TurkishJournalofEarthSciences (TurkishJ.EarthSci.),Vol.14, 2005,pp.255-280. Copyright©TÜB‹TAK

GeneticRelationsBetweenSkarnMineralizationand PetrogenesisoftheGranitoid,Kazda¤,Çanakkale, andComparisonwithWorldSkarnGranitoids

YEfi‹MYÜCEL-ÖZTÜRK1,CAH‹THELVACI1 &MUHARREMSATIR2

1DokuzEylülÜniversitesi,MühendislikFakültesi,JeolojiMühendisli¤iBölümü,TR–35100‹zmir,Turkey (E-mail:[email protected]) 2UniversitätTübingen,InstitutfürGeowissenschaften,LehrstuhlfürGeochemie,D–72074Tübingen,Germany

Abstract: Mostskarndepositsaredirectlyrelatedtomagmaticactivity,andthereisasystematiccorrelation betweenthecompositionofcausativeplutonsandthemetalcontentsoftherelatedskarns.Thispaperdocuments thecompositionoffacieswithintheEvcilerplutonandcorrelationsbetweenintrusioncompositionandthemetal contentsofassociatedskarns.Therehavebeenpreviousstudiesofmines(e.g.,Cumines)intheEvcilerdistrict, however,therehavebeennodetailedgeologicalinvestigationsofsuchoredepositsorassociatedskarn mineralization.IntheEvcilerdistrictbothcalcicexoskarn(garnet-pyroxene)andendoskarn(pyroxene-epidote) occuralongthecontactsbetweengranitoidandmarble.Calc-silicatemineralcompositionsintheEvcilerskarnsare similartothoseinAu-CuandFe-Cuskarns. Basedonmineralogyandgeochemistry,threemainfacieshavebeenrecognizedintheEvcilerpluton:(1)the Çavufllumonzodiorite,(2)theKaraköygranodioriteand(3)theEvcilerquartzdiorite-granodiorite,themesocratic unitoftheEvcilerpluton.AttheEvcilerdistrict,monzograniticrocks,termedleucocraticEvciler,havealimited distributioncomparedtothemesocraticEvcilerrocks.Fieldevidencefortherelativetimingofintrusionsandtrace- elementgeochemistryoftheindividualfaciessuggestthattheEvcilerplutonformedinamagmaticarcorpost- collisionalsettingfromahybridsource,havingcrustalandmantlecomponentscontaminatedbyinteractionwith theuppercrust. Wholerock δ18OvaluesoftheEvcilergranitoiddecreasefrom8.5to2.5‰towardstheintrusivecontact, whichisclosesttothecalcicskarnmineralization(Au-Cu),andthequartzδ18OcompositionoftheEvcilergranitoid variesfrom7.2to10.9‰.ThesevaluesarenormalforI-type,primaryunalteredvaluesforthisintrusiverock, butaretoolargetobeaccountedforbysimplemagmaticdifferentiation.Therefore,theEvcilergranitoidmust havebeensubjectedtopost-emplacementopen-systemhydrothermalalterationwithintroductionofexternalfluids (probablymeteoricwater)whichchangedtheoriginalmagmatic δ18Ovalues. ThepresentstudyshowsthatthegeochemicalcharacteristicsoftheÇavufllumonzodiorite,Karaköy granodioriteandmesocraticEvcilerrocksaresimilartoaveragesforAu-CuandFe-skarngranitoids,whereasthe geochemicalcharacteristicsoftheleucocraticEvcilerrocksaresimilartoaveragesforSn-andMo-skarngranitoids. TheEvcilergranitoidisalsocharacterizedbyrelativelyunevolvedtomoderatelyevolvedandoxidizedsuites,asin mostAu-Cucoremetalassociationsglobally.

KeyWords: gold,copper,skarn,mineralization,Evcilergranitoid,Kazda¤,NWTurkey

SkarnMineralizasyonuveEvcilerGranitoyidinin (Kazda¤,Çanakkale,KBTürkiye)PetrojeneziAras›ndakiKökensel‹liflki veDünyadakiSkarnGranitoidleriileKarfl›laflt›r›lmas›

Özet: Birçokskarnyata¤›do¤rudanmagmatikaktiviteileiliflkilidirveskarnyataklar›n›nmetaliçerikleriveskarn oluflumunanedenolanplutonlar›nbileflimleriaras›ndasistematikbiriliflkisözkonusudur.Buçal›flma,Evciler plutonuiçindekifasiyeslerinbileflimleriveintrüzyonbileflimivebiraradabulunduklar›skarnlar›nmetaliçerikleri aras›ndakikorelasyonuortayakoymaktad›r.Evcilerbölgesindeeskimadeniflletmeleri(örn.,Cumadeni) bulunmaktad›r,bununlabirlikteskarnmineralizasyonuveyabenzermadenyataklar›aç›s›ndanayr›nt›l›birjeolojik çal›flmayap›lmam›flt›r.Evcilerbölgesinde,kalsikeksoskarn(granat-piroksen)veendoskarn(piroksen-epidot) granitoidvemermeraras›ndakidokanakboyuncaortayaç›kmaktad›r.Evcilerskarnlar›ndakikalk-silikatmineral bileflimleri,Au-CuveFe-Cuskarnlar›ndanal›nanalterasyonminerallerininbileflimlerinebenzerdir. Evcilerplutonundamineralojikvejeokimyasalaç›danüçanafasiyesay›rtedilmektedir;bunlar,(1)Çavufllu monzodiyoriti,(2)Karaköygranodiyoritive(3)mezokratik-tipEvcilerolarakadland›r›lanEvcilerkuvarsdiyorit- graondiyoritidir.Ayn›zamanda,Evcilerbölgesindemonzogranitbileflimlikayaçlarmezokratik-tipEvciler’egöre dahas›n›rl›yay›l›msunmaktad›rvelökokratik-tipEvcilerolarakadland›r›lmaktad›r.Sokulumzaman›nailiflkinarazi verileriveherbirfasiyesinizelementjeokimyas›Evcilerplutonunun,üstkabuklaetkileflimilekirlenmifl,kabukve mantobileflenlerinesahipmelezbirkaynaktan,magmatik-yayveyaçarp›flmasonras›birortamdaolufltu¤unu önermektedir.

255 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN

Evcilergranitoyidinintümkayaçδ18Ode¤erlerikalsikskarnmineralizasyonuna(Au-Cu)oldukçayak›nsokulum dokana¤›nado¤ru8.5‰’den2.5‰’eazalmaktad›rveEvcilergranitoidineaitquartz δ18Obileflimleri7.2’den 10.9‰’ede¤iflmektedir.Bude¤erlerI-tipialtereolmam›flintrüzifkayaçlariçinnormaldir,fakatbasitbirmagmatik farkl›laflmaiçinoldukçageniflbiraral›¤asahiptir.Bunedenle,Evcilergranitoyidi,bölgeyeyerleflimisonras›ndaaç›k- sistemhidrotermalalterasyonau¤ram›flvemuhtemelenmeteoriksugirifliileilkselmagmatik δ18Obileflimi de¤iflmifltir. Buçal›flma,EvcilergranodiyoritininjeokimyasalözelliklerininAu-Cu,Fe-skarngranitoyidlerininortalama de¤erleriilebenzerliksundu¤unugöstermektedir.Bunakarfl›n,EvcilerlökogranitiiseSn-veMo-skarn granitoyidlerinebenzerlikgöstermektedir.EvcilergranitoyididünyadakibirçokAu-Cuçekirdekmetaltopluluklar›na benzerflekildeilksel-ortaderecedeevrimgeçirmiflveoksideolmuflmagmalarlabenzerkaraktersunmaktad›r.

AnahtarSözcükler:alt›n,bak›r,skarn,mineralizasyon,Evcilergranitoyidi,Kazda¤,KBTürkiye

Introduction Thepresentstudyisthefirstreportofcorrelations TheEvcilergraniticplutonislocatedinKazda¤, betweenskarnsandtherelatedEvcilergranitoidinthe northwesternAnatolia,andisa170km 2 elliptical Kazda¤region,northwesternAnatolia,Turkey. metaluminouscalc-alkalinebody,withitslongaxis trendingWSW–ENE,ofLateOligocene–EarlyMiocene GeologicalSetting age(25±3Ma;Birkle1992),whichintrudestheKazda¤ Massif(Figure1). Studiesonthegeology,tectonics,petrologyand geochronologyoftheKazda¤Massifhavebeencarried Althoughtherearehistoricalworkings(mainlyCu outbyseveralworkers(e.g.,fiengör&Y›lmaz1981; mines)intheEvcilerdistrict,nomodernexploration Y›lmaz1989,1990,1995,1997;Okay etal. 1990, occurreduntil1996whenacompanyconducteddetailed 1996;Öngen1992;fiengör etal. 1993;Genç1998; stream-sedimentgeochemicalsurveystoidentify Okay&Sat›r2000;Duru etal. 2004).Thehigh-grade anomaliescausedbyhydrothermalalteration.Numerous metamorphicrocksoftheKazda¤mountainrange, copperandgoldanomalieswerefoundtobeassociated namedtheKazda¤group,cropoutasatectonicwindow withexoskarn.Theexplorationstudiesbythiscompany undertheKarakayacomplex(e.g.,Duru etal. 2004; focusedongeologyandore-reserveestimationof Göncüo¤luetal. 2004;Okay&Göncüo¤lu2004;Okay& mineralizationwithinindividualbodies,suchasthe Alt›ner2004;Pickett&Robertson2004andreferences pyrrhotite-richAuskarnzoneatthesouthendofthe therein)innorthwesternTurkey.TheKazda¤group Evcilerpluton.However,therelationshipbetweenskarns formsadoublyplunging,NE–SW-trendinganticlinorium. andassociatedplutons,andthepotentialfordifferent typesofmineralizationassociatedwiththeEvciler Duruetal. (2004)subdividedthemetamorphicrocks granitoid,havenotyetbeenstudied. intofourformations.ThelowermostunitistheF›nd›kl› formation,comprisingamphibole-gneiss,marbleand Broadcorrelationbetweenigneouscompositionsand minoramphibolite,andcropsoutmainlyinthesouthern themetalcontentsofassociatedskarnshasbeen partoftheKazda¤Massif.Theoverlyingunit,comprising describedbyseveralworkers(Zharikov1970;Shimazaki metaduniteandorthoamphibolite,istheTozluformation, 1975,1980;Kwak&White1982;Meinert1983,1995; whichinturnisoverlainbytheSar›k›zmarble.The Newberry&Swanson1986;Newberry1987;Keithetal. uppermostunit,whichcropsoutinthenorthernpartsof 1989;Newberry etal. 1990;Meinert etal. 1990; Kazda¤Massif,istheSutuvenformation;itcomprises Paktunc1990;Ishihara&Sasaki1991;Blevin&Chappell sillimanite-gneiss,migmatite,marble,amphiboliteand 1992;Naldrett1992;Rayetal. 1995;Srivastava&Sinha graniticgneiss. 1997;Nicolescu etal. 1999;Martin-Izard etal. 2000; Meza-Figueroa etal. 2003).Thesestudieshave TheSutuvenformationrestswithasharpcontacton documentedtherelationshipbetweenmetalcontentsin theSar›k›zmarbleandF›nd›kl›formation(Duru etal. mineraldepositsandmajor-andtrace-element 2004),andisintrudedbytheOligo–MioceneEvciler compositions,degreeofcrystallization,andtectonic granodiorite.TheSutuvenformationcomprisesmainly settingsoftherelatedplutons. grey,darkgreyandbrown,well-bandedquartzo-

256 Y.YÜCELÖZTÜRK,C.HELVACI& M.SATIR sample locality skarn occurrence 3km 721 315 Karaköy 0 Kazdað Massif plastic-semiplastic deformation zone contact aureole fault

Figure 2 Scale:

