Development of the Helical Reaction Hydraulic Turbine
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Hydrogeology
Hydrogeology Principles of Groundwater Flow Lecture 3 1 Hydrostatic pressure The total force acting at the bottom of the prism with area A is Dividing both sides by the area, A ,of the prism 1 2 Hydrostatic Pressure Top of the atmosphere Thus a positive suction corresponds to a negative gage pressure. The dimensions of pressure are F/L2, that is Newton per square meter or pascal (Pa), kiloNewton per square meter or kilopascal (kPa) in SI units Point A is in the saturated zone and the gage pressure is positive. Point B is in the unsaturated zone and the gage pressure is negative. This negative pressure is referred to as a suction or tension. 3 Hydraulic Head The law of hydrostatics states that pressure p can be expressed in terms of height of liquid h measured from the water table (assuming that groundwater is at rest or moving horizontally). This height is called the pressure head: For point A the quantity h is positive whereas it is negative for point B. h = Pf /ϒf = Pf /ρg If the medium is saturated, pore pressure, p, can be measured by the pressure head, h = pf /γf in a piezometer, a nonflowing well. The difference between the altitude of the well, H, and the depth to the water inside the well is the total head, h , at the well. i 2 4 Energy in Groundwater • Groundwater possess mechanical energy in the form of kinetic energy, gravitational potential energy and energy of fluid pressure. • Because the amount of energy vary from place-to-place, groundwater is forced to move from one region to another in order to neutralize the energy differences. -
OMNI Magazine Interview, July 1992)
ALIEN CITY ON MARS? TiTil W i^ -A Im; SCENES Lji U *' Ul EDITOR IN CHIEF & DESIGN DIRECTOR: BOB GUCCIONE PRESIDENT a C.O.O.: KATHY KEETON VP/EDITOR' KEITH FERRELL EXECUTIVE VP/GBAPHICS DIRECTOR- FRANK DEVINO MANAGING EDITOR: CAROLINE DARK ART DIRECTOR: CATHRYN MEZZO First Word Continuum By Dana Rohrabacher 42 Fighting for Opening the X-Files U.S. patent rights By David Bischoff S Mulder and Scully know Communications something is m out there—and so do their Funds many fans. A behind- By Linda Marsa the-scenes lool< at this fas- Cashing in on collectibles cinating and m increasingly popular Electronic Universe new show. By Grsgg Keizer ArchiTreIc Medicine Designing Generations By Anita Bartholomew By Herman Zimmerman m and Philip Thomas Edgerly .Sounds Boldly going where By Steve Nadis few. production designers Sounds of the silent have gone before: 22 designing the Star Trek Eanii By Melanie Menagh Choices Fiction: S.4 Dying Virtual Realities [Vlichael IVlarshall Smith By Tom Dworetzl<y 7^ 23 Cartoon Feature Artificial Intelligence . By Steve Nadis Interview: 32 Richard hioa gland Mind By Steve Nadis By Steve Nadis A close-up lool< at the Hallucinations, man behind delusions, the face on Mars and schizophrenia SS 33 Tsuneo Sanda's cover painting, On Patrol, made possible by Antimatter the PI" I p Edge ly Age cy n a'^sar qt on witi ZD^sgn Copyrght Pa amount PcturesCorporaticn Games (Additional art rred t"^ page 110) By bi, iff Morris SR1''6ril7'iBn FIRST UUORD INVENTING AMERICA: Patent laws and the protection of individual rights By Dana Rohrabacher merica's greatest asset side. -
CPT-Geoenviron-Guide-2Nd-Edition
Engineering Units Multiples Micro (P) = 10-6 Milli (m) = 10-3 Kilo (k) = 10+3 Mega (M) = 10+6 Imperial Units SI Units Length feet (ft) meter (m) Area square feet (ft2) square meter (m2) Force pounds (p) Newton (N) Pressure/Stress pounds/foot2 (psf) Pascal (Pa) = (N/m2) Multiple Units Length inches (in) millimeter (mm) Area square feet (ft2) square millimeter (mm2) Force ton (t) kilonewton (kN) Pressure/Stress pounds/inch2 (psi) kilonewton/meter2 kPa) tons/foot2 (tsf) meganewton/meter2 (MPa) Conversion Factors Force: 1 ton = 9.8 kN 1 kg = 9.8 N Pressure/Stress 1kg/cm2 = 100 kPa = 100 kN/m2 = 1 bar 1 tsf = 96 kPa (~100 kPa = 0.1 MPa) 1 t/m2 ~ 10 kPa 14.5 psi = 100 kPa 2.31 foot of