Methane, Ammonia, and Their Irradiation Products at the Surface Of

Total Page:16

File Type:pdf, Size:1020Kb

Methane, Ammonia, and Their Irradiation Products at the Surface Of Astronomy & Astrophysics manuscript no. Delsanti2010 c ESO 2018 June 2, 2018 Methane, ammonia, and their irradiation products at the surface of an intermediate-size KBO? A portrait of Plutino (90482) Orcus A. Delsanti1,2, F. Merlin3, A. Guilbert–Lepoutre4 , J. Bauer5, B. Yang6, and K.J. Meech6 1 Laboratoire d’Astrophysique de Marseille, Universit´ede Provence, CNRS, 38 rue Fr´ed´eric Joliot-Curie, F-13388 Marseille Cedex 13, FRANCE e-mail: [email protected] 2 Observatoire de Paris, Site de Meudon, 5 place Jules Janssen, 92190 Meudon, FRANCE e-mail: [email protected] 3 University of Maryland, Department of Astronomy, College Park MD 20742, USA e-mail: [email protected] 4 UCLA, Earth and Space Sciences department, 595 Charles E. Young Drive East, Los Angeles CA 90095, USA e-mail: [email protected] 5 Jet Propulsion Laboratory, M/S 183-501, 4800 Oak Grove Drive, Pasadena, CA 91109, USA e-mail: [email protected] 6 NASA Astrobiology Institute at Manoa, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, Hawaii 96822-1839, USA e-mail: [email protected],[email protected] Received: February 20, 2010; Accepted: May 31, 2010; ABSTRACT Orcus is an intermediate-size 1000km-scale Kuiper Belt Object (KBO) in 3:2 mean-motion resonance with Neptune, in an orbit very similar to that of Pluto. It has a water-ice dominated surface with solar-like visible colors. We present visible and near-infrared photometry and spectroscopy obtained with the Keck 10m–telescope (optical) and the Gemini 8m–telescope (near-infrared). We confirm the unambiguous detection of crystalline water ice as well as absorption in the 2.2µm region. These spectral properties are close to those observed for Pluto’s larger satellite Charon, and for Plutino (208996) 2003 AZ84. Both in the visible and near-infrared Orcus’ spectral properties appear to be homogeneous over time (and probably rotation) at the resolution available. From Hapke + radiative transfer models involving intimate mixtures of various ices we find for the first time that ammonium (NH4 ) and traces of ethane (C2H6), which are most probably solar irradiation products of ammonia and methane, and a mixture of methane and ammonia (diluted or not) are the best candidates to improve the description of the data with respect to a simple water ice mixture (Haumea type surface). The possible more subtle structure of the 2.2µm band(s) should be investigated thoroughly in the future for Orcus and other intermediate size Plutinos to better understand the methane and ammonia chemistry at work, if any. We investigated the thermal history of Orcus with a new 3D thermal evolution model. Simulations over 4.5 109yrs with an input 10% porosity, bulk composition of 23% amorphous water ice and 77% dust (mass fraction), and cold accretion show× that even with the action of long-lived radiogenic elements only, Orcus should have a melted core and most probably suffered a cryovolcanic event in its history which brought large amounts of crystalline ice to the surface. The presence of ammonia in the interior would strengthen the melting process. A surface layer of a few hundred meters to a few tens of kilometers of amorphous water ice survives, while most of the remaining volume underneath contains crystalline ice. The crystalline water ice possibly brought to the surface by a past cryovolcanic event should still be detectable after several billion years despite the irradiation effects, as demonstrated by recent laboratory experiments. Key words. Kuiper Belt – Methods: observational, data analysis, numerical — Techniques: photometric, spectroscopic — Radiative transfer arXiv:1006.4962v1 [astro-ph.EP] 25 Jun 2010 1. Introduction methane, as for Pluto. Orcus was discovered in 2004 as one of the largest known In the past decade, several large Kuiper Belt Objects (KBOs) KBOs (Brown et al. 2004) and is a peculiar object from several have been discovered, unveiling the upper part of the size aspects. It revolves around the Sun in a Pluto-like orbit, in 3:2 distribution of these outer Solar System minor bodies. Eris, dis- mean motion resonance with Neptune (with a semi-major axis covered in 2003 (Brown