41-2 Miocene) Early

(Late Oligocene- (Late Evciler plutonic rocks plutonic Evciler Yeþilköy 54-2 52-2 geologicmapoftheEvcilerdistrict(simplifiedfromGenç1998). granodiorite, quartz monzonite quartz diorite, granodiorite monzodiorite, quartz monzodiorite lower volcanic association Evciler (b) Mollahasanlar 750 Çavuþlu 744 N alluvium terrestrial sedimentary rocks upper volcanic association rhyolite b c N 10 km 5 0 EG = Etili Graben EH = Ezine Horst KZH = Kazdað Horst Eybekdað granitic plutons (Late Oligocene-Early Miocene) metamorphic basement of Sakarya Continent ophiolite (Cretaceous) normal fault strike-slip fault Edremit Kazdað Massif Burhaniye modern graben fill with alluvium upper sedimentary assemblage (Late Miocene-Pliocene) Balabanlý volcanics (Early-Middle Miocene) volcanics Ayvacýk (Early-Middle Miocene) Küçükkuyu formation (Early Miocene) Bayramiç volcanics (Late Eocene-Oligocene) Evciler N 100km °ÝSTANBUL 0 Ayvacýk Gulf of Edremit RegionalgeologicmapshowinglocationoftheEvcilerdistrict(simplifiedfromY›lmaz&Karac›k2001); MARMARA SEA MARMARA Kestanbol TURKEY

°ÇANAKKALE

Aegean Sea Aegean AEGEAN a Figure1. (a)

257 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN

feldspathicgneisses.Thesegneisses,whichconstitutethe consistentwithasubduction-relatedorigin.TheAegean dominantlithology,comprisemarble,amphiboliteand subductionzoneisanespeciallygoodcandidatetoplay granitic-gneisshorizonsandlenses(Duru etal. 2004). thisrolefortheEocene–Miocenegranitoidbelts(Delaloye MetamorphismintheKazda¤grouphasbeendated &Bingöl2000).Thechemicalsignatureofthegranitesis usingzirconPb-PbandmicaRb-SrandK-Armethodson thatofvolcanic-arcgranites(VAG),andmayberelatedto gneissesfromtheF›nd›kl›andSutuvenformations.Pb-Pb N-dippingsubduction.Thestill-activesubductionzone datafromthegneissesyieldMid-Carboniferousages musthavebegunbyOligocenetime,butDelaloye& (308±16Ma:Okayetal. 1996),whereasthebiotiteand Bingöl(2000)’sdatasuggestthatitmayhavebeen muscoviteRb-SrandK-AragesareOligo–Miocene initiatedearlier.Thiswidespreadmagmaticactivity (19–22Ma:Bingöl1968,1969;Okay&Sat›r2000). producedbothintrusiveandextrusiverocks(Genç1998), Theseisotopicdatahavebeeninterpretedasindicating whichappeartobeassociatedinspaceandtimeinthis twoperiodsofhigh-grademetamorphism;theinitialone region.IntheBayramiçarea,magmaticactivitybegan duringtheMid-Carboniferousandalateroneinthe withintrusionoftheEvcilergranite,coevalwiththe Oligo–Miocene.TheP-Tconditionsofthehigh-grade lowervolcanicassociation.Thisintrusiveeventwas metamorphismhavebeenestimatedas640±50°Cand followedbyanuppervolcanicassociation.Theserock 5±1kbar(Okay&Sat›r2000). groupscollectivelyformtheBayramiçMagmaticComplex (Genç1998).

MagmatisminWesternAnatolia LocalGeology Manystudieshavebeenpublishedconcerninggranitoids inanefforttounderstandthegeodynamicevolutionof TwomainrockunitsareexposedintheEvcilerdistrict: westernandnorthwestenAnatolia(Bingöl1977,1978; theKazda¤metamorphicrocksandtheEvcilergranitoid. fiengör&Y›lmaz1981;Bingöl etal. 1982;Altherretal. Themetamorphicrockscomprisemainlygrey,darkgrey, 1988;Genç1998;Gülen1990;McKenzie&Y›lmaz andbrownwell-bandedquartzo-feldspathicgneisses 1991;Bozkurtetal. 1993,1995;Bozkurt&Park1994; whichincludemarble,amphiboliteandgraniticgneiss Harrisetal. 1994;Okay etal. 1996;Karac›k&Y›lmaz horizonsandlenses.Gneissesarecharacterized 1998;Delaloye&Bingöl2000;Ifl›k&Tekeli2001; petrographicallybythepresenceofbiotite,sillimanite, Gessneretal. 2001,2004;Koralay etal. 2001,2004; garnetandhornblendealongwithubiquitousquartzand Bozkurt2004;Erdo¤an&Güngör2004;Ifl›k etal. feldspar.Themarblehasagranoblastictextureandis 2004).Delaloye&Bingöl(2000)subdividedthe fine-grained.Thegrainsizeincreasestowardsigneous granitoidsinwesternandnorthwesternAnatolia,based contacts.Diopside-bearingamphibolitesoccurasbands, ontheirages,intotwomajorgroups:(1)younger uptoseveralmetersthick,withingneissandmarble granitoids(LateCretaceoustoLateMiocene)causedhigh- (Okay&Sat›r2000). temperaturemetamorphicaureoles,andaredefinedby TheEvcilerplutonoccursasaWSW–ENE-trending sixisochronousbeltswhichbecomeprogressively ellipticalbodythatintrudedgneissandmarblesofthe youngerfromnorthtosouth;and(2)oldergranitoids Kazda¤Massifinthesouth,anditsvolcanicequivalentsin (CambriantoMiddleJurassic),presentinthe thenorth.TheEvcilerplutonconsistsmainlyof northwesternandnorthernpartsofAnatolia. granodioritetoquartz-diorite,medium-grainedand DuringtheOligocene–MiddleMiocene,widespread granularatitscentre,andporphyriticandfine-grained magmaticactivityhaddevelopedinwesternAnatolia, towardsitsmargin(Genç1998).Theplutoncontains followingthecollisionoftheSakaryaContinentwiththe numerousaplitedykes,veinsandroundedtolensoidal Tauride-Anatolideplatform(fiengör&Y›lmaz1981; maficmicrogranularenclaves. Y›lmaz1989,1990,1995,1997;fiengör etal. 1993). Bingöl etal. (1982,1992)suggestedthattheyoung MineralogyandPetrologyoftheEvcilerGranitoid granitesformedinapost-collisionalenvironmentasa resultofcrustalthickening.However,complementary TheEvcilerplutoncomprisesmainlygranodiorite,quartz datapresentedbyDelaloye&Bingöl(2000)aremore monzonite,monzodioriteandquartzdiorite.Öngen

258 Y.YÜCELÖZTÜRK,C.HELVACI& M.SATIR

(1992)andGenç(1998)subdividedtheplutonintothree granitoid,and(4)containpyrrhotite,chalcopyrite, mainfacies(Figure1b):(1)TheÇavufllumonzodioriteis magnetite,garnet,pyroxene,epidote,actinoliteand theearliestfaciesoftheplutonandhasequigranularand chloriteatAyazma,SEofEvcilervillage(Figure2). coarse-grainedtexture.Thisunitmainlyconsistsof intermediatemicrocline(15%,Or 89-90),automorphic Endoskarn plagioclase(48%,An45-35),quartz(14%),biotite(10%), poikiliticmagnesiumhornblende(9%)andaugite(4%). Endoskarnformationbeganwithepidotization,andwas (2)TheKaraköygranodioriteisthemainfaciesofthe coincidentwithsericitizationduringmetasomatic plutonandoccursinthenortheasthernpartofthepluton. reactions.Theendoskarnconsistsmainlyofepidoteand Thisunithasfine-tomedium-grained,porphyritic pyroxene.Alongthecontactwiththeexoskarn, texture,andconsistsessentiallyofplagioclase(39%, replacementofgranodioritebymassiveepidoteand

An40-27),interstitialorthoclase(24%,Or 80-85),quartz minorgarnet-pyroxeneendoskarnsoverwidthsof (24%),actinolitichornblende(8%)andcoarse-grained centimetresto0.5mmayresultincompletedestruction biotite(5%).(3)Thecontactbetweenthesetwoplutonic oftheoriginaligneoustexture.Thiszoneconsistsoffine- membersisgraditionalandrepresentedbymelanocrate tomedium-grainedepidoteaccompaniedbyinterstitial granodiorite,containingcoarse-grainedmagnesium quartz(Figure3a&b).EndoskarnlocatedatEvcileralso hornblende,heretermedmesocratic-typeEvcilerrocks.It containsgarnetandpyroxeneaccompanyingthe ismediumtodarkgreyduetoahigherabundanceof aforementionedmineralassociation.Fartherintothe maficcomponents.Phenocrystmineralogyincludesmajor granite,endoskarnsoccuronlyasdisseminatedepidote K-feldspar,plagioclaseandquartz;minoramphibole,and skarns,andareenrichedingarnettowardsthemarble. pyroxene;andaccessorytitanite,apatiteandmagnetite. Thegarnet-richskarnpredominantlycomprisesexoskarn. Thepresenceofprimarytitaniteandmagnetite, However,garnetlocallydevelopedbydissolutionand combinedwiththeabsenceofilmenite,indicatesthat replacementofprimaryigneousminerals,particularly thesearerelativelyoxidizedmagmas.Secondary feldspar,inthegranodiorite(Figure3c&d).Most minerals,formedviaalteration,areepidote,sericiteand garnetsinthegranodioriteareisotropic,whereassome chlorite,withpyroxenealteredtoamphibole.Inthe garnetsdisplayanisotropyandsectorandoscillatory southernpartofthepluton,monzograniticrockshavea zoning(Figure3e&f). limiteddistributioncomparedtothemesocratic-type Evcilerrocks,andareheretermedleucocratic-type Evcilerrocks.Thisrocktypeislightgrey,fine-to Exoskarn medium-grained,andequigranulartoporphyriticin Thealterationofthehostrock(marbleandgneiss)inthe texture,andconsistsmainlyofK-feldspar,plagioclase, Evcilerdistrictismarkedbytheformationofcoarsely quartz,andsecondaryepidoteandamphibolecrystals, crystallineskarnlensesduetotheintroductionofSi-,Al-, plusaccessorytitanite,apatite,andpyroxene.TheK- Fe-,andMg-richfluidsintothehostrock.Atthecontact feldsparismedium-tocoarse-grainedandhasperthitic betweentheEvcilergranitoidandKazda¤Massif,the andmyrmekitictextures.Theboundariesofthe earliestchangesobservedintheprotolithinvolve leucocraticandmesocraticrocksarepoorlymappedinthe recrystallizationtofine-grained,darkgrey-greenhornfels Evcilerdistrictbecausetheircontactsarenotclearly withanassemblageofclinopyroxene-feldspar-quartz. observed.Althoughtheyaregeochemicallyclassifiedas MetasomatismofcarbonatelithologiesatEvciler twodifferentgranitoids,thefieldrelationsareunclear producedgrossular-andradite/pyroxeneexoskarn.The becauseoftheirobscuredcontacts. dominantmineralsoftheexoskarnarepyroxeneand garnetascomponentsoftheprogradeassemblage,and epidote,tremolite/actinolite,chloriteand/orcalciteand SkarnOccurences quartzascomponentsoftheretrogrademineral SkarnsintheEvcilerdistrict(1)aremostlycalcic,(2) assemblage. haveanoxidizedmineralogydominatedbygarnet, IntheEvcilerskarn,theexoskarnshowsslightzoning clinopyroxene,epidoteandamphibole,(3)haveepidote inthepyroxene-epidoteassemblageswithplagioclase, endoskarnclosetothecontactbetweenmarbleand

