; the rms deviation from these relations is 0.5 mag, for S0s and spirals). (2) We obtain median reff /hr ∼ 0.20, 0.15 and 0.10 for S0, S0/a-Sa and Sab-Sc galaxies, respectively: these values are smaller than predicted by simulation models in which bulges are formed by galaxy mergers. (3) The properties of bulges of S0s are different from the elliptical galaxies, which is o 0 arXiv:1002.4370v1 [astro-ph.CO] 23 Feb 2010 manifested in the MK(bulge) vs reff relation, in the photometric plane (µ , n, reff ), and to some extent also in the Kormendy relation (<µ>eff vs reff ). The bulges of o − S0s are similar to bulges of spirals with MK(bulge) < 20 mag. Some S0s have small bulges, but their properties are not compatible with the idea that they could evolve to dwarfs by galaxy harassment. (4) The relative bulge flux (B/T ) for S0s covers the full range found in the Hubble sequence, even with 13% having B/T < 0.15, typi- cal for late-type spirals. (5) The values and relations of the parameters of the disks o o (hr, MK(disk), µo(0)) of the S0 galaxies in NIRS0S are similar to those obtained for spirals in the OSUBSGS. Overall, our results support the view that spiral galaxies with bulges brighter than −20 mag in the K-band can evolve directly into S0s, due to stripping of gas followed by truncated star formation. Key words: galaxies: elliptical and lenticular - galaxies: evolution - galaxies: structure ⋆ E-mail: eija.laurikainen@oulu.fi c 0000 RAS 2 E. Laurikainen, H. Salo, R. Buta, J.H. Knapen and S. Comer´on 1 INTRODUCTION The position of S0 galaxies between ellipticals and spirals in galaxy classification schemes (Hubble 1926; de Vaucouleurs 1959; Sandage 1961) has made them of particular interest in any scenario of galaxy formation and evolution. Yet the debate on their origin is open. In the current paradigm, the hierarchical Lambda Cold Dark Matter (ΛCDM) cosmology (Somerville & Primack 1999; Steinmetz & Navarro 2002), the disks are formed first by cooling of gas inside rotating dark matter halos, whereas both the elliptical galaxies and the bulges of disk galaxies are suggested to have formed in major or minor mergers, respectively (Khochfar & Silk 2006). The bulges formed in this manner are dynamically hot and their basic properties were established already in the merger process (Khochfar & Burkert 2005), not affected by the subsequently growing disks. Within ΛCDM, S0s are formed in galaxy mergers in a similar manner as the elliptical galaxies, or they are transformed from spirals which have lost their disk gas by some stripping mechanism (Gunn & Gott 1972; Moore et al. 1996; Bekki, Couch & Shioya 2002). Therefore, it is important to study whether the S0 galaxies are more tightly related to ellipticals or to spirals. However, even if the bulges in S0s were found to be similar to those in spirals, this does not yet answer the question of what the formative processes of bulges in S0s are. It has been suggested that two types of bulges appear: 1) classical merger-built bulges, and 2) disk-like bulges formed by star formation in the disk (Kormendy 1982; see also review by Kormendy & Kennicutt 2004). Boxy/peanut bulges are often listed as a separate class, but as they are assumed to be part of a bar (Athanassoula, Lambert & Dehnen 2005), they are basically disk-related structures. Bulges in late-type spirals are typically photometrically disk-like (Andredakis & Sanders 1994; Carollo et al., 1997, 1998) rotationally supported structures (Cappellari et al. 2007), whereas for the bulges of early-type spirals contradictory results have been obtained. In particular, the fairly large masses of the bulges in the early-type galaxies are difficult to explain by secular evolution alone, related to bar-induced gas infall and subsequent star formation in the central regions of the galaxies (see Kormendy & Kennicutt 2004), at least if no external intergalactic material is added to the bulge. It needs to be re-investigated what is the nature of bulges of S0s in the nearby Universe, e.g. are they disk-like or more likely have properties of merger built structures. Answering this question would set important constraints on models of galaxy formation and evolution. Scaling relations have been used for theoretical modeling of elliptical galaxies (see de Zeeuw & Franx 1991), and for eval- uating the formation of galactic disks in spiral galaxies (Dalcanton, Spergel & Summers 1997; Firmani & Avila-Rees 2000). Therefore, the scaling relations can be used as a tool to study the origin of S0s, which morphologically appear between the two main types of galaxies. One such scaling relation was introduced by Kormendy (1977), who showed, using R1/4 models, that the effective radius (reff ) is connected to the central surface brightness (µ0), both for elliptical