water = 1 psi 1 meter of water = 10 kPa Derived Values from CPT Friction ratio: Rf = (fs/qt) x 100% Corrected cone resistance: qt = qc + u2(1-a) Net cone resistance: qn = qt – Vvo Excess pore pressure: 'u = u2 – u0 Pore pressure ratio: Bq = 'u / qn Normalized excess pore pressure: U = (ut – u0) / (ui – u0) where: ut is the pore pressure at time t in a dissipation test, and ui is the initial pore pressure at the start of the dissipation test Guide to Cone Penetration Testing for Geo-Environmental Engineering By P. K. Robertson and K.L. Cabal (Robertson) Gregg Drilling & Testing, Inc. 2nd Edition December 2008 Gregg Drilling & Testing, Inc. Corporate Headquarters 2726 Walnut Avenue Signal Hill, California 90755 Telephone: (562) 427-6899 Fax: (562) 427-3314 E-mail: [email protected] Website: www.greggdrilling.com The publisher and the author make no warranties or representations of any kind concerning the accuracy or suitability of the information contained in this guide for any purpose and cannot accept any legal responsibility for any errors or omissions that may have been made. -
Table of Common Symbols Used in Hydrogeology
Common Symbols used in GEOL 473/573 A Area [L2] b Saturated thickness of an aquifer [L] d Diameter [L] e void ratio (dimensionless) or e1 is a constant = 2.718281828... f Number of head drops in a flow of net F Force [M L T-2 ] g Acceleration due to gravity [9.81 m/s2] h Hydraulic head [L] (Total hydraulic head; h = ψ + z) ho Initial hydraulic head [L], generally an initial condition or a boundary condition dh/dL Hydraulic gradient [dimensionless] sometimes expressed as i 2 ki Intrinsic permeability [L ] K Hydraulic conductivity [L T-1] -1 Kx, Ky , Kz Hydraulic conductivity in the x, y, or z direction [L T ] L Length from one point to another [L] n Porosity [dimensionless] ne Effective porosity [dimensionless] q Specific discharge [L T-1] (Darcy flux or Darcy velocity) -1 qx, qy, qz Specific discharge in the x, y, or z direction [L T ] Q Flow rate [L3 T-1] (discharge) p Number of stream tubes in a flow of net P Pressure [M L-1T-2] r Radial coordinate [L] rw Radius of well over screened interval [L] Re Reynolds’ number [dimensionless] s Drawdown in an aquifer [L] S Storativity [dimensionless] (Coefficient of storage) -1 Ss Specific storage [L ] Sy Specific yield [dimensionless] t Time [T] T Transmissivity [L2 T-1] or Temperature (degrees) u Theis’ number [dimensionless} or used for fluid pressure (P) in engineering v Pore-water velocity [L T-1] (Average linear velocity) V Volume [L3] 3 VT Total volume of a soil core [L ] 3 Vv Volume voids in a soil core [L ] 3 Vw Volume of water in the voids of a soil core [L ] Vs Volume soilds in a soil -
Darcy's Law and Hydraulic Head
Darcy’s Law and Hydraulic Head 1. Hydraulic Head hh12− QK= A h L p1 h1 h2 h1 and h2 are hydraulic heads associated with hp2 points 1 and 2. Q The hydraulic head, or z1 total head, is a measure z2 of the potential of the datum water fluid at the measurement point. “Potential of a fluid at a specific point is the work required to transform a unit of mass of fluid from an arbitrarily chosen state to the state under consideration.” Three Types of Potentials A. Pressure potential work required to raise the water pressure 1 P 1 P m P W1 = VdP = dP = ∫0 ∫0 m m ρ w ρ w ρw : density of water assumed to be independent of pressure V: volume z = z P = P v = v Current state z = 0 P = 0 v = 0 Reference state B. Elevation potential work required to raise the elevation 1 Z W ==mgdz gz 2 m ∫0 C. Kinetic potential work required to raise the velocity (dz = vdt) 2 11ZZdv vv W ==madz m dz == vdv 3 m ∫∫∫00m dt 02 Total potential: Total [hydraulic] head: P v 2 Φ P v 2 h == ++z Φ= +gz + g ρ g 2g ρw 2 w Unit [L2T-1] Unit [L] 2 Total head or P v hydraulic head: h =++z ρw g 2g Kinetic term pressure elevation [L] head [L] Piezometer P1 P2 ρg ρg h1 h2 z1 z2 datum A fluid moves from where the total head is higher to where it is lower. For an ideal fluid (frictionless and incompressible), the total head would stay constant. -