259 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN 41 N Ep 400m 721 pyroxene garnet scapolite epidote 200 Ep Prx Gar Skp 42/2 SCALE: 71 Prx Skp 722 0 155 69 Ep Prx 723 43 724 Ep Skp 67 stream historical mine area of calcic skarn alteration Skp 142 Prx 140 x x 144 149 143 148 109 190 Ep 195 191 Prx 192 78 79 193 Amf Prx Gr 80 81 112/2 Prx Prx shear zone sample location strike-slip fault Au-Cu mineralization Gr Prx 76/1 44 77 169 Gr Ep Evciler granitoid 185 184 Geologicalmapshowinglocationoftheskarnalterationandmineralization. Gr qtz-diorite- granodiorite marble gneiss-amphibolite monzogranite 59 Ep

Ayazma Çayý 183 182 Prx 181 58 Gr Figure2. Ep 57 Evciler village (5km)

260 Y.YÜCELÖZTÜRK,C.HELVACI& M.SATIR

Figure3. TypicalendoskarntexturesintheEvcilerdistrict. (a,b) massiveepidotewithinterstitialquartz,(PPL andcross-nicols); (c,d) replacementofprimaryigneousminerals(plagioclase)bygarnet(PPLand cross-nicols);(e,f) garnetshowingoscillatoryandsectorzoningwithinthegranodiorite(PPLand cross-nicols).Ep–Epidote,Qtz–Quartz,Gar–Garnet,Plj–Plagioclase,Prx–Pyroxene. scapoliteandtitanite,closetomarblefront(distalskarn), Theprogradeskarnmineralassemblagecomprises andasgarnet-pyroxeneassemblageswithchloriteand garnet,clinopyroxeneandscapolite(Figure4a&b). epidoteclosetotheendoskarnzone(proximalskarn). Garnetandpyroxeneareintimatelyintergrown, Thewidthoftheindividualzonesrangesfromcm-scaleto suggestingsynchronousgrowthoftheseminerals.The 2–3m(evenlocally15–25m).Epidote, garnetconsistsofanisotropicandisotropiczoned tremolite/actinolite,chloriteand/orquartzandcalcite andraditetogrossular(Ad 70-50Gr30-50).Twotypesof typicallyrepresenttheretrogrademineralphasesformed garnetsareobservedintheexoskarns–smaller,isotropic byalterationofpyroxeneandgarnetintheadvanced garnetsandlargelyanisotropicgarnetswithoscillatory stagesofskarnformation. zoning(Figure4c&d).Theircompositionsarecloseto

261 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN

Figure4. TypicalexoskarntexturesintheEvcilerdistrict.(a,b) Progradeskarnmineralassemblagecomprising garnet,clinopyroxeneandscapolite(PPLandcross-nicols); (c,d) garnetexoskarnconsistingof anisotropicandisotropiczonedandraditetogrossular(PPLandcross-nicols). thoseofgarnetsfromAu-CuandFe-Cuskarns(Einaudi pyroxeneexoskarnsandoccursintermittentlyalong~ etal. 1981;Meinert1992).Thepyroxenesaregenerally 600mofthecontactbetweengneissandmarble anhedraltosubhedral,andhedenbergitictodiopsidicin belongingtotheSutuvenformation(Kazda¤Massif). composition(Hd 50-75Di50-25),andaresimilartothoseof pyroxenesfromAu-CuandFe-Cuskarns(Einaudi etal. 1981;Meinert1992).Thepyroxeneswereconverted GeochemistryandPetrogenesis intotremolite/actinoliteduringretrogression.Calcic Thirtysampleswerecollectedfromtheseverallocalities scapolite(meionite)typicallyformedduringprograde withintheEvcilerplutonforgeochemicalanalysisand alteration;itspresenceintheEvcilerexoskarnsuggests wereanalysedforbothmajor-andtrace-element eitheralow-temperaturescapolitevarietyoraformer contents.Theresultsofthegeochemicalanalysisare skarnassemblage.InsofarastheCa-scapolitegrainsare presentedinTable1. intergrownwithclinopyroxeneandgarnets,thelatter Intermsofmajorelements,mostplutonsassociated hypothesisisfavoured(Figure4c&d). withskarndepositsarefairlynormalcalc-alkalinerocks. Themainpyrrothite-richmineralizationisobserved AllvaluesfromtheEvcilergranitoidplotascalc-alkaline withinexoskarnandresultedfromtheretrograde (Figure5a)andsubalkaline(Figure5b)rocksintheIrvine alterationofprogradecalc-silicateassemblages,to &Baragar(1971)classificationscheme.Themesocratic- chloriteand/orcalcite.Amagnetite-pyrrhotite- (quartzdiorite-granodiorite)andleucocratic- chalcopyriteassemblageiswidespread,andmagnetiteis (monzogranite)types,distinguishedbyfieldobservations replacedbybothpyrrhotiteandchalcopyrite.Pyrrhotite andpetrographically,alsoappearastwodistinctgroups isthemainsulfidephasereplacedbychalcopyrite.The onthesediagrams,suggestingthatthesearetheproducts sulfidemineralizationtypicallydevelopedwithinthe oftwodifferentmagmasorthattheleucocraticrocksare

262 Y.YÜCELÖZTÜRK,C.HELVACI& M.SATIR

Table1. Major-andtrace-elementcompositionsoftheEvcilerpluton. sampleno 720-2 721 722-1 723-3 42-1 223/3 41-2 744 750 52-2 54-2 315

Evcilerleucogranite Evciler Çavufllu Karaköy granodiorite monzodiorite granodiorite

SiO2 (%) 73.71 72.64 73.81 74.41 73.34 68.66 56.46 62.14 58.22 61.7 64.79 66.55 TiO2 0.08 0.12 0.10 0.05 0.09 0.23 0.72 0.57 0.65 0.55 0.47 0.37 Al2O3 13.91 14.14 13.32 13.25 14.04 15.15 16.81 15.81 16.25 16.41 15.73 15.18 T Fe2O3 1.23 1.58 1.17 0.78 0.89 0.96 5.97 5.82 6.91 5.10 4.55 3.59 MnO 0.02 0.03 0.02 0.01 0.01 0.02 0.10 0.10 0.13 0.11 0.10 0.06 MgO 0.16 0.24 0.25 0.11 0.33 0.86 3.28 2.10 2.91 2.10 1.97 1.51 CaO 1.27 1.51 1.56 0.95 1.39 3.14 8.11 4.52 6.19 5.11 4.65 3.77

Na2O 3.06 3.22 2.82 2.41 2.92 2.83 3.58 3.08 3.22 3.45 3.14 3.28 K2O 5.40 4.83 5.41 6.40 5.87 6.51 2.36 4.17 3.20 2.97 3.43 3.73 P2O5 0.01 0.01 0.01 0.03 0.07 0.15 0.22 0.18 0.19 0.14 0.11 0.10 Ba(ppm) 699 817 1046 634 925 2611 1097 944 722 697 840 826 Sc 2 2 2 1 2 3 14 10 12 10 9 6 Co 1 2 3 1 2 3 15 15 20 12 11 7 Cs 2 1 1 3 1 1 1 3 6 2 10 6 Ga 20 20 17 16 17 20 19 18 20 18 17 17 Hf 3 4 3 2 2 6 5 6 6 5 4 4 Nb 10 5 6 6 3 14 9 10 12 9 8 9 Rb 196 152 142 231 151 188 61 139 129 93 112 133 Sn 1 2 1 <1 <1 <1 3 1 2 1 <1 <1 Sr 196 381 260 205 188 1005 677 525 616 462 448 427 Ta 1 0 1 2 1 1 1 1 1 1 1 1 Th 25 17 26 19 7 32 6 21 21 35 14 21 U7561287266747 V 13 23 15 13 10 25 178 132 155 103 98 73 W 2311 2 2 2 22 252 Zr 66 111 63 47 43 197 160 198 176 144 116 124 Y 19 9 11 12 11 18 27 23 28 23 21 17 Mo 9 8 7 0 0 3 1 7 1 1 1 2 Cu 7 7 40 1 1 2 2 49 45 7 5 12 Pb 5 7 4 6 4 4 23 6 22 3 148 5 Zn 10 17 11 7 11 5 34 39 39 45 115 15 Ni 8 8 7 2 4 5 3 9 4 5 5 4 As 1 <.5 <.5 <.5 <.5 <.5 <.5 1 1 <.5 1 1 Au <.5 <.5 <.5 1 9 <.5 1 1 1 1 <.5 <.5 La 18 28 21 12 16 63 32 32 38 26 32 41 Ce 30 44 33 22 45 95 54 56 62 41 46 56 Pr3643 3 117 78 55 6 Nd 13 21 14 10 12 41 30 26 32 22 20 21 Sm 3 4 3 3 2 6 6 6 6 4 4 3 Eu 1 1 1 1 1 1 1 1 1 1 1 1 Gd 2 2 2 2 2 4 5 4 5 4 3 3 Tb 0 0 0 0 0 1 1 1 1 1 1 1 Dy 2 2 2 2 2 3 5 4 4 3 3 2 Ho 1 0 0 0 0 1 1 1 1 1 1 1 Er 2 1 1 1 2 1 3 2 3 2 2 2 Yb 2 1 1 2 1 2 3 2 3 3 2 2

263 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN

Fe2O3(t) 20 Evciler qtz diorite- granodiorite 18 (mesocratic-type) Evciler monzogranite 16 (leucocratic-type) Çavuþlu monzodiorite 14 tholeiitic Karaköy granodiorite 12 O 2 10 alkaline O+K

2 8 Na 6

4 subalkaline calc-alkaline 2

0 35 40 45 50 55 60 65 70 75 80 85 K2O+Na2O MgO (a) (b) SiO2

Q 3,0 quartzolite 2,8 2,6 metaluminous peraluminous

2,4 quartz-rich 2,2 granitoid 2,0 1,8 qranite granodiorite

tonalite

ANK 1,6 (monzo- granite) 1,4 (syeno- 1,2 granite) 1,0 alk. feld.granite 0,8 qtz-dio. peralkaline q. alk.feld.syenite quartz quartz qtz-monz.dio. 0,6 syenite monzonite 0,4 alk.feld.syenite syenite monzonite monzodiorite diorite 0,5 1,0 1,5 2,0 A P (c) ACNK (d)

Figure5. Classificationof (a) calcalkaline, (b) subalkaline, (c) Al-saturationindex(accordingtoPeacock1931)and (d) nomenclature(accordingtoStreckeisen1976)diagramsoftheEvcilergranitoidassociatedwithskarnoccurrence.

thelate-stageproductsofthesamemagma.The IntheK 2OversusSiO 2 diagram(Figure6a),the mesocraticEvcilerrocksplotsinthehighMgO(Figure5a) Evcilergranitoidshowshigh-Kcharacteristics.TheK 2O andlowSiO2 fields(Figure5b).However,allvaluesfrom contentscorrelatepositivelywithsilica.Incontrast,the theEvcilerplutonplotinthemetaluminoustomildly MgO,Fe2O3,TiO2,Al2O3,P2O3 andCaOcontentsdisplaya peraluminousfields.ThemesocraticEvcilerrocksare clearnegativetrendagainstsilicaincrease(Figure6b-g) characterizedbyahighertotal-alkalicontent(Figure5c). suggestingthattheEvcilerplutonwasderivedfrom IntheclassificationdiagramofDebon&LeFort(1983) highlyevolvedmelts(Genç1998).Inthesediagrams,

(Figure5d),rocksoftheEvcilergranitoidforma MgO,Fe2O3,TiO2 andP2O3 valuesappearmoredepleted continuousspectrumfromquartzdioritetogranite.The fortheEvcilerleucogranite,withtheexceptionofK 2O mesocraticEvcilerrocksaregranodioritictoquartz whichappearsmoreenriched,thanfortheEvciler monzodioriticincomposition,whereastheleucocratic granodiorite(Figure6). Evcilerrocksaremonzograniticincomposition.