et al. 2005), is the largest object known of 39.16 AU, an inclination of 20.6◦, an eccentricity 0.23, a to date, and its diameter in the 2500–3000km range, exceeding perihelion of 30.26 AU and an aphelion at 48.06 AU). It is that of Pluto, motivated the discussion and the creation of a currently outbound, very close to aphelion. With its 950km di- new class of objects in 2006: the dwarf planets. Several other ameter (Stansberry et al. 2008; Brown et al. 2010), it∼ is now part large objects were discovered since 2003 (Sedna, Makemake, of the intermediate-size objects, and is probably in a transition Haumea, etc) and focused the interest of scientists: the largest regime with respect to volatile surface content. Indeed, smaller of them soon revealed a volatile-rich surface, dominated by KBOs with mostly featureless near-IR reflectance spectra 2 A. Delsanti et al.: A portrait of Plutino (90482) Orcus Table 1. Summarized properties of the Orcus/Vanth binary sys- tem. References are: (1) Noll et al. (2008), (2) Brown et al. (2010), (3): Brown (2008). Parameter Value Reference Angular separation 0.26 (1) System ′′ Total mass 6.3 1020 kg (2) Semi-major axis 8980× 20 km (2) Orbit Period 9.5d± (2) Inclination 90◦ or 306◦ (2) Brightness Frac. 8% (3) Satellite Mass ratio 0.5-0.03a (2) Diameter 280-640kmb (2) a Assuming an albedo ratio of resp. .5 and .1 and equal densities b Assuming an albedo ratio of resp. 1. and .5 and equal densities seem to be totally depleted in volatiles (see Guilbert et al. 2009, and references therein), while the largest KBOs show Fig. 1. A compilation of available visible spectra of Orcus, pre- evidence for the presence of volatile ices such as methane and sented at a resolution of R 600. From bottom to top: this paper, sometimes molecular nitrogen (like Eris, Sedna and Makemake, Fornasier et al. (2004), de∼ Bergh et al. (2005), Fornasier et al. cf. Merlin et al. 2009; Barucci et al. 2005; Brown et al. 2007a, (2009). The three top spectra were shifted by 0.5 in reflectance and references therein). A simple model of atmospheric escape for clarity. of volatiles dedicated to the Kuiper Belt region was computed by Schaller & Brown (2007b) and showed that the objects that are too small and too hot will most probably lose their pristine scenario would then be an initial capture of Vanth, followed by volatile surface inventory (such as CO, CH4 and N2) over the large oscillations of eccentricity an inclination (Kozai cycling), age of the Solar System, while large and cold objects could and when the pericenter drops to a low enough value, tidal have retained these volatiles to the present day. Objects in an evolution can finally lead the orbit to its current circular shape. intermediate regime could have lost some volatiles but retained As noted by Brownet al. (2010), a future discovery of any others, following the different loss rates at work for the various Orcus coplanar satellite would rule out this possibility (as for species. According to this model, Orcus should have lost all its the Pluto-Charon system). Relative color measurements by the volatile content. However, traces of methane (to be confirmed) same team indicate that Vanth is significantly redder than Orcus could explain the near-infrared spectrum of Orcus (Barucci et al. (another unique property among KBO binaries), a characteristic 2008). This object can therefore provide key constraints on that is currently difficult to understand in the framework of a the current surface volatile inventory of intermediate-size KBOs. formation by a giant impact. So far, Orcus’ rotation properties are not uniquely defined: In this work, we review the existing spectroscopic investi- 0.03 to 0.18 magnitude amplitude variations are measured over gations of Orcus and objects with similar spectral and physi- a period ranging from 7 to 21h (Duffard et al. 2009, and ref- cal properties and search for additional constraints on the pres- erences therein), although∼ Sheppard (2007) finds no lightcurve ence of volatiles (and maybe their irradiation products) on an variations within the photometric uncertainties of his measure- object that might have retained some of its original content. We ments. Such a flat lightcurve could be diagnostic of a very first report additional 0.4–2.5µm photometry and spectroscopy slow