galaxies and for bulges of early- type disk galaxies. The dispersion in this so-called Kormendy relation is reduced by adding a third parameter, a S´ersic index n, leading to the photometric plane (e.g. Khosroshahi, Wadadekar & Kembhavi 2000). Alternatively, if the central velocity dis- persion is used, the fundamental plane is obtained (e.g. Djorgovski & Davis 1987; Dressler et al. 1987). Other important scaling relations appear between the brightnesses and the scale parameters of the bulge and the disk (Courteau, de Jong & Broeils 1996), and between the brightness of the bulge with the total galaxy brightness (Yoshizawa & Wakamatsu 1975; Carollo et al. 2007). The scaling relations studied for the S0 galaxies so far are open to different interpretations: while the fundamental plane and the Kormendy relation have associated their bulges with the elliptical galaxies (Pahre, Djorgovski & Carvalho 1998; Pierini et al. 2002; Aguerri et al. 2005a), the scale parameters of the bulge and the disk hint to a spiral origin (Aguerri et al. 2005a; Laurikainen et al. 2009). In a broader context, scaling relations for spiral galaxy samples have been extensively studied revealing several fundamental relations (see Ravikumar et al. 2006; Graham & Worley 2008 as some of the latest works). However, the spiral samples contain just a small number of S0s, which makes it difficult to draw conclusions about S0 properties. In addition, except for the first attempts by Aguerri et al. (2005a) and Laurikainen et al. (2009), the scaling relations for the disk galaxies have not yet been studied using a 2D multi-component approach, which is important in accounting for structure, particularly in barred disk galaxies (Peng 2002; Laurikainen et al. 2004, 2006; Gadotti 2008). In this study the photometric scaling relations are studied for a sample of 175 early-type disk galaxies, mainly S0s in NIRS0S. This is the largest sample of S0s studied in detail up to now. We use deep Ks-band images for decomposing the two-dimensional surface brightness image to structure components, including bars, ovals and lenses. We present new decompositions for 122 galaxies, and use our previously published decompositions for the rest of the NIRS0S sample. As a comparison sample we use the Ohio State University Bright Spiral Galaxy survey (OSUBSGS; Eskridge et al. 2002) of nearly 200 spirals, for which similar multi-component decompositions have been previously made by us (Laurikainen et al. 2004). Our main emphasis is to compare whether the photometric properties of bulges in S0s are more similar to those of elliptical galaxies or bulges in spirals. Also, implications of these scaling relations for the formative processes of bulges in S0s are discussed. Our uniform decomposition approach, applied for a statistically significant sample of galaxies, using deep Ks-band images, allows us to re-evaluate the properties of bulges and disks in S0s, and to make an unbiased comparison with spirals. c 0000 RAS, MNRAS 000, 000–000 Photometric scaling relations of NIRS0S and OSUBSGS samples 3 2 SAMPLE AND OBSERVATIONS Our primary sample consists of 175 early-type disk galaxies, mainly S0s (117 S0s, 22 S0/a-Sa, 36 Sa galaxies).
Recommended publications
  • HST Observations of Nuclear Stellar Disks,
    A&A 428, 877–890 (2004) Astronomy DOI: 10.1051/0004-6361:20040359 & c ESO 2004 Astrophysics HST observations of nuclear stellar disks, D. KrajnovicandW.Ja´ ffe Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] Received 1 March 2004 / Accepted 11 August 2004 Abstract. We present observations of four nearby early-type galaxies with previously known nuclear stellar disks using two instruments on-board the Hubble Space Telescope. We observed NGC 4128, NGC 4612, and NGC 5308 with the Wide Field Planetary Camera 2, and the same three galaxies, plus NGC 4570, with the Space Telescope Imaging Spectrograph. We have detected a red nucleus in NGC 4128, a blue nucleus in NGC 4621, and a blue disk in NGC 5308. Additionally, we have discovered a blue disk-like feature with position angle ∼15◦ from the major axis in NGC 4621. In NGC 5308 there is evidence for a blue region along the minor axis. We discovered a blue transient on the images of NGC 4128 at position 0. 14 west and 0. 32 north from the nucleus. The extracted kinematic profiles belong to two groups: fast (NGC 4570 and NGC 5308) and kinematically disturbed rotators (NGC 4128 and NGC 4621). We report the discovery of a kinematically decoupled core in NGC 4128. Galaxies have mostly old (10−14 Gyr) stellar populations with large spread in metallicities (sub- to super-solar). We discuss the possible formation scenarios, including bar-driven secular evolution and the influence of mergers, which can explain the observed color and kinematic features.