264 Y.YÜCELÖZTÜRK,C.HELVACI& M.SATIR

7,0 5,0

6,0 4,0

5,0 3,0 O

2 4,0 K MgO 2,0 3,0 1,0 2,0 (a) (b) 1,0 0 40 50 60 70 80 40 50 60 70 80 SiO2 SiO2

10 1.0 9 0.9 8 0.8 7 0.7 6 0.6 3 2

O 5 0.5 2 TiO 0.4 Fe 4 3 0.3 2 0.2 0.1 1 (c) (d) 0 0.0 40 50 60 70 80 40 50 60 70 80 SiO SiO2 2 20 0.4 19

18 0.3 17 3 5 O

16 O 0.2 2 2 Al 15 P 14 0.1 13 (e) (f) 12 0.0 40 50 60 70 80 40 50 60 70 80 SiO2 SiO2 20

10 CaO

(g) 0 40 50 60 70 80 SiO2

Figure6. HarkervariationdiagramsformajorelementsoftheEvcilergranitoid(seeFigure5forsymbols).

265 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN

TheSiO2 andNa2Ocontents,molecularA/CNKratios, However,normalizedpatternsforleucocratic-typeEvciler

K2O/Na2Oratios,keyCIPWmineralsandkeymodal arecharacterizedbyLREEenrichment,strongnegative minerals(suchasamphiboleandtitanite)allsuggestthat Euanomaliesandwell-defined,positivelyslopingHREE. theEvcilergranitoidhasI-typecharacteristicsonthebasis Acharacteristicfeatureoftheleucocratic-typeEvcileris oftheschemesofChappell&White(1974)andRaymond thatitisextremelydepletedinHREEcomparedtoother (1995). associations(Figure8).Theserocksindicatelittleorno Thetrace-elementdataareusedinthediscrimination residualplagioclaseinthesourcemagma.Thesedataare oftectonicorgeologicprovincesassociatedwith consistentwithnumerousexamplesfromcontinentalor particularmagmatypes(e.g.,Pearce etal. 1984).Inthe continental-marginsettings(Delaloye&Bingöl2000). RbversusY+Nb(Figure7a)andNbversusY(Figure7b) Themesocratic-typeEvciler,Çavufllumonzodiorite diagrams,valuesfromtheEvcilerplutonplotintheVAG andKaraköygranodioriteareexceptionallyrichinCe,Pr, andVAG+Syn-COLGfields,respectively.However,the Nd,andSmincomparisontotheleucocratic-typeEvciler. Rb/ZrversusSiO2 diagramindicatescrustalcontamination Occurrencesofaccessoryminerals,suchasapatite,are (Figure7c). responsibleforthisenrichment(Delaloye&Bingöl2000). Rare-earthelement(REE)dataarealsopresentedin Ocean-ridgegranite(ORG)–normalizedpatternsfor Table1.Themesocratic-typeEvciler,Çavufllu theEvcilergranitoidarecharacterizedbyK2O,Rb,Baand monzodioriteandKaraköygranodioriteareenrichedin Thenrichment.However,itisdepletedinZrandY REE.TheyhavesmallernegativeEuanomaliesanda (Figure9a),indicatingcrustalinteraction. horizontalnormalizedpatternfortheHREE(Figure8).

2000 1000 1000 Syn-COLG WPG WPG 100 100 VAG + Syn-COLG Nb Rb

10 10 VAG

ORG ORG 1 1 1 10 100 1000 2000 1 10 100 1000 2000 (a) Y+Nb (b) Y

5.0

TYPE II (syn-COLG)

TYPE III (syn-COLG + VAG)

Rb/Zr 1.0

0.3 40 50 60 70 80

(c) SiO2

Figure7. (a) Rbvs(Y+Nb),(b) NbvsYand(c) (Rb/Zr)vsSiO2 granitoiddiscriminationdiagramtodiscriminatethe magmacharacteristicsoftheEvcilergranitoid(fieldboundariesandnomenclatureafterPearceetal. 1984). SeeFigure5forsymbols.

266 Y.YÜCELÖZTÜRK,C.HELVACI& M.SATIR

200

100

10 Sample/Chondrite

1 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Figure8. Chondrite-normalizedREEpatternsforEvcilergranitoid. See Figure5forsymbols.

Comparisonofthetrace-elementcontentsofthe fromnearpyrrhotite-bearingmineralizationoftheEvciler Evcilergranitoidwiththoseoftheloweranduppercrust district.Oxygen-isotopeanalysesofthegranitereported (Wilson1989)showsthattheEvcilergranitoidisfairly here(Table2)wereperformedonmineralseparates similartotheuppercrust(Figure9a&b),insofarasthe (quartzandamphibole)inpreferencetowhole-rock LILelementsareenrichedwithrespecttoHFSelements. powdersbecauseoxygen-isotoperatiosofthewholerock EnrichmentinThandNbindicatesthatthesourcerocks arevulnerabletotheeffectsofpost-crystallizationand arealsoenrichedintheseelements.AccordingtoGenç sub-solidusalteration. (1998),theEvcilerplutonyieldsacafemictrendonthe Quartzandamphibolewereseparatedandpurifiedby A-BdiagramofDebon&LeFort(1983).Thecafemic magneticseperationandhandpicking.Thepurityofall associationsareknowntohavebeenderivedmostlyfrom mineralseparateswascheckedbyX-raydiffraction,and ahybridsource,havingcrustalandmantlecomponents isgreaterthan95%.Theoxygen-isotopecompositions (Debon&LeFort1983).Thisconclusionissupportedby theORG-normalizedtrace-elementsystematicsofthe Evcilergranitoidasdiscussedabove.Thesefeatures Table2. δ18OvaluesofsamplesfromEvcilergranitoid. indicateasourceregioninthemantle,enrichedby δ18 δ18 sampleno. O(‰) Omagma (‰) subductionprocesses(e.g.,Pearceetal. 1984;Rogerset quartz amphibole wholerock al. 1985;Harris etal. 1986).Therefore,thetrace- elementandREEpatternsoftheEvcilergranitoid 195 10.2 193 10.4 comparefavourablywithmagmasformedinamagmatic 112/2 10.4 6.6 7.2 8.0 arcorinapost-collisionalsetting(Genç1998). 191 8.9 8.1 79 10.9 8.3 192/2 1.3 6.1 109 7.2 6.0 Oxygen-IsotopeChemistry 58 10.2 8.7 76/1 7.2 5.7 Becauseofitsproximitytotheskarnmineralizationand 42/2 10.2 5.9 2.5 7.2 itspossibleroleinthegenesisofore-formingfluids,we 148/2 9.0 5.2 6.5 6.5 analyzedforoxygenisotopeswhole-rocksamplesand 184 3.7 -0.6 7.2 140/S5 4.5 7.1 mineralseparatesfromtheEvcilergranitoidcollected 222/1 8.5 5.2 4.8 6.6

267 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN

60

10

1 sample/ocean ridge granite

0,1 (a) 0,05

Sr K2O Rb Ba Th Nb Ce Zr Y

60 MORB upper crust lower crust 10

1 sample/ocean ridge granite

0,1 (b)

0,05

Sr K2O Rb Ba Th Nb Ce Zr Y

Figure9. Oceanridgegranite(ORG)-normalizedspiderdiagramsfor (a) the Evcilergranitoid; (b) MORB,uppercrustandlowercrust,for comparison.NormalizingvaluesarefromPearceetal. (1984).See Figure5forsymbols.

18 16 ( O, O)ofthesamplesweremeasured,usingamethod usingKClheldat150°C.TheextractedO 2 wascollected similartothatdescribedbySharp(1990)andRumble& onamolecularsieve(13X)andsubsequentlyexpanded Hoering(1994).Between0.5to2mgofeachsample andanalyzedusingaFinniganMAT252isotoperatio wasloadedintoasmallPt-sampleholderandpumpedout massspectrometeratTübingenUniversity,Germany.The toavacuumofabout10 -6 mbar.Afterovernight resultsarereportedhereinasconventionalpermil δ18O preflourinationofthesamplechamber,thesampleswere valuesrelativetoSMOW.Thereproducibilityisbetter heatedwithaCO2-laserin50mbarsofpureF2.ExcessF2 than±0.1‰.ThemeanvaluefortheNBS-28standard wasseparatedfromtheO2 producedbyconversiontoCl2 obtainedduringthepresentstudywas+9.64‰.

268 Y.YÜCELÖZTÜRK,C.HELVACI& M.SATIR

Thewholerock δ18OvaluesoftheEvcilergranitoid fractionationforequilibriumconditionswasquartz- decreasetowardtheintrusivecontact,whichhappensto amphibole.Quartz-feldspar,thefractionationmostoften betheregionclosesttothepyrrhotite-bearing chosenforfelsicigneousrocks,isnotapplicableatEvciler mineralizationoftheEvcilerdistrict(Figure10).The duetothelackofmeasuredδ18Ovaluesforfeldspar.The 18 ∆ whole-rockδ Ovaluesofsamples,collectedonlyafew average qtz-amph observedintheEvcilergranitoidranges metresfromtheskarnmineralization,are2.5,5.7and from3.0to4.2‰,indicatingthattheOisotopesdidnot 6.0‰,lowerthanthenormalrangeforfreshgranites reachequilibriuminthesesamples.Therefore,the (Taylor1968),suggestingthatgraniteatthislocalityhas presentisotopiccharacteristicsdemonstratethatthe beenaltered. Evcilergranitoidhasexperiencedpost-emplacement, open-systemhydrothermalalteration.Meteoricwater Notethattherangeofδ18Ovaluesforquartzfromthe wasthemostprobablefluidinvolvedinthewater-rock granitesamplescollectedfarthestfromtheskarn interactionsofthegraniticintrusion. mineralizationisrestricted,rangingfrom+7.2to+10.9 ‰,possiblynearclosetotheprimaryunalteredvaluefor thisintrusiverock.ThisrangeisnormalforI-typegranitic Discussion rocks(e.g.,Taylor&Sheppard1986;+8‰–+10‰). ComparisonoftheCompositionalVariationofthe 18 Inthispaper,the δ Ovaluefortheoriginalmagma EvcilerGranitoidwithWorldSkarnGranitoids (δ )hasbeenestimatedfromthe δ18Ovaluesof magma Broadcorrelationbetweenigneouscompositionand quartz.Intheory,the δ18Ovalueofthefreshrock(and skarntypewithrespecttotheirmetalcontentshasbeen hence δ )canbecalculatedfromthemineral δ18O magma describedbyseveralworkers(Zharikov1970;Shimazaki valuesandmodalproportions,providedthatoxygen- 1975,1980;Kwak&White1982;Meinert1983,1990, isotopedataareavailableforalloftheconstituent 1993,1995,1997;Newberry&Swanson1986; minerals(Harrisetal. 1997).Theδ18Ovaluescalculated forthegranitemagmasfromquartz δ18Ovaluesofthe Newberry1987;Keith etal. 1989;Newberry etal. Evcilergranitoidrangefrom6.0to8.0‰. 1990;Meinert etal. 1990;Paktunç1990;Ishihara& Sasaki1991;Naldrett1992;Blevin&Chappell1992; Inslowlycooled,coarse-grainedrocks(e.g.,theCape Rayetal. 1995;Srivastava&Sinha1997;Nicolescuetal. granites,Harrisetal. 1997),thedifferencebetweenthe 1999).Parametersthataremostimportantin δ18Ovalueofquartzand δ isnotonlydependenton magma determiningtheoverallmetallogenic‘flavour’ofintrusive ∆ ,butisalsodependentongrainsize,therateof qtz-melt igneoussuitesincludegranitetype,compositional cooling,andthemineral’stemperatureofclosureto evolution,degreeoffractionationandoxidationstate oxygendiffusion(e.g.,Giletti1986;Jenkin etal. 1991). (Blevin2004). Largergrainsizegenerallyresultsfromslowercooling, whichinturnmeansthatoxygendiffusionandre- Intermsofmajorelements,theEvcilergranitoidwas equilibriumcontinuesforagreaterperiodoftime. comparedwithaveragesofworldgranitoidsassociated withAu-CuandFeskarns(Meinert1995)andwithskarn Thedifferencebetweenthe δ18Ovalueofquartzand granitoidsofErtsberg,Indonesia(Meinert etal. 1997); theotherconstituentmineralsinaslowlycooledrockwill BocflaandOcnadeFier,Romania(Nicolescuetal. 1999); belargerthanforamorerapidlycooledrock.Tocorrect McKenzie,Canada(Moore&Lentz1996);Millstream, forthese‘closure’effects, ∆ wasassumedtobe quartz-magma Canada(Lentz etal. 1995);BritishColumbia,Canada +1‰inthequartzporphyries(e.g.,Taylor&Sheppard (Meinert1984)andtheRioNarceagoldbelt(RNGB), 1986)and+2‰intheremaininggranites,which Spain(Martin-Izard etal. 2000)byusingHarker relativelycoarse-grained(seeGiletti1986).Calculated ∆ diagramssimilartothoseusedbyMeinert(1993,1995). quartz-magma fortheEvcilergranitoidrangefrom+1.8to +3.0‰.Underequilibriumconditions,theO-isotope AsisillustratedintheHarker-typediagrams,Au-and fractionationbetweenquartzandconstituentminerals Fe-skarnaveragesarecharacterizedbyhigherMgOand ∆ (e.g., qtz-feld)shouldfallintherangeof0.5–2.0‰at lowerK2OandSiO 2 contentscomparedtoCu-skarnand magmatictemperatures(Chiba etal. 1989).Forthe othertypes(W-,Mo-,Sn-,Zn-,andPb-skarns).TheMgO granitoidoftheEvcilerdistrict,theonlyreadilyapplicable contentsoftheEvcilermonzogranite(leucocratic)and