rotation rate, a small peak-to-peak lightcurve variation or obtained from the Mauna Kea large telescopes. We present a nearly pole-on geometric aspect. Also, given the size of Orcus Hapke radiative transfer modeling of the spectral data, the test- and the relatively slow rotation rate, we can most probably ex- ing for the presence of water ice, methane and ammonia ices pect a circular shape from the relaxation of a fluid body in hy- (and their irradiation products, ethane and ammonium resp.) at drostatic equilibrium. the surface and discuss the results. Finally, we use a new 3D thermal evolution model dedicated to the interiors of KBOs To date, Orcus is known to have a single relatively large (Guilbert-Lepoutre et al. 2010) to describe Orcus’ thermal his- companion, Vanth, in a close circular orbit (see details in Table tory over the age of the Solar System and the observable conse- 1). According to Brown et al. (2010), the satellite is on a nearly quences of this history on the current surface. face-on orbit (with respect to the Sun). Again, Orcus seems to be a unique case in an intermediate regime: larger KBOs have relatively small satellites in circular orbits, while small 2.
Recommended publications
  • Jjmonl 1802.Pmd
    alactic Observer John J. McCarthy Observatory G Volume 11, No. 2 February 2018 A porpoise or a penguin or a puppet on a string? — Find out on page 19 The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky Technical Support It is through their efforts that the McCarthy Observatory Bob Lambert has established itself as a significant educational and recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Route Mike Chiarella Roger Moore Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Doug Delisle Marc Polansky Cecilia Detrich Joe Privitera Dirk Feather Monty Robson Randy Fender Don Ross Louise Gagnon Gene Schilling John Gebauer Katie Shusdock Elaine Green Paul Woodell Tina Hartzell Amy Ziffer In This Issue OUT THE WINDOW ON YOUR LEFT .................................... 4 REFERENCES ON DISTANCES ............................................ 18 VALENTINE DOME .......................................................... 4 INTERNATIONAL SPACE STATION/IRIDIUM SATELLITES .......... 18 PASSING OF ASTRONAUT JOHN YOUNG ............................... 5 SOLAR ACTIVITY ........................................................... 19 FALCON HEAVY DEBUT ..................................................
    [Show full text]
  • 1 on the Origin of the Pluto System Robin M. Canup Southwest Research Institute Kaitlin M. Kratter University of Arizona Marc Ne
    On the Origin of the Pluto System Robin M. Canup Southwest Research Institute Kaitlin M. Kratter University of Arizona Marc Neveu NASA Goddard Space Flight Center / University of Maryland The goal of this chapter is to review hypotheses for the origin of the Pluto system in light of observational constraints that have been considerably refined over the 85-year interval between the discovery of Pluto and its exploration by spacecraft. We focus on the giant impact hypothesis currently understood as the likeliest origin for the Pluto-Charon binary, and devote particular attention to new models of planet formation and migration in the outer Solar System. We discuss the origins conundrum posed by the system’s four small moons. We also elaborate on implications of these scenarios for the dynamical environment of the early transneptunian disk, the likelihood of finding a Pluto collisional family, and the origin of other binary systems in the Kuiper belt. Finally, we highlight outstanding open issues regarding the origin of the Pluto system and suggest areas of future progress. 1. INTRODUCTION For six decades following its discovery, Pluto was the only known Sun-orbiting world in the dynamical vicinity of Neptune. An early origin concept postulated that Neptune originally had two large moons – Pluto and Neptune’s current moon, Triton – and that a dynamical event had both reversed the sense of Triton’s orbit relative to Neptune’s rotation and ejected Pluto onto its current heliocentric orbit (Lyttleton, 1936). This scenario remained in contention following the discovery of Charon, as it was then established that Pluto’s mass was similar to that of a large giant planet moon (Christy and Harrington, 1978).