    [Show full text]
  • Stellar Tidal Streams As Cosmological Diagnostics: Comparing Data and Simulations at Low Galactic Scales
    RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG DOCTORAL THESIS Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Author: Referees: Gustavo MORALES Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL Astronomisches Rechen-Institut Heidelberg Graduate School of Fundamental Physics Department of Physics and Astronomy 14th May, 2018 ii DISSERTATION submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of DOCTOR OF NATURAL SCIENCES Put forward by GUSTAVO MORALES born in Copiapo ORAL EXAMINATION ON JULY 26, 2018 iii Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Referees: Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL iv NOTE: Some parts of the written contents of this thesis have been adapted from a paper submitted as a co-authored scientific publication to the Astronomy & Astrophysics Journal: Morales et al. (2018). v NOTE: Some parts of this thesis have been adapted from a paper accepted for publi- cation in the Astronomy & Astrophysics Journal: Morales, G. et al. (2018). “Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume". arXiv:1804.03330. DOI: 10.1051/0004-6361/201732271 vii Abstract In hierarchical models of galaxy formation, stellar tidal streams are expected around most galaxies. Although these features may provide useful diagnostics of the LCDM model, their observational properties remain poorly constrained. Statistical analysis of the counts and properties of such features is of interest for a direct comparison against results from numeri- cal simulations. In this work, we aim to study systematically the frequency of occurrence and other observational properties of tidal features around nearby galaxies.
    [Show full text]
  • Multicolor Surface Photometry of Lenticular Galaxies
    The Astronomical Journal, 129:630–646, 2005 February # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. MULTICOLOR SURFACE PHOTOMETRY OF LENTICULAR GALAXIES. I. THE DATA Sudhanshu Barway School of Studies in Physics, Pandit Ravishankar Shukla University, Raipur 492010, India; [email protected] Y. D. Mayya Instituto Nacional de Astrofisı´ca, O´ ptica y Electro´nica, Apdo. Postal 51 y 216, Luis Enrique Erro 1, 72000 Tonantzintla, Pue., Mexico; [email protected] Ajit K. Kembhavi Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007, India; [email protected] and S. K. Pandey1 School of Studies in Physics, Pandit Ravishankar Shukla University, Raipur 492010, India; [email protected] Receivedv 2003 Auggust 13; accepted 2004 October 20 ABSTRACT We present multicolor surface and aperture photometry in the B, V, R,andK0 bands for a sample of 34 lenticular galaxies from the Uppsala General Catalogue. From surface photometric analysis, we obtain radial profiles of surface brightness, colors, ellipticity, position angle, and the Fourier coefficients that describe the departure of isophotal shapes from a purely elliptical form; we find the presence of dust lanes, patches, and ringlike structure in several galaxies in the sample. We obtain total integrated magnitudes and colors and find that these are in good agreement with the values from the Third Reference Catalogue. Isophotal colors are correlated with each other, following the sequence expected for early-type galaxies. The color gradients in lenticular galaxies are more negative than the corresponding gradients in elliptical galaxies. There is a good correlation between BÀVand BÀR color gradients, and the mean gradients in the BÀV, BÀR,andVÀK0 colors are À0:13 Æ 0:06, À0:18 Æ 0:06, and À0:25 Æ 0:11 mag dexÀ1 in radius, respectively.
    [Show full text]
  • Structure, Properties and Formation Histories of S0 Galaxies
    Structure, Properties and Formation Histories of S0 Galaxies by Kaustubh Vaghmare Thesis Supervisor Prof. Ajit K. Kembhavi A thesis presented for the degree of Doctor of Philosophy to IUCAA & Jawaharlal Nehru University India July, 2015 Structure, Properties and Formation Histories of S0 Galaxies by Kaustubh Vaghmare c 2015 All rights reserved. Certificate This is to certify that the thesis entitled Structure, Properties and Formation Histories of S0 Galaxies submitted by Mr. Kaustubh Vaghmare for the award of the degree of Doctor of Philosophy to Jawaharlal Nehru University, New Delhi is his original work. This has not been published or submitted to any other University for any other Degree or Diploma. Pune July 30th, 2015 Prof. Ajit K. Kembhavi (Thesis Advisor & Director, IUCAA) Declaration I hereby declare that the work reported in this thesis is entirely original. This thesis is composed independently by me at the Inter-University Centre for Astronomy and Astrophysics, Pune under the supervision of Prof. Ajit K. Kembhavi. I further declare that the subject matter presented in the thesis has not previously formed the basis for the award of any degree, diploma, associateship, fellowship or any other similar title of any University or Institution. Pune July 30th, 2015 Prof. Ajit K. Kembhavi Mr. Kaustubh Vaghmare (Thesis Advisor) (Ph.D. Candidate) 3 Dedicated to ... Prathama & Prakash (my parents, my Gods) Rahul (my brother, whose ever presence with my parents and unquestioning support allowed me to work in peace) & Sneha (my beloved) 5 Acknowledgements For all students and regular visitors, it is clear that Prof. Ajit Kembhavi is one of the busiest people with frequent meetings, visits abroad, directorial duties and several other responsibilities.