269 270

N

195 18 112/2 d O=4 Evciler village (5km) 109 d18O=3 193 42/2 d18O=8 18 192 d O=7 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN

d18O=6 76/1 79191 Ayazma Çayý 77 d18O=5 58

57 x 183

SCALE:

0 200 400m

monzogranite Au-Cu mineralization stream Evciler granitoid qtz-diorite- shear zone historical mine granodiorite x marble 79 sample location d18O contours

gneiss-amphibolite strike-slip fault

Figure10. Geologicalmapshowingδ18OvaluesoftheEvcilerqtzdiorite-granodiorite. Y.YÜCELÖZTÜRK,C.HELVACI& M.SATIR

Evcilerquartzdiorite-granodiorite(mesocratic)are granitoidswithlittleornocrustalinteraction(Meinert 0.28%and2.30%,respectively.However,thisvalueis 1984).TheAl-saturationindexoftheEvcilergranitoidis 3%forFe-skarngranitoids,3.2%forAu-skarn lowerthanthatofFe-skarngranitoids–unlikeaverage granitoids,and1.8%forCu-skarngranitoids(Meinert Fe-skarngranitoids–suggestingmorecrustal 1995).TheMgOcontentsofthemesocraticEvcilerrocks interaction.TheEvcilergranitoid,exceptforthe isclosetoFe-andAu-skarngranitoids,andtheÇavufllu leucocraticphase,appearstobetrendingtowardsCu- monzodioriteandKaraköygranodioriteareclosetoCu- andZn-skarngranitoids.However,inthisregard,the skarngranitoid(Figure11a).Incontrast,theMgO leucocratictypeisfairlysimilartoMo-andSn-skarn contentsoftheleucocraticEvcilerrocksarefairlysimilar granitoids. tovaluesofMo-andSn-skarngranitoidsandplotsclose Thedegreeandtypeoffractionationisimportantin toMo-Sngranitoidaverages(Figure11a).Thereforeitis determiningboththepotentialformineralizationandthe suggestedthattheEvcilerquartzdiorite-granodiorite typeofmineralizationwithwhichagranitesuitemightbe couldbeassociatedwithCu-AuandFeskarnsandthe associated.Fractionalcrystallizationcanbemeasuredin EvcilermonzogranitecouldbeassociatedwithMoandSn manyways:useofcompatible/incompatibleelement ratios(e.g.,Rb/Srratio),andthebehaviourofselected skarns.Similarly,intermsoftheK 2Ocontentsofthese rocks,theEvcilervaluesappeartotrendingtowardsAu- , traceelementsthatindicatetheentranceandexitof Cu-andFe-bearinggranitoids(Figure11b). crystallizingphases(Blevin2004).Forexample,Rb shouldincreaseandScshoulddecreaseascrystallization Thetotal-alkalicontentsoftheEvcilerquartzdiorite- anddifferentiationproceedformagmaticrocks.Figure granodiorite(mesocratic),Çavufllumonzodioriteand 12aillustratesthisrelationshipfortheEvcilergranitoid. KaraköygranodioritearefairlysimilartovaluesofAu-Cu TheEvcilermonzogranite(leucocratictype)is andFe-skarngranitoidsandthevaluesoftheserocksplot characterizedbyhigherRbandlowerSccontentsthan closetoAu-CuandFe-granitoidaverages(Figure11c). theEvcilerquartzdiorite-granodiorite,theKaraköy TheEvcilergranitoid,ingeneral,hasasingletrendin granodioriteandtheÇavufllumonzodiorite.However,the termsofironcontentandothermajoroxides(Figure Evciler(mesocratictype),ÇavuflluandKaraköyplotsare 11d). veryclosetothoseofCu-andAu-skarngranitoids,but Consequently,intermsofmajor-elementcontents, arehigherthanFe-skarngranitoids.TheEvciler theoverallgeochemistryoftheEvcilergranitoid,except monzograniteplotsarealsohigherthanthoseofFe- skarngranitoidsbutlowerthanthoseofMo-andSn- theleucocraticEvciler,iscomparabletoAu-CuandFe- skarngranitoids(Figure12a).Thevariationof‘mobile’ skarngranitoids.Althoughitisnotclearinthefield,the large-ionlithophiletraceelements,suchasRbandSr, geochemistryoftheleucocraticrocksiscomparableto relativeto‘immobile’high-field-strengthelements,such Mo-andSn-skarngranitoids(Figures11a–d).Pyrrhotite- asZr,Nb,andP,isalsoimportanttounderstandthe bearingAu-CumineralizationintheAyazma(Evciler) petrogenesisofplutonsassociatedwithskarndeposits. districtshouldberelatedtothemesocraticEvcilerquartz Forexample,Newberry&Swanson(1986)havenoted diorite-granodiorite. thatW,Sn,andModepositshavehighRb/Srratios,and AccordingtoMeinert(1995),mostcompositionsof thissuggeststhattheprocessofdifferentiation,rather skarn-relatedplutonsclusterclosetothedivision thanaparticularmagmacomposition,iscriticalinthe betweenmetaluminousandperaluminous,andalmost formationofthesedeposits.Incontrast,Zn-,Cu-,Au-, nonewouldbeclassifiedasperalkaline,intermsofAl- andFe-skarnsystemshavelowRb/Srratios,andshow saturation.ThemesocraticEvcilerquartzdiorite- littleevidencefordifferentiation.InFigure12b,the granodiorite,ÇavufllumonzodioriteandKaraköy EvcilergranitoidischaracterizedbylowerRb/Srratios granodioritearecharacterizedbyhigherANKandlower thanMo-,W-,andSn-skarngranitoidsbuttheleucocratic ACNKvaluesthantheleucocraticEvcilerrocks(Figure EvcilerrockshaveslightlyhigherRb/Srratiosthanthe 11e).Inthisdiagram,theEvcilergranitoidshowslower otherassociations.However,themesocraticEvciler ANKandhigherACNKvaluesthantypicalFe-skarn quartzdiorite-granodioriteisfairlyclosetoAu-,Cu-,and granitoids.IntermsofAl-saturationindex,Fe-skarn Fe-skarngranitoids,suggestingpotentialforAuandCuin granitoidsareinterpretedasskarnsderivedfrommantle thearea.

271 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN

5.0 7.0

6.0 4.0 Au Mo Sn 5.0 Zn 3.0 Fe Cu 4.0 K2O MgO W 2.0 Zn 3.0 all skarns W Cu 1.0 Sn 2.0 Mo Au (a) (b) Fe 0 1.0 40 50 60 70 80 40 50 60 70 80 SiO2 SiO2 10 20 Mo Fe 9 10 Zn Au 8

7 W Cu 6 W Au Mo K2O+Na2O 5 Fe Cu

4 (Fe2O3+CaO+Na2O)/K2O 1 (c) (d) 3 0,6 40 50 60 70 80 40 50 60 70 80 SiO2 SiO2 3,0 Au-Cu skarn (Rio Narcea gold belt; Martin-Izard et al. 2000) 2,8 Cu-Fe skarn (Millstream deposit; Canada, Lentz et al. 1995) 2,6 Fe Fe skarn (British Columbia; Meinert 1995) 2,4 Au-Cu skarn (Irian Jaya, Ertsberg district; Meinert 1997) 2,2 Au Fe-(Pb-Zn) skarn (Bocþa Ocna De Fier, Romania; 2,0 Cu, Zn, W, Mo skarn Nicolescu & Moore 1999) 1,8 Cu skarn (McKenzie Gulch area, Canada; Moore et al. 1996) averages for skarn granitoids (Meinert 1995) ANK 1,6 Sn 1,4 Evciler qtz diorite-granodiorite (mezocratic-type) 1,2 Evciler monzogranite (leucocratic-type) 1,0 Çavuþlu monzodiorite 0,8 Karaköy granodiorite 0,6 (e) 0,4 0,5 1,0 1,5 2,0 ACNK

Figure11. Harker-type(a) MgOvsSiO 2,(b) K2OvsSiO 2,(c) totalalkaliesvsSiO 2 (d) Fe2O3+CaO+Na2O/K2OratiovsSiO 2 and(e) ANKvsACNKdiagramsfortheEvcilergranitoidandcomparisonwithworldskarngranitoids(theaveragesforskarn granitoidsaretakenfromMeinert1995).

272 Y.YÜCELÖZTÜRK,C.HELVACI& M.SATIR

300 100 Sn Sn Mo W 10 Mo W 200 Zn Cu 1 Rb Zn Rb/Sr

100 Au 0.1 Cu Fe Fe Au (a) 0.01 (b) 0 0102030400 100 200 300 Sc Zr

Figure12. Trace-elementcontentsoftheEvcilergranitoidandskarngranitoidaveragestakenfromMeinert(1995).(a) RbvsScand (b) Rb/SrvsZr.