    [Show full text]
  • Comparative Kbology: Using Surface Spectra of Triton
    COMPARATIVE KBOLOGY: USING SURFACE SPECTRA OF TRITON, PLUTO, AND CHARON TO INVESTIGATE ATMOSPHERIC, SURFACE, AND INTERIOR PROCESSES ON KUIPER BELT OBJECTS by BRYAN JASON HOLLER B.S., Astronomy (High Honors), University of Maryland, College Park, 2012 B.S., Physics, University of Maryland, College Park, 2012 M.S., Astronomy, University of Colorado, 2015 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Astrophysical and Planetary Sciences 2016 This thesis entitled: Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs written by Bryan Jason Holler has been approved for the Department of Astrophysical and Planetary Sciences Dr. Leslie Young Dr. Fran Bagenal Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii ABSTRACT Holler, Bryan Jason (Ph.D., Astrophysical and Planetary Sciences) Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs Thesis directed by Dr. Leslie Young This thesis presents analyses of the surface compositions of the icy outer Solar System objects Triton, Pluto, and Charon. Pluto and its satellite Charon are Kuiper Belt Objects (KBOs) while Triton, the largest of Neptune’s satellites, is a former member of the KBO population. Near-infrared spectra of Triton and Pluto were obtained over the previous 10+ years with the SpeX instrument at the IRTF and of Charon in Summer 2015 with the OSIRIS instrument at Keck.
    [Show full text]
  • Educators' Guide
    Educators’ Guide 2018-2019 Dear Educators, The 2020-2021 Educators’ Guide is packed full of exciting opportunities for you and your stu- dents. Come to the Herrett Center to learn and engage with our museum galleries, Faulkner Planetarium, and Centennial Observatory. In this guide, you will find listings of the many programs that the Herrett Center has to offer schools, information on how to schedule class visits, and tips for how to get the most out of your trip to the Herrett Center. The Education team at the Herrett Center is always willing to work with you to find the pro- gram that is the best fit for your students and curriculum. Our mission is to create meaningful, engaging experiences, and we can’t wait to see you and your class at the museum! All the best, Kindy Combe, Education Coordinator Covid-19 and Field Trips The Herrett Center staff is committed to continuing to provide fun, educational experiences for students coming to the Herrett Center, while also providing a safe, clean environment dur- ing this pandemic. Changes have been made to how we book multiple groups, museum ex- hibits, procedures for groups in the museum, and more. Please see below for a list of changes to keep in mind when booking a field trip to the Herrett Center for Arts and Science: Personal Protection Masks or face shields are required for all school group participants, both students and adults. Staff and volunteers are required to wear face masks when engaging closely with school groups and the public. Dedicated entrances and exits have been clearly marked.
    [Show full text]
  • Jjmonl 1502.Pmd
    alactic Observer GJohn J. McCarthy Observatory Volume 8, No. 2 February 2015 Fireball From Space A Romulan plasma torpedo? . Not exactly. See inside, page 19 The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Mike Chiarella Roger Moore Route Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Cecilia Dietrich Marc Polansky Dirk Feather Joe Privitera Randy Fender Monty Robson Randy Finden Don Ross John Gebauer Gene Schilling Elaine Green Katie Shusdock Tina Hartzell Jon Wallace Tom Heydenburg Paul Woodell Amy Ziffer In This Issue OUT THE WINDOW ON YOUR LEFT ................................... 4 FEBRUARY NIGHTS ....................................................... 14 MARE TRANQUILLITATIS .................................................. 5 JUPITER AND ITS MOONS ................................................ 16 JUPITER AT OPPOSITION ................................................... 6 TRANSIT OF THE JUPITER'S RED SPOT .............................