    [Show full text]
  • A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
    TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques.
    [Show full text]
  • X-Ray Luminosities for a Magnitude-Limited Sample of Early-Type Galaxies from the ROSAT All-Sky Survey
    Mon. Not. R. Astron. Soc. 302, 209±221 (1999) X-ray luminosities for a magnitude-limited sample of early-type galaxies from the ROSAT All-Sky Survey J. Beuing,1* S. DoÈbereiner,2 H. BoÈhringer2 and R. Bender1 1UniversitaÈts-Sternwarte MuÈnchen, Scheinerstrasse 1, D-81679 MuÈnchen, Germany 2Max-Planck-Institut fuÈr Extraterrestrische Physik, D-85740 Garching bei MuÈnchen, Germany Accepted 1998 August 3. Received 1998 June 1; in original form 1997 December 30 Downloaded from https://academic.oup.com/mnras/article/302/2/209/968033 by guest on 30 September 2021 ABSTRACT For a magnitude-limited optical sample (BT # 13:5 mag) of early-type galaxies, we have derived X-ray luminosities from the ROSATAll-Sky Survey. The results are 101 detections and 192 useful upper limits in the range from 1036 to 1044 erg s1. For most of the galaxies no X-ray data have been available until now. On the basis of this sample with its full sky coverage, we ®nd no galaxy with an unusually low ¯ux from discrete emitters. Below log LB < 9:2L( the X-ray emission is compatible with being entirely due to discrete sources. Above log LB < 11:2L( no galaxy with only discrete emission is found. We further con®rm earlier ®ndings that Lx is strongly correlated with LB. Over the entire data range the slope is found to be 2:23 60:12. We also ®nd a luminosity dependence of this correlation. Below 1 log Lx 40:5 erg s it is consistent with a slope of 1, as expected from discrete emission.
    [Show full text]
  • Snake River Skies the Newsletter of the Magic Valley Astronomical Society
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message June 2018 Saturday, June 9th 2018 7:00pm at the Toward the end of last month I gave two presentations to two very different groups. Herrett Center for Arts & Science College of Southern Idaho. One was at the Sawtooth Botanical Gardens in their central meeting room and covered the spring constellations plus some simple setups for astrophotography. Public Star Party Follows at the The other was for the Sun Valley Company and was a telescope viewing session Centennial Observatory given on the lawn near the outdoor pavilion. The composition of the two groups couldn’t be more different and yet their queries and interests were almost identical. Club Officers Both audiences were genuinely curious about the universe and their questions covered a wide range of topics. How old is the moon? What is a star made of? Tim Frazier, President How many exoplanets are there? And, of course, the big one: Is there life out [email protected] there? Robert Mayer, Vice President The SBG’s observing session was rained out but the skies did clear for the Sun [email protected] Valley presentation. As the SV guests viewed the moon and Jupiter, I answered their questions and pointed out how one of Jupiter’s moons was disappearing Gary Leavitt, Secretary behind the planet and how the mountains on our moon were casting shadows into [email protected] the craters. Regardless of their age, everyone was surprised at the details they 208-731-7476 could see and many expressed their amazement at what was “out there”.
    [Show full text]
  • JRASC, October 2002 Issue (PDF)
    Publications and Products of October/octobre 2002 Volume/volume 96 Number/numéro 5 [696] The Royal Astronomical Society of Canada Observer’s Calendar — 2003 This calendar was created by members of the RASC. All photographs were taken by amateur astronomers using ordinary camera lenses and small telescopes and represent a wide spectrum of objects. An informative caption accompanies every photograph. The Journal of the Royal Astronomical Society of Canada Le Journal de la Société royale d’astronomie du Canada It is designed with the observer in mind and contains comprehensive astronomical data such as daily Moon rise and set times, significant lunar and planetary conjunctions, eclipses, and meteor showers. The 1998, 1999, and 2000 editions each won the Best Calendar Award from the Ontario Printing and Imaging Association (designed and produced by Rajiv Gupta). Price: $15.95 (members); $17.95 (non-members) (includes postage and handling; add GST for Canadian orders) The Beginner’s Observing Guide This guide is for anyone with little or no experience in observing the night sky. Large, easy to read star maps are provided to acquaint the reader with the constellations and bright stars. Basic information on observing the Moon, planets and eclipses through the year 2005 is provided. There is also a special section to help Scouts, Cubs, Guides, and Brownies achieve their respective astronomy badges. Written by Leo Enright (160 pages of information in a soft-cover book with otabinding that allows the book to lie flat). Price: $15 (includes taxes, postage and handling) Looking Up: A History of the Royal Astronomical Society of Canada Published to commemorate the 125th anniversary of the first meeting of the Toronto Astronomical Club, “Looking Up — A History of the RASC” is an excellent overall history of Canada’s national astronomy organization.