Insofarasmetallogenicassociationsdependonthe ‘districts’.Themostintrusion-proximal,hightemperature compositionalcharacterofgranites,K/Rbratiosare metalassociationwithinthesedistrictsisdefinedasthe particularlyusefulintheevaluationofhighlyfractionated ‘coremetalassociation’(Figure14b).Inthisdiagram, melts.AccordingtoBlevin(2004),suitesthatshow therearefivecoremetalassociationsrecognized,andthe classicpetrographicandcompositionalbehaviour EvcilergranitoidplotsfairlyneartheAu-Cuassociation consistentwiththeprocessesoffractionalcrystallization andissimilartorocksoftheCadiadistrict,Australia aremostcommonlyassociatedwithsignificant (Blevin2004).Suchanapproachhasapredictivecapacity mineralization.IntheK/RbversusSiO 2 diagram,thereis inbeingabletorecognizepotentialforparticularmetallic aprogressivedecreaseinK/Rbvalueswithgranite elementalassociationsinthepoorlyexploredEvciler evolution(Figure13a&b).Thisdiagramshowsthatthe plutonandinotheryounggranitoidsofnorthwestern EvcilerplutonissimilartoI-typegranitesfrom Anatolia. continentalmargins(Figures13c)andwasderivedfrom Oxygen-IsotopicConstraintsonPetrogenesisofthe moderatelyevolvedmelts(Figure13d). EvcilerGranitoid Relativemetalabundancesinmagmasanddifferent Forsomegranites,littleornointeractionwithexternal typesofintrusion-relateddepositsareafunctionof fluidsseemstohavetakenplace(e.g.,theBerridale compositionalevolution,fractionationandoxidation batholithineasternAustralia:O’Neil&Chappell1977; state.Itisthe‘coreelementassociation’thatmostclosely theManaslugranite,Himalayas:France-Lanord etal. relatestomagmacomposition.Forexample,Cu-Au 1988)andthewhole-rockoxygenisotoperatiosprobably depositsareassociatedwithoxidized,relativelyunevolved reflectquitecloselytheoriginalmagmavalues.Other suites(Blevin2004).InFe 2O3/FeOversusRb/Srplot graniteshaveundergoneextensiveexchangewith (Figure14a),TheEvcilergranitoidischaracterizedby externalfluids,thustheoriginalmagmatic δ18Ovalues relativelyunevolvedtomoderatelyevolvedandoxidized havebeenchanged.SomeHercyniangranitesofthe suitesandarefairlyclosetoAu-Cudepositsinmany Pyrenees(Wickham&Taylor1987),theIdahobatholith respects. andmanyotherTertiarybatholithsofthewesternUSA Thecombinationoftheparametersusedabovecanbe (Criss etal. 1991)andsomeCaledoniangranitesof usedonadistricttoregionalscaletointerpret Britain(Harmon1984)canbeclassifiedinthiscategory. relationshipsbetweenigneousrocksandoredeposits. Whole-rocksamplesfromEvcilergranitoid,collected Depositzoningandmineraloccurrencedatacanalsobe onlyafewmetresfromtheskarnmineralization,have usedaskeyinputinrecognisingmagmatic-hydrothermal

273 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN

igneous rocks from island arcs granites from continental margins 1000 1000

UNEVOLVED UNEVOLVED

MODERATELY MODERATELY EVOLVED EVOLVED K/Rb K/Rb

STRONGLY STRONGLY EVOLVED EVOLVED STRONGLY Peru STRONGLY 100 New Britain EVOLVED 100 PRB EVOLVED AND AND Marianas FRACTIONATED N. Am Cord FRACTIONATED Lau Basin Cal. Baths 40 50 60 70 80 40 50 60 70 80 (b) (a) SiO2 SiO2 Evciler granitoid from northwestern LFB granites (S-D, Carb) Anatolia 1000 1000

UNEVOLVED UNEVOLVED

MODERATELY MODERATELY EVOLVED EVOLVED K/Rb K/Rb

STRONGLY STRONGLY EVOLVED EVOLVED STRONGLY STRONGLY 100 EVOLVED 100 EVOLVED AND AND I-Types FRACTIONATED S-Types FRACTIONATED 40 50 60 70 80 40 50 60 70 80 (d) (c) SiO2 SiO2

Figure13. K/Rbclassificationschemeshowingclassificationfields/typicaltrendsfor (a) igneousrocksfromislandarcs, (b) granites fromcontinentalmargins,(c) I-andS-typegranites(alldatafromBlevin2004)and (d) theEvcilergranitoid.

δ18Ovaluesbetween4.8and6.0‰,withthemost lowervaluesduringhydrothermalalterationand alteredsampleshavingthelowest δ18Ovalues,likeother skarnizationinthedistrict. worldskarngranitoids(e.g.,Edoughgranitoid,Annaba, δ18OvaluesoftheoriginalmagmaoftheEvciler northeastAlgeria:Laouaretal. 2002).Inordertocreate granitoid( δ ),calculatedfromquartz δ18Ovalues, δ18 magma graniteswithlow OvaluesobservedintheEvciler rangefrom6.0to8.0‰,suggestingsimilaritytoslowly samples,itisnecessarytoinvokehydrothermal cooledcoarse-grainedI-typegranites(e.g.,Capegranites: alteration.Comparedtonormalgranites,meteoric Harrisetal. 1997)(Figure15).Althoughtherangeof δ18 watershaverelativelylow Ovalues(Figure15). δ18Ovaluesforquartz(7.2–10.9‰)fromthefresh Duringwater-rockinteractionintheEvcilerdistrict,each granitoidsamplesisnormalforI-typegraniticrocks,this isotopicvalueofthegranitoidandmeteoricwater rangeistoolargetobeexplainedbysimplemagmatic δ18 normalizethevalueoftheotheras Oisexchanged. differentiation(Sheppard1986). Thus,theEvcilergranitoidδ18Ovalueswoulddecreaseto

274 Y.YÜCELÖZTÜRK,C.HELVACI& M.SATIR

101

100 Cu-Au Cu-Au Mo W-Mo Sn /FeO 3 W O 2

Fe Sn+_W 10-1 increasing oxidation increasing fractionation (a) 10-2 10-3 10-2 10-1 100 101 102 103 Rb/Sr

MT LEYHSON CADIA Ca Ca KIDSON F, U Au As Sb (As Sb Au) DEPOSIT As Ag DISTAL Sb Au TO Pb Zn (Bi Ag Ag Au Au) DISTRICT (Cu MoTe) Pb Cu SCALE Zn PROXIMAL Cu Zn Cu (Zn) Pb Cu Au Bi Te Mo CORE Cu-Mo Cu-Au PROVINCE OXIDATION W-Mo-Bi SCALE Evciler Granitoid (b) Sn+_W

DIFFERENTIATION

Figure14. (a) Fe2O3/FeOvsRb/SrdiagramfortheEvcilergranitoidand(b) conceptualdiagramillustratingrelationships betweenmetalzonationatthedepositordistrictscale,andhowitrelatesbacktohigher-temperature proximaligneous-centredsystems(Cu-Au,Cu-Mo,W-Mo,Sn-W,Mo)(Blevin2004).

Conclusions monzograniticincomposition;bothshowI-type Major-elementchemistryindicatesthattheEvciler characteristics.Pyrrhotite-bearingcalcicskarn granitoidhasametaluminoustomildlyperaluminous, mineralizationoccursatthecontactbetweentheEvciler calc-alkalinecharacter.Intermsoftrace-elementdata, quartzdiorite-granodioriteandmarblelensesbelonging theEvcilergranitoidisclassifiedasVAG(volcanicarc totheKazda¤MassiftothesouthoftheEvcilergranitoid. granites)andsyn-collisionalgranites.Inthestudyarea, Oxygen-isotopeanalysesofquartzandcalculated δ twodifferentrocktypesareobserved:themesocratic magma fromtheEvcilergranitoidsupportanI-type Evcilerrocksarequartzdioritictogranodioriticin designationassuggestedbypreviousgeochemical composition,whereastheleucocraticEvcilerrocksare studies.Whole-rockδ18OvaluesfortheEvcilergranitoid

275 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN

Standard Mean Ocean Water (SMOW) meteoric water (1) hydrothermally altered rocks (2) sedimentary and metasedimentary rocks (3) Fresh basalts (4) granite batholiths (5) normal granites (6) Low d18O granites (7) high d18O granites (8) I-type granites (9) 18 d O(magma) for I-type granites (10) 18 d O(magma) for S-type granites (11) Edough granitoids (12) Morgan Creek (13) Evciler granitoid (whole rock) 18 d O(magma) for Evciler Evciler granitoid (quartz)

-6 -4 -2 0 2 4 6 8 10 12 14 16 18

d18O (‰)

Figure15. Oxygen-isotopiccompositionoftheEvcilergranitoidcomparedtothoseoftypicalterrestrialmaterialsand otherworldskarngranitoids. (1) Craig(1961); (2) Ohmoto(1986); (3),(4) and(5) Taylor&Sheppard (1986);(6),(7) and(8) Taylor(1978);(9),(10) and(11) Harrisetal. (1997);(12) Laouaretal. (2002); and(13) Brownetal. (1985). decreasetowardtheintrusivecontact,whichhappens Evcilerquartzdiorite-granodiorite,Çavufllumonzodiorite alsotobetheareaclosesttothepyrrhotite-bearing andKaraköygranodioritearealsosimilartosomeofthe mineralizationintheEvcilerdistrict.Thereissignificant Cu-,Fe-,Cu-Au-,andFe-CuskarngranitoidsofCanada, evidenceforthepossibilityofmeteoric-water Indonesia,SpainandBritishColumbia.However,the hydrothermalalteration,whichgeneratedlow δ18O geochemicalcharacteristicsoftheEvcilermonzogranite values,aslowas5.7‰. aresimilartoaveragesofSn-andMo-skarngranitoids. Relativemetalabundancesinmagmasanddifferent Theresultsofthisstudysuggestthatthecomposition typesofintrusion-relateddepositsareafunctionof andpetrologicevolutionoftheEvcilerplutonarethe compositionalevolution,fractionationandoxidation primarycontrolsonskarnalteration,mineralization,and state.Itisthecoreelementassociationthatmostclosely metalcontent(e.g.,copper,gold,iron).Thecombination relatestomagmacomposition.Cu-Audepositsare ofalltheseparameterscanbeusedonadistrictto associatedwithoxidized,relativelyunevolvedto regionalscaletointerpretrelationshipsbetweenthe moderatelyevolvedsuites.TheEvcilerquartzdiorite- Evcilerplutonandrelatedoredeposits.However,the granodioriteischaracterizedbyrelativelyunevolvedto Evcilerplutonandotheryounggranitoidsofwestern moderatelyevolvedandoxidizedsuites,fairlysimilarto AnatoliaareanalogoustotheAu-Cucoremetal Au-Cudeposits.Thegeochemicalcharacteristicsofthe association,forexample,theCadiadistrict,Australia.

276 Y.YÜCELÖZTÜRK,C.HELVACI& M.SATIR

Thus,fieldrelationsandigneouspetrologyhavea alsoacknowledgeYücelY›lmazandErdinBozkurtfor predictivecapacityinbeingabletorecognizepotentialfor theirhelpfulsuggestions.Thispaperconstitutespartof particularmetallicelementassociationsinthepoorly thePhDstudyofYeflimYücelÖztürk.Thisstudywasalso exploredEvcilerplutonandotheryounggranitoidsof supportedbytworesearchprojectgrants,(Project northwesternAnatolia. Number101Y018)fromtheScientific&Technological ResearchCouncilofTurkey(TÜB‹TAK)and(Project Number0922.01.01.17)fromDokuzEylülUniversity Acknowledgements ScientificResearchProjects(BAP).Wethankthe OxygenisotopeswereanalyzedattheInstituteof reviewers,LarryMeinertandNurdane‹lbeyli,andthe Geochemistry,TübingenUniversity(Germany),andwe editorfortheirencouragingsuggestionsthathave thankHeinrichTaubald,GabrieleStoschek,Bernd improvedsignificantlythecontentandclarityofthe SteinhilberandGiselaBartholomäfortheanalyses.We paper.

References

ALTHERR,R.,HENJES-KUNST,F.,MATTHEWS,A.,F›EDR›CHSEN,H.&HANSEN, BLEV›N,P.L.&C HAPPELL,B.W.1992.Theroleofmagmasources, B.T.1988.O-SrisotopicvariationsinMiocenegranitoidsfromthe oxidationstatesandfractionationindeterminingthegranite Aegean:evidenceforanoriginbycombinedassimilationand metallogenyofeasternAustralia. TransactionsoftheRoyal fractionalcrystallization. ContributiontoMineralogyand SocietyofEdinburgh:EarthSciences 83,305–316. Petrology 100,528–541. BOZKURT, E.2004.GranitoidrocksofthesouthernMenderesMassif B‹NGÖL,E.1968.Contributional’etudegeologiquedelapartiecentrale (southwesternTurkey):fieldevidenceforTertiarymagmatismin etSud-EstdumasifdeKazda¤(Turqie).PhDThesis,Universitede anextensionalshearzone.InternationalJournalofEarthSciences Nancy,France. 93,52–71.