    [Show full text]
  • Sowers NIAC Final Report
    Thermal Mining of Ices on Cold Solar System Bodies NIAC Phase I Final Report February 2019 George Sowers 1 Purpose This is the final report of the NASA Innovative Advanced Concepts (NIAC) Phase I study: Thermal Mining of Ices on Cold Solar System Bodies. It is submitted as partial fulfillment of the obligations of the Colorado School of Mines (CSM) under grant number 80NSSC19K0964. 2 Table of Contents List of Figures 5 List of Tables 9 1.0 Executive Summary 10 2.0 Introduction 15 3.0 Solar System Survey of Thermal Mining Targets 18 3.1 Potential Thermal Mining Targets 19 3.2 Thermal Mining Beyond the Moon 32 4.0 Thermal Mining Mission Context: Lunar Polar Ice Mining 34 4.1 Lunar Polar Ice Distribution Analysis 36 4.2 System Architecture 39 4.3 Functional Analysis 42 4.4 Ice Extraction Subsystem 46 4.5 Power Subsystem 53 4.6 Deployment and Setup 55 4.7 Operations 59 4.8 Mass and Cost Estimates 66 4.8.1 Subsystem Mass Estimates 66 4.8.2 Total Mass 70 4.8.3 Subsystem Cost Estimates 71 4.8.4 Total Cost 74 4.9 Business Case Analysis 76 4.9.1 The Propellant Market 76 4.9.2 Business Case Scenarios 80 4.9.3 Business Case Results 83 4.9.4 Comparison to Previous Analysis 87 5.0 Proof of Concept Testing 91 5.1 Testing Objectives and Approach 91 5.2 Icy Regolith Simulants 91 5.3 Block 1 Testing 95 5.3.1 Block 1 Apparatus 95 5.3.2 Block 1 Methodology 96 5.3.3 Block 1 Results 97 5.4 Block 2 Testing 105 5.4.1 Block 2 Apparatus 105 5.4.2 Block 2 Methodology 105 5.4.3 Block 2 Results 105 5.5 Test Conclusions 106 6.0 Summary and Conclusions 115 6.1 Bulletized Summary 115 6.2 Conclusions 116 6.3 Recommendations for Future Work 118 7.0 References 121 8.0 Appendix A: Solar System Catalogue 129 9.0 Appendix B: Acronym List 132 3 Acknowledgements This report was prepared by George Sowers, Ross Centers, David Dickson, Adam Hugo, Curtis Purrington, and Elizabeth Scott.
    [Show full text]
  • (90377) SEDNA and (90482) ORCUS1 Chadwick A
    The Astrophysical Journal, 627:1057–1065, 2005 July 10 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. NEAR-INFRARED SURFACE PROPERTIES OF THE TWO INTRINSICALLY BRIGHTEST MINOR PLANETS: (90377) SEDNA AND (90482) ORCUS1 Chadwick A. Trujillo Gemini Observatory, Northern Operations Center, 670 North A’ohoku Place, Hilo, HI 96720; [email protected] Michael E. Brown California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125; [email protected] David L. Rabinowitz Physics Department, Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520-8121; [email protected] and Thomas R. Geballe Gemini Observatory, Northern Operations Center, 670 North A’ohoku Place, Hilo, HI 96720; [email protected] Received 2004 March 26; accepted 2005 March 16 ABSTRACT We present low-resolution K-band spectra taken at the Gemini 8 m telescope of (90377) Sedna and (90482) Orcus (provisional designations 2003 VB12 and 2004 DW, respectively), currently the two minor planets with the greatest absolute magnitudes (i.e., the two most reflective minor planets). We place crude limits on the surface composition of these two bodies using a Hapke model for a wide variety of assumed albedos. The unusual minor planet Sedna was discovered on UT 2003 November 14 at roughly 90 AU, with 1.6 times the heliocentric and perihelion dis- tances of any other bound minor planet. It is the first solar system object discovered between the Kuiper Belt and the Oort Cloud and may represent a transition population between the two.