Comparative Performance Evaluation of Pelton Wheel and Cross Flow Turbines for Power Generation
EUROPEAN MECHANICAL SCIENCE Research Paper e-ISSN: 2587-1110 Comparative Performance Evaluation of Pelton Wheel and Cross Flow Turbines for Power Generation Oyebode O. O.1* and Olaoye J. O.2 1Department of Food, Agricultural and Biological Engineering, Kwara State University, Malete, Kwara State, Nigeria. 2Department of Agricultural and Biosystems Engineering, University of Ilorin, Ilorin, Kwara State, Nigeria. ORCID: Oyebode (0000-0003-1094-1149) Abstract The performance of two micro hydro power turbines (Pelton Wheel and Cross Flow Turbines) were evaluated at the University of Ilorin (UNILORIN) dam. The Dam has a net head of 4 m, flow rate of 0.017m3 and theoretical hydropower energy of 668W. The two turbines were tested and the optimized value of operating conditions namely; angle of inclination (15o above tangent, tangential and 15o below tangent), height to impact point (200mm, 250mm and 300mm) and length to impact point (50mm, 100mm and 150mm) were pre-set at their various levels for both Turbines. The optimum values of the process output or measured parameters were determined statistically using a 33X2 factorial experiment in three replicates. An optimum Turbine speed (538.38rpm) in off load condition was achieved at 250mm height to impact point, 150mm length to impact point and angle at tangential inclination. Similar combination also yielded an optimum turbine torque of 46.16kNm for Pelton Wheel Turbine. For the Crossflow Turbine, an optimum turbine speed of 330.09rpm was achieved by pre-setting 250mm height to impact point, 100mm length to impact point and 15º below tangent. Same combination also yielded an optimum turbine torque of 39.07kNm. -
Helical Turbine for Hydropower
Tidewalker Engineering / Optimization of GHT Production Marine and Hydrokinetic Technology Readiness Advancement Initiative Funding Opportunity Announcement Number: DE-FOA-0000293 CFDA Number: 81.087 PROJECT NARRATIVE Tidewalker Engineering Trescott, Maine Title: Optimization of Gorlov Helical Turbine Production June 2010 Table of Contents: SUBJECT PAGE NUMBER Introduction: Project Narrative 2 Project Objectives 3 Merit Review Criteria Discussion 7 Project Timetable 13 Relevance and Outcomes / Impacts 14 Role of Participants 14 Facilities and Other Resources 15 Equipment 15 Bibliography and References 16 Appendix- A / Letter of Commitment 17 Appendix – B / Velocity Measurements 18 Appendix – C / GHT Applications 19 Appendix – D / Cost Sharing Grant 32 1 Tidewalker Engineering / Optimization of GHT Production Project Narrative: Under this proposal Tidewalker Engineering with the assistance of Dr. Alexander Gorlov and other specialists will investigate the feasibility of placing a hydro-kinetic device into a flexible dam system to generate electricity from tidal flows at sites with a substantial tidal range (average value of 18’). The study will also include the design of a turbo-generator unit which optimizes electrical production from this proposed mode of operation. Environmental issues associated with the placement of a flexible dam into a tidal flow will be analyzed in terms of regulatory licensing requirements. The applicability of this proposed mode of operation will be addressed as part of expected project benefits from the development potential of this concept. The eligibility standard as expressed in published responses within the Federal Connect network for this grant application directly addressed the issue of diversionary structures as excerpted below: DOE will not consider any application under this FOA for the development of a technology that would require blocking or severely altering existing tidal or river flows, as this would be considered a dam or diversionary structure. -
Salt Flow Example