B‹NGÖL,E.1969.Kazda¤Masifi’ninmerkezivegüneydo¤ukesiminin BOZKURT,E.&PARK, R.G.1994.SouthernMenderesMassif:anincipient jeolojisi[GeologyofcentralandsouthwesternpartsoftheKazda¤ metamorphiccorecomplexinwesternAnatolia,Turkey. Journal Massif]. MTABulletin 72,110–123[inTurkishwithEnglish ofGeologicalSociety,London 151,213–216. abstract]. BOZKURT,E.,PARK,R.G.&WINCHESTER, J.A.1993.Evidenceagainstthe B‹NGÖL,E.1977.Muratda¤›jeolojisiveanakayaçbirimlerininpetrolojisi core/coverinterpretationofthesouthernsectoroftheMenderes [GeologyofMuratda¤›andpetrologyofrockunits]. Geological Massif,westTurkey.TerraNova 5,445–451. SocietyofTurkeyBulletin 20,13–67[inTurkishwithEnglish BOZKURT,E.,W INCHESTER,J.A.&P ARK, R.G.1995.Geochemistryand abstract]. tectonicsignificanceofaugengneissesfromthesouthern B‹NGÖL,E.1978.ExplanatorynotestothemetamorphicmapofTurkey, MenderesMassif(WestTurkey). GeologicalMagazine 132, In:ZWART, H.J.(eds), MetamorphicMapof,Explanatory 287–301. Text.Leiden,UNESCO,Subcommissionforthecartographyofthe BROWN,P.E.,B OWMAN,J.R.&K ELLY,W.C.1985.Petrologicandstable metamorphicbeltsoftheWorld,148–154. isotopeconstraintsonthesourceandevolutionofskarn-forming B‹NGÖL,E.,D ELALOYE,M.&A TAMAN,G.1982.Graniticintrusionin fluidsatPineCreek,California. EconomicGeology 80,72–95. westernAnatolia:acontributiontothegeodynamicstudyofthis CHAPPELL,B.W.&W HITE,A.J.R.1974.Twocontrastinggranitetypes: area.EclogaeGeologicaeHelvetiae 75,437–446. expandedabstract.PacificGeology,8,173–174. B‹NGÖL,E.,DELALOYE,M.,P‹flK‹N,Ö.&GENÇ,S.1992.Significanceofthe CHIBA,H.,C HACKO,T.,C LAYTON,R.N.&G OLDSMITH,J.R.1989.Oxygen granitoidseasternandsouthernMarmaraSeawithinthe frameworkoftheregionalgeotectonicevolution. International isotopefractionationsinvolvingdiopside,forsterite,magnetite SymposiumontheGeologyoftheBlackSeaRegion,Abstracts, p. andcalcite:applicationtogeothermometry. Geochimicaet 3. CosmochimicaActa 53,2985–2995.

B›RKLE,P.1992.Petrologie-GeochemieandGeochronologiedes CRAIG,H.1961.Standardforreportingconcentrationsofdeuterium MiozanenMagmatismusaufderBiga-halbinsel(Ezine,NW- andoxygen-18innaturalwaters. Science 133,1833–1834.

Turkei).DiplomarbietanderGeowissenschaftLichen Fakultatder CRISS,R.E.,F LECK,R.J.&T AYLOR,H.P.1991.Tertiarymeteoric Eberhard-Karls-Universtat,Tübingen. hydrothermalsystemsandtheirrelationtooredeposition, BLEV›N, P.L.2004.Metallogenyofgraniticrocks. TheIshihara northwesternUnitedStatesandsouthernBritishColumbia. Symposium:GranitesandAssociatedMetallogenesis,©Geoscience JournalofGeophysicalResearch 96,13335–13356. Australia,p.1–4.

277 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN

DEBON,F.&LE FORT,P.1983.Achemical-mineralogicalclassificationof HARR›S,N.B.W.,K ELLEY,S.&O KAY,A.‹.1994.Post-collisional commonplutonicrocksandassociations. Transactionsofthe magmatismandtectonicsinnorthwestAnatolia. Contributionsto RoyalSocietyofEdinburgh:EarthSciences 73,135–149. MineralogyandPetrology 117,241–252.

DELALOYE,M.&B ‹NGÖL,E.2000.Granitoidsfromwesternand HARR›S,C.,FAURE,K.,D›AMOND,R.E.&SCHEEPERS,R.1997.Oxygenand northwesternAnatolia:geochemistryandmodelingof hydrogenisotopegeochemistryofS-andI-typegranitoids:the geodynamicevolution. InternationalGeologyReview 42, Capegranitesuite,southAfrica.ChemicalGeology 143,95–114. 241–268. IRVINE,I.C.&B ARAGAR,W.R.A.1971.Aguidetochemicalclassification DURU,M.,P EHL‹VAN,fi.,fi ENTÜRK,Y.,Y AVAfl,F.&K AR, H.2004.New ofthecommonvolcanicrocks.CanadianJournalofEarthSciences resultsonthelithostratigraphyoftheKazda¤Massifinnorthwest 8,523–548. Turkey.TurkishJournalofEarthSciences 13,177–186. ISHIHARA,S.&S ASAKI,A.1991.Oredepositsrelatedtogranitic E›NAUD›,M.T.,M E›NERT,L.D.&N EWBERRY, R.J.1981. Skarndeposits: magmatisminJapan:amagmaticpointofview. Episodes 14, EconomicGeology.75 th AnniversaryVolume,EconomicGeology 286–292. PublicationCo., LancasterPressInc.,317–391. Ifl›K,V.&T EKEL‹, O.2001.Lateorogeniccrustalextensioninthe ERDO⁄AN,B.&G ÜNGÖR, T.2004.Theproblemofthecore-cover northernMenderesMassif(westernTurkey):evidencefor boundaryoftheMenderesMassifandanemplacementmechanism metamorphiccorecomplexformation. InternationalJournalof forregionallyextensivegneissicgranites,westernAnatolia EarthSciences 89,757–765. (Turkey).TurkishJournalofEarthSciences 13,15–36. Ifl›K,V.,T EKEL‹,O.&S EY‹TO⁄LU,G.2004.The 40Ar/39Arageof FRANCE-LANORD,C.,SHEPPARD,S.M.F.&LE FORT, P.1988.Hydrogenand extensionalductiledeformationandgranitoidintrusioninthe oxygenisotopevariationsintheHighHimalayaperaluminous northernMenderescorecomplex:implicationsfortheinitiationof Manasluleucogranite:evidenceforheterogeneoussedimentary extensionaltectonicsinwesternTurkey. JournalofAsianEarth source.GeochimicaetCosmochimicaActa 52,513–526. Sciences 23,555–566.

GENÇ,fi.C.1998.EvolutionoftheBayramiçmagmaticcomplex, JENK›N,G.R.T.,FALL›CK,A.E.,FARROW,C.M.&BOWES, G.M.1991.COOL: northwesternAnatolia. JournalofVolcanologyandGeothermal AFORTRAN77computerprogramformodellingstableisotopes Research 85,233–249. incoolingclosedsystems.ComputerGeosciences 17,391–412.

GESSNER K.,PIAZOLO,S.,G ÜNGÖR,T.,R ING,U.,K RÖNER,A.&P ASSCHIER, KARAC›K,Z.&Y› LMAZ, Y.1998.Geologyoftheignimbritesandthe C.W.2001.Tectonicsignificanceofdeformationpatternsin associatedvolcano-plutoniccomplexoftheEzinearea, granitoidrocksoftheMenderesnappes,Anatolidebelt,southwest northwesternAnatolia. JournalofVolcanologyandGeothermal Turkey.InternationalJournalofEarthSciences 89,766–780. Research85,251–264.

GESSNER K.,COLLINS,A.S.,R ING,U.&G ÜNGÖR,T.2004.Structuraland KEITH,J.D.,V AN MIDDELAAR,W.T.,C LARK,A.H.&H ODGSON,C.J.1989. thermalhistoryofpoly-orogenicbasement:U-Pbgeochronology Granitoidtextures,compositionsandvolatilefugacitiesassociated ofgranitoidrocksinthesouthernMenderesMassif,western withtheformationoftungsten-dominatedskarndeposits. In: Turkey.JournaloftheGeologicalSociety,London 161,93–101. ROBERTSON,J.M.(eds), OreDepositionAssociatedwithMagmas,

GILETTI, B.J.1986.Diffusioneffectsonoxygenisotopetemperaturesof ReviewsinEconomicGeology 4,235–250. slowlycooledigneousandmetamorphicrocks. Earthand KORALAY,O.E.,S AT›R,M.&D ORA, O.Ö.2001.Geochemicaland PlanetaryScienceLetters 77,218–228. geochronologicalevidenceforEarlyTriassiccalc-alkaline

GÖNCÜO⁄LU,M.C.,KUWAHARA,K.,TEK‹N,U.K.&TURHAN,N.2004.Upper magmatismintheMenderesMassif,westernTurkey. Permian(Changxingian)radiolarianchertswithintheclastic InternationalJournalofEarthSciences 89,822–835. successionsofthe"KarakayaComplex"inNWAnatolia. Turkish KORALAY,O.E.,D ORA,O.Ö.,C HEN,F.,S AT›R,M.&C ANDAN, O.2004. JournalofEarthSciences 13,201–213. GeochemistryandgeochronologyoforthogneissesintheDerbent

GÜLEN,L.1990.IsotopiccharacterizationofAegeanmagmatismand Alaflehir)areaeasternpartoftheÖdemifl-Kirazsubmassif, geodynamicevolutionoftheAegeansubduction.In:SAVAflC›N,M.Y. MenderesMassif:Pan-Africanmagmaticactivity. TurkishJournal &E RONAT, A.H.(eds), IESCAProceedings ,‹zmir,Turkey 2, ofEarthSciences 13,37–61. 143–166. KWAK,T.A.P.&WHITE,A.J.R.1982.ContrastingW-Mo-CuandW-Sn-F

HARMON,R.S.1984.StableisotopegeochemistryofCaledonian skarntypesandrelatedgranitoids.MiningGeology 32,339–351. granitoidsfromtheBritishIslesandeastGreenland.Physicsofthe LAOUAR,R.,B OYCE,A.J.,A HMED-SAID,Y.,O UABADI,A.,F ALLICK,A.E.& EarthandPlanetaryInteriors 35,105–120. TOUBAL,A.2002.Stableisotopestudyoftheigneous,

HARR›S,N.B.W.,P EARCE,J.A.&T› NDLE,A.G. 1986.Geochemical metamorphicandmineralizedrocksoftheEdoughcomplex, characteristicsofcollision-zonemagmatism. In:C OWARD,M.P.& Annaba,northeastAlgeria. JournalofAfricanEarthSciences 35, RIES, A.C.(eds), CollisionTectonics,GeologicalSociety,London, 271–283. SpecialPublications 19,67–81.

278 Y.YÜCELÖZTÜRK,C.HELVACI& M.SATIR

LENTZ,D.R.,W ALKER,J.A.&S TIRLING,J.A.R.1995.MillstreamCu-Fe MOORE,C.E.&L ENTZ, D.R.1996.Copperskarn-associatedfelsic skarndeposits:anexampleofaCu-bearingmagnetite-richskarn intrusiverocksintheMcKenzieGulsharea(NTS21o/10) systeminnorthernNewBrunswick. ExplorationandMining Restigouchecounty,NewBrunswick. In:C ARROLL, B.M.W.(eds), Geology 4,15–31. CurrentResearch 1995.NewBrunswickDepartmentofNatural ResourcesandEnergy,MineralandEnergyDivision,Fredericton, MARTIN-IZARD,A.,F UERTES FUENTE,M.,C EPEDAL,A.,M OREIRAS,D.,N IETO, NewBrunswick96,121–153. J.G.,MALDONADO,C.&PEVIDA,L.R.2000.TheRioNarceagoldbelt intrusions:geology,petrology,geochemistryandtiming. Journal NALDRETT,A.J.1992.AmodelfortheNi-Cu-PGEoresoftheNoril'sk ofGeochemicalExploration 71,103–117. regionanditsapplicationtootherareasoffloodbasalt.Economic

MCKENZIE,D.&Y›LMAZ,Y.1991.Deformationandvolcanisminwestern Geology 87,1945–1962.