    [Show full text]
  • On the Irrelevance of Being a PLUTO! Size Scale of Stars and Planets
    On the irrelevance of being a PLUTO! Mayank Vahia DAA, TIFR Irrelevance of being Pluto 1 Size Scale of Stars and Planets Irrelevance of being Pluto 2 1 1 AU 700 Dsun Irrelevance of being Pluto 3 16 Dsun Irrelevance of being Pluto 4 2 Solar System 109 DEarth Irrelevance of being Pluto 5 11 DEarth Venus Irrelevance of being Pluto 6 3 Irrelevance of being Pluto 7 Solar System visible to unaided eye Irrelevance of being Pluto 8 4 Solar System at the beginning of 20 th Century Irrelevance of being Pluto 9 Solar System of my text book (30 years ago) Irrelevance of being Pluto 10 5 Asteroid Belt (Discovered in 1977) Irrelevance of being Pluto 11 The ‘Planet’ Pluto • Pluto is a 14 th magnitude object. • It is NOT visible to naked eye (neither are Uranus and Neptune). • It was discovered by American astronomer Clyde Tombaugh in 1930. Irrelevance of being Pluto 12 6 Prediction of Pluto • Percival Lowell and William H. Pickering are credited with the theoretical work on Pluto’s orbit done in 1909 based on data of Neptune’s orbital changes. • Venkatesh Ketakar had predicted it in May 1911 issue of Bulletin of the Astronomical Society of France. • He modelled his computations after those of Pierre-Simon Laplace who had analysed the motions of the satellites of Jupiter. • His location was within 1 o of its correct location. • He had predicted ts orbital period was 242.28 (248) years and a distance of 38.95 (39.53) A.U. • He had also predicted another planet at 59.573 A.U.
    [Show full text]
  • Tnos Mueller
    TNOs are Cool: A Survey of the Transneptunian Region Thomas M¨uller& The TNOs-are-Cool Team MPE Garching (37 members, 19 institutes, 9 countries) 1 Thomas M¨uller TNOs are Cool! • OT KP with 370 hours Overview • PACS and SPIRE photometric point-source observations • characterisation of about 140 Trans-Neptunian Objects (with known orbits) • target with a few mJy up to 400 mJy • Key element: highly reliable photometric ac- curacy in 3 (6) bands • time-critical observations with follow-on constraint (confusion noise) 2 Science Goals in a Nut Shell • Radiometric size and albedo solutions - accurate sizes (! volumes) of TNOs ! primordial (D> 200 km) size distribution - accurate spectroscopic and polarimetric modeling - albedo vs Size vs Colour vs Composition vs Orbit vs Binarity vs ... ! probe formation and evolution processes • Thermophysical properties (from 3 to 6 Pacs/Spire bands) - temperatures & thermal inertia ! ice vs rock surface, surface type - emissivity ! grain size information - beaming parameter ! surface roughness • Binary densities: mass from Ke- • Thermal lightcurves pler's 3rd law, volume from Herschel ! disentangle albedo/shape ! basic geophysical parameter ! spin-axis orientation ! interior structure/composition ! thermal inertia ! binary formation mechanism ! large surface structures 3 Thomas M¨uller TNOs are Cool! Herschel Study of the Kuiperbelt & TNOs: ! a benchmark for understanding the solar system debris disk, and extra-solar ones as well! M¨uller et al. 2009, Earth, Moon & Planet 105, 209-219 4 Thomas M¨uller TNOs
    [Show full text]
  • Destination Dwarf Planets: a Panel Discussion
    Destination Dwarf Planets: A Panel Discussion OPAG, August 2019 Convened: Orkan Umurhan (SETI/NASA-ARC) Co-Panelists: Walt Harris (LPL, UA) Kathleen Mandt (JHUAPL) Alan Stern (SWRI) Dwarf Planets/KBO: a rogues gallery Triton Unifying Story for these bodies awaits Perihelio n/ Diamet Aphelion DocumentGoals 09.2018) from OPAG (Taken Name Surface characteristics Other observations/ hypotheses Moons er (km) /Current Distance (AU) Eris ~2326 P=38 Appears almost white, albedo of 0.96, higher Largest KBO by mass second Dysnomia A=98 than any other large Solar System body except by size. Models of internal C=96 Enceledus. Methane ice appears to be quite radioactive decay indicate evenly spread over the surface that a subsurface water ocean may be stable Haumea ~1600 P=35 Displays a white surface with an albedo of 0.6- Is a triaxial ellipsoid, with its Hi’iaka and A=51 0.8 , and a large, dark red area . Surface shows major axis twice as long as Namaka C=51 the presence of crystalline water ice (66%-80%) , the minor. Rapid rotation (~4 but no methane, and may have undergone hrs), high density, and high resurfacing in the last 10 Myr. Hydrogen cyanide, albedo may be the result of a phyllosilicate clays, and inorganic cyanide salts giant collision. Has the only may be present , but organics are no more than ring system known for a TNO. 8% 2007 OR10 ~1535 P=33 Amongst the reddest objects known, perhaps due May retain a thin methane S/(225088) A=101 to the abundant presence of methane frosts atmosphere 1 C=87 (tholins?) across the surface.Surface also show the presence of water ice.