    [Show full text]
  • Strong Near-Infrared Carbon in the Type Ia Supernova Iptf13ebh⋆⋆⋆
    A&A 578, A9 (2015) Astronomy DOI: 10.1051/0004-6361/201425297 & c ESO 2015 Astrophysics Strong near-infrared carbon in the Type Ia supernova iPTF13ebh?;?? E. Y. Hsiao1;2, C. R. Burns3, C. Contreras2;1, P. Höflich4, D. Sand5, G. H. Marion6;7, M. M. Phillips2, M. Stritzinger1, S. González-Gaitán8;9, R. E. Mason10, G. Folatelli11;12, E. Parent13, C. Gall1;14, R. Amanullah15, G. C. Anupama16, I. Arcavi17;18, D. P. K. Banerjee19, Y. Beletsky2, G. A. Blanc3;9, J. S. Bloom20, P. J. Brown21, A. Campillay2, Y. Cao22, A. De Cia26, T. Diamond4, W. L. Freedman3, C. Gonzalez2, A. Goobar15, S. Holmbo1, D. A. Howell17;18, J. Johansson15, M. M. Kasliwal3, R. P. Kirshner7, K. Krisciunas21, S. R. Kulkarni22, K. Maguire24, P. A. Milne25, N. Morrell2, P. E. Nugent23;20, E. O. Ofek26, D. Osip2, P. Palunas2, D. A. Perley22, S. E. Persson3, A. L. Piro3, M. Rabus27, M. Roth2, J. M. Schiefelbein21, S. Srivastav16, M. Sullivan28, N. B. Suntzeff21, J. Surace29, P. R. Wo´zniak30, and O. Yaron26 (Affiliations can be found after the references) Received 7 November 2014 / Accepted 7 March 2015 ABSTRACT We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia su- pernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2:3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C i lines, and the C i λ1.0693 µm line is the strongest ever observed in a SN Ia.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Concise Catalog of Deep-Sky Objects
    1111 2 Concise Catalog of Deep-sky Objects 3 4 5 6 7 8 9 1011 1 2 3111 411 5 6 7 8 9 20111 1 2 3 4 5 6 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 4 5 6 7 481111 Springer London Berlin Heidelberg New York Hong Kong Milan Paris Tokyo 1111 2 W.H. Finlay 3 4 5 6 7 8 Concise Catalog 9 1011 1 of Deep-sky 2 3111 4 5 Objects 6 7 8 Astrophysical Information 9 20111 for 500 Galaxies, Clusters 1 and Nebulae 2 3 4 5 6 With 18 Figures 7 8 9 30111 1 2 3 4 5 6 7 8 9 40111 1 2 3 4 5 6 7 481111 Cover illustrations: Background: NGC 2043, by courtesy of Zsolt Frei, from CD-ROM Atlas of Nearby Galaxies, copyright © by Princeton University Press, reprinted by permission of Princeton University Press. Inset 1: NGC 3031, by courtesy of Zsolt Frei, from CD-ROM Atlas of Nearby Galaxies, copyright © by Princeton University Press, reprinted by permission of Princeton University Press. Inset 2: M80, courtesy STScI. Inset 3: NGC 2244, by courtesy of Travis Rector and the NOAO/AURA/NSF. Inset 4: NGC 6543, courtesy STScI. British Library Cataloguing in Publication Data Finlay, W.H. Concise catalog of deep-sky objects : astrophysical information for 500 galaxies, clusters and nebulae 1. Galaxies – Catalogs 2. Galaxies – Clusters – Catalogs 3. Stars – Clusters – Catalogs 4. Nebulae – Catalogs I. Title 523.8′0216 ISBN 1852336919 Library of Congress Cataloging-in-Publication Data Finlay, W.H.
    [Show full text]