TurkeyandtheAegean.BulletinofTechnicalUniversityof‹stanbul NEWBERRY, R.J.1987.Useofintrusiveandcalc-silicatecompositional 44,345–373. datatodistinguishcontrastingskarntypesintheDarwin

MEINERT, L.D.1983.Variabilityofskarndeposits–guidesto polymetallicskarndistrict,CA,U.S.A. MineraliumDeposita 22, exploration. In:B OARDMAN,S.J.(eds), RevolutionintheEarth 207–215.

Sciences. Kendall-HuntPublishing,Dubuque,Iowa,301–316. NEWBERRY,R.J.&S WANSON,S.E.1986.Scheeliteskarngranitoids:an

MEINERT,L.D.1984.Mineralogyandpetrologyofironskarnsinwestern evaluationoftherolesofmagmaticsourceandprocess. Ore BritishColumbia,Canada.EconomicGeology 79,869–882. GeologyReviews 1,57–58.

MEINERT,L.D. 1990.SkarndepositsinNevada–geology,mineralogy NEWBERRY,R.J.,B URNS,L.E.,S WANSON,S.E.&S MITH, T.E.1990. andpetrologyofAu,Cu,W,andZnskarns. In:M EINERT,L.D., ComparativepetrologicevolutionoftheSnandWgranitesofthe MYERS,G.L.&B ROOKS,J.W.(eds), GeologicalSocietyofNevada Fairbanks-Circlearea,InteriorAlaska. In:S TEIN,H.J.&H ANNAH, Fieldtrip2Guidebook. GeologicalSocietyofNevada,Reno.NV, J.L.(eds). Ore-bearingGraniteSystems;Petrogenesisand 41–72. MineralizingProcesses,GeologicalSocietyofAmericaSpecial Publications246,121–142. ME›NERT, L.D.1992.Skarnsandskarndeposits.GeoscienceCanada 19, 145–162. NICOLESCU,D.,C ORNELL,D.H.&B OJAR, A.N.1999.Ageandtectonic settingsofBocflaandOcnadeFier-Dognecagranodiorites ME›NERT, L.D.1993.Igneouspetrogenesisandskarndeposits. In: (southwestRomania)andofassociatedskarnmineralization. KIRKHAM,R.V.,S INCLAIR,V.D.,T HORPE,R.I.,D UKE,J.M.(eds), MineralDepositModelling. GeologicalAssociationofCanada, MineraliumDeposita 34,743–753. SpecialPuplications ON40,pp.569–583. OHMOTO,H.1986.Systematicsofmetalratiosandsulfurisotopicratios

MEINERT,L.D.1995.Compositionalvariationofigneousrocksassociated inlow-temperaturebasemetaldeposits. TerraCognita 6, withskarndeposits-chemicalevidenceforageneticconnection 134–135. betweenpetrogenesisandmineralization. In:T HOMPSON,J.F.H. OKAY,A.‹.,S‹YAKO,M.&BÜRKAN,K.A. 1990.BigaYar›madas›’n›njeolojisi (ed),Magmas,fluids,andoredeposits. MineralogicalAssociation vetektonikevrimi[GeologyandtectonicevolutionoftheBiga ofCanada,ShortCourseSeries 23,401–418. Peninsula].TürkiyePetrolJeologlar›Derne¤iBülteni 3,83–121

MEINERT,L.D.1997.Applicationofskarndepositzonationmodelsto [inTurkishwithEnglishabstract].

mineralexploration. ExplorationandMiningGeology 6, OKAY,A.‹.,S AT›R,M.,M ALUSK›,H.,S ‹YAKO,M.,M ETZGER,R.&A KYÜZ,S. 185–208. 1996.Paleo-andNeo-TethyaneventsinnorthwesternTurkey:

MEINERT,L.D.,B ROOKS,J.W.&M YERS, G.L.1990.Wholerock geologicalandgeochronologicalconstraints.In:AN,Y.&HARRISON, geochemistryandcontrastamongskarntypes. In:MEINERT,L.D., M.(eds), TectonicsofAsia .CambridgeUniversityPress, MYERS,G.L.&BROOKS,J.W.(eds),SkarnDepositsinNevada.Great 420–441. BasinSymposium–GeologyandOreDepositsoftheGreatBasin. OKAY,A.‹.&SAT›R, M.2000.Coevalplutonismandmetamorphismina GeologicalSocietyofNevadaField2Guidebook .Geological latestOligocenemetamorphiccorecomplexinnorthwestTurkey. SocietyofNevada,Reno,NV,179–192. GeologicalMagazine 137,495–516. MEINERT,L.D.,H EFTON,K.K.,M AYES,D.&T AS›RAN, I.1997.Geology, OKAY,A.‹.&A LT›NER,D.2004.UppermostTriassicLimestoneinthe zonationandfluidevolutionoftheBigGossanCu-Auskarn KarakayaComplex-stratigraphicandtectonicsignificance. deposit,Ertsbergdistrict,IrianJaya. EconomicGeology 92, TurkishJournalofEarthSciences 13,187–199. 509–526. OKAY,A.‹.&G ÖNCÜO⁄LU,M.C.2004.TheKarakayaComplex:reviewof MEZA-FIGUEROA,D.,V ALENCIA-MORENO,M.,V ALENCIA,V.A.,O CHOA-LANDIN, dataandconcepts.TurkishJournalofEarthSciences 13,77–95. L.,P EREZ-SEGURA,E.&D IAZ-SALGADO,C.2003.Majorandtrace elementgeochemistryand 40Ar/39ArgeochronologyofLaramide O’NE›L,J.R.&C HAPPELL,B.W.1977.Oxygenandhydrogenisotope plutonicrocksassociatedwithgold-bearingFeskarndepositsin relationsintheBerridalebatholith. JournalofGeologicalSociety Guerrerostate,southernMexico. JournalofSouthAmerican ofLondon 133,559–571. EarthSciences 16,205–217.

279 PETROGENESISOFTHEEVC‹LERGRANITOIDANDSKARN

ÖNGEN,S.1992. Leséchancesmétasomatiquesentregranitoideset STRECKE›SEN, A.1976.Toeachplutonicrockitspropername. Earth encaissantparticuliers(calcaires,dolomies,ultrabasites,series ScienceReviews 12,1–33. manganiferes):I’exampledelaTurquie-NW .DoctoratThese. fiENGÖR,A.M.C.&Y›LMAZ,Y.1981.TethyanevolutionofTurkey:aplate UniversitédeNancy,FacultédesSciencesdelaTerre,554p. tectonicapproach.Tectonophysics 75,181–241. PAKTUNÇ,A.D.1990.Originofpodiformchromitedepositsby fiENGÖR,A.M.C.,C ‹N,A.,R OWLEY,D.B.&N› E, S.Y.1993.Space-time multistagemelting,meltsegregationandmagmamixinginupper patternsofmagmatismalongtheTethysides:apreliminarystudy. mantle.OreGeologyReviews 5,211–222. JournalofGeology101,51–84. PEACOCK,M.A.1931.Classificationofigneousrockseries. Journalof TAYLOR, H.P.1968.Theoxygenisotopegeochemistryofigneousrocks. Geology 39,54–67. ContributionstoMineralogyandPetroogy 19,1–71. PEARCE,J.A.,H ARRIS,N.B.W.&T INDLE, A.G.1984.Trace-element TAYLOR,H.P.1978.Oxygenandhydrogenisotopestudiesofplutonic discriminationdiagramsforthetectonicinterpretationofgranitic graniticrocks.EarthandPlanetaryScienceLetters 38,177–210. rocks.JournalofPetrology 25,956–983. TAYLOR,H.P.&S HEPPARD, S.M.F.1986.Igneousrocks:Processesof P›CKETT,E.A.&R OBERTSON,A.H.F.2004.Significanceofthe isotopicractionationandisotopesystematics. In:V ALLEY,J.W., volcanogenicNilüferunitandrelatedcomponentsoftheTriassic TAYLOR,H.P.&O’N EIL, J.R.(eds). StableIsotopesinHigh- KarakayaComplexforTethyansubduction/accretionprocessesin TemperatureGeologicalProcesses.ReviewsinMineralogy 16, NWTurkey.TurkishJournalofEarthSciences 13,97–143. 227–271. RAY,G.E.,W EBSTER,I.C.L.&E TTLINGER, A.D.1995.Thedistributionof WICHKAM,S.M.&TAYLOR, H.P.1987.Stableisotopeevidenceforlarge- skarnsinBritishColumbiaandthechemistryandagesoftheir scaleseawaterinfiltrationinaregionalmetamorphicterrane:the relatedplutonicrocks.EconomicGeology 90,920–937. TroisSeigneursMassif,Pyrenees,France. Contributionto RAYMOND,L.A.1995.Petrology:TheStudyofIgneous,Sedimentaryand MineralogyandPetrology 91,122–137. MetamorphicRocks.WCBrown,742p. WILSON,M.1989. IgneousPetrogenesis-AGlobalTectonicApproach . ROGERS,N.W.,H AWKESWORTH,C.J.,P ARKER,R.J.&M ARSH,J.S.1985. ChapmanandHall,London. ThegeochemistryofpotassiumlavasfromVulsini,centralItaly Y›LMAZ, Y.1989.Anapproachtotheoriginofyoungvolcanicrocksof andimplicationsformantleenrichmentprocessesbeneaththe westernTurkey. In:fi ENGÖR,A.M.C.(ed), TectonicEvolutionof Romanregion. ContributionstoMineralogyandPetrology 90, theTethyanRegion .KluwerAcademicPublications.TheHague, 244–257. 159–189. RUMBLE,D.III.&H OERING, T.C.1994.Analysisofoxygenandsulfur isotoperatiosinoxideandsulfidemineralsbyspotheatingwitha Y›LMAZ,Y.1990.Comparisonoftheyoungvolcanicassociationsofwest carbondioxidelaserinafluorineatmosphere. Accountsof andeastAnatoliaunderthecompressionalregime:areview. ChemicalResearch 27,237–241. JournalofVolcanologyandGeothermalResearch 44,69–87. LMAZ SHARP,Z.D.1990.Alaser-basedmicroanalyticalmethodforinsitu Y› , Y.1995.Egebölgesindegençmagmatizman›noluflumuile determinationofoxygenisotoperatiosinsilicatesandoxides. litosferinevrimiaras›ndakiiliflkiüzerinedüflünceler[Remarkson GeochimicaetCosmochimicaActa 54,1353–1357. therelationbetweenformationofyoungmagmatismand evolutionofthelithosphereinAegeanregion]. Jeofizik 9, SHEPPARD,S.M.F.1986.Characterizationandisotopicvariationsin 107–110[inTurkishwithEnglishabstract]. naturalwaters.Mineralogy 16,165–183. Y›LMAZ, Y.1997.GeologyofwesternAnatolia-activetectonicsof SH›MAZAK›, H.1975.TheratiosofCu/Zn-Pbofpyrometasomatic northwesternAnatolia. In:TheMarmaraPoly-Project .VDF, depositsinJapanandtheirgeneticimplications. Economic HochschulverlagAganderETH,Zürich,1–20. Geology 70,717–724. Y›LMAZ,Y.&KARAC›K,Z.2001.Geologyofthenorthernsideofthegulf SH›MAZAK›, H.1980.Characteristicsofskarndepositsandrelatedacid ofEdremitanditstectonicsignificanceforthedevelopmentofthe magmatisminJapan.EconomicGeology 75,173–183. Aegeangrabens.GeodynamicaActa 14,31–43. SRIVASTAVA,K.P.&S INHA,A.K.1997.Geochemicalcharacterizationof ZHARIKOV, V.A.1970.Skarns. InternationalGeologyReview 12, tungstenbearinggranitesfromRajasthan,India. Journalof 541–559,619–647and760–775. GeochemicalExploration 60,173–184.

Received16February2005;revisedtypescriptaccepted27September2005

280