    [Show full text]
  • Scientific Goals for Exploration of the Outer Solar System
    Scientific Goals for Exploration of the Outer Solar System Explore Outer Planet Systems and Ocean Worlds OPAG Report v. 28 August 2019 This is a living document and new revisions will be posted with the appropriate date stamp. Outline August 2019 Letter of Response to Dr. Glaze Request for Pre Decadal Big Questions............i, ii EXECUTIVE SUMMARY ......................................................................................................... 3 1.0 INTRODUCTION ................................................................................................................ 4 1.1 The Outer Solar System in Vision and Voyages ................................................................ 5 1.2 New Emphasis since the Decadal Survey: Exploring Ocean Worlds .................................. 8 2.0 GIANT PLANETS ............................................................................................................... 9 2.1 Jupiter and Saturn ........................................................................................................... 11 2.2 Uranus and Neptune ……………………………………………………………………… 15 3.0 GIANT PLANET MAGNETOSPHERES ........................................................................... 18 4.0 GIANT PLANET RING SYSTEMS ................................................................................... 22 5.0 GIANT PLANETS’ MOONS ............................................................................................. 25 5.1 Pristine/Primitive (Less Evolved?) Satellites’ Objectives ...............................................
    [Show full text]
  • On the Origin of the Pluto System
    Pluto System After New Horizons 2019 (LPI Contrib. No. 2133) 7027.pdf ON THE ORIGIN OF THE PLUTO SYSTEM. M. Neveu1,2, R. M. Canup3, and K. M. Kratter4, 1U. of Mary- land, College Park, MD, USA. 2NASA Goddard Space Flight Center, Greenbelt, MD, USA ([email protected]). 3Southwest Research Institute, Boulder, CO, USA ([email protected]). 4Astronomy Department / Steward Observatory, U. of Arizona, Tucson, AZ, USA ([email protected]). Introduction: We describe constraints and review Giant impact. The Pluto-Charon binary’s low mass models for the origin of the Pluto-Charon binary and ratio, high angular momentum, and close separation the small moons Styx, Nix, Kerberos and Hydra. We makes an impact on Pluto from a like-sized impactor also highlight open issues and discuss implications. its prime origin scenario [19-21 and references there- Observational Constraints: The heliocentric or- in]. This impact must predate Charon’s ≈4 Gyr old bit of the Pluto system at ≈40 AU is triply resonant surface [22]. At ≈40 AU, binary-forming impacts with Neptune’s orbit, involving mean motions (3:2), could have occurred every 100-300 Myr [23], and arguments of perihelion, and longitudes of ascending likely more often closer in. The mass ratio is repro- node. Therefore, Neptune likely shaped the Pluto sys- duced with an impact velocity only slightly higher tem’s eccentric and inclined heliocentric orbit [1,2]. than proto-Pluto’s escape velocity [20]. Two scenari- System dynamics. The plane of the Pluto system is os yield the observed mass and angular momentum highly oblique to its heliocentric orbit.
    [Show full text]