GEO-SLOPE International Ltd, Calgary, Alberta, Canada www.geo-slope.com Salt Flow Example 1 Introduction Total hydraulic head consists of elevation head and pressure head. Pressure head is dependent on the density of the pore fluid, which is a function of both temperature and chemical composition. For density- dependent groundwater flow problems, the driving forces for flow include the hydraulic gradient, as well as a buoyancy force term caused by variations in density. Consequently, spatial variations in salinity generate a total hydraulic head gradient that governs density-dependent groundwater flow. The objective of this detailed example is to verify, by means of some simple calculations, the hydraulic head and groundwater fluxes calculated by CTRAN/W for coupled one-dimensional density-dependent groundwater flow problems. 2 Background Only a brief summary of the theory for density-dependent flow is provided here. A more comprehensive review can be found in the CTRAN/W Engineering book and the literature (e.g. Fetter, 1998; Frind, 1982a, b). As noted in the introduction, the pore fluid density affects the pressure head component of total hydraulic head. Consider the two point measurements of hydraulic head shown in Figure 1. The actual hydraulic pressure at P1 in the saline-water aquifer is P1 ss gh [1] where s = saline pore fluid density; g = acceleration due to gravity; and, hs = height of saline water in the piezometer. Figure 1 Equivalent fresh water head (after Fetter, 1988) Assume that another piezometer was completed in the saline-water aquifer at P2 , but that it was filled with fresh water. -
The Cause and Statistical Analysis of the River Valley Contractions at the Xiluodu Hydropower Station, China
water Article The Cause and Statistical Analysis of the River Valley Contractions at the Xiluodu Hydropower Station, China Mingwei Li 1 , Zhifang Zhou 1,*, Chao Zhuang 1 , Yawen Xin 1 , Meng Chen 2 and Jian Wu 1 1 School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China; [email protected] (M.L.); [email protected] (C.Z.); [email protected] (Y.X.); [email protected] (J.W.) 2 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; [email protected] * Correspondence: [email protected] Received: 2 January 2020; Accepted: 8 March 2020; Published: 12 March 2020 Abstract: The Xiluodu Dam is a concrete double-curvature arch dam with a crest elevation of 610 m and a height of 285.5 m. Since the impoundment of the Xiluodu reservoir, remarkable river valley contractions (RVCs) have been observed upstream and downstream of the reservoir, potentially threatening the safety of the dam. However, the cause of these RVCs remains unclear. Based on an analysis of hydrogeological conditions, the RVCs were determined a result of the expansion of the aquifer, within which the effective stress decreased due to an increase in the hydraulic head after reservoir impoundment. Referring to the hydrostatic seasonal time (HST) model, a groundwater hydrostatic seasonal (GHS) model is proposed for simulating and predicting the development of the RVCs. Unlike the HST model, the GHS model can provide information on aquifer hydraulic diffusivity. The calibration results illustrate that the GHS model can accurately fit the observed RVCs data. The calculation results revealed that the RVCs were mainly affected by the hydraulic head of the confined aquifer, and that seasonal effects gave rise to less than 10% of the total RVCs. -
Friday July 14, 1995
7±14±95 Friday Vol. 60 No. 135 July 14, 1995 Pages 36203±36338 Briefings on How To Use the Federal Register For information on briefing in Washington, DC, see announcement on the inside cover of this issue. federal register 1 II Federal Register / Vol. 60, No. 135 / Friday, July 14, 1995 SUBSCRIPTIONS AND COPIES PUBLIC Subscriptions: Paper or fiche 202±512±1800 FEDERAL REGISTER Published daily, Monday through Friday, Assistance with public subscriptions 512±1806 (not published on Saturdays, Sundays, or on official holidays), by Online: the Office of the Federal Register, National Archives and Records Telnet swais.access.gpo.gov, login as newuser <enter>, no Administration, Washington, DC 20408, under the Federal Register > Act (49 Stat. 500, as amended; 44 U.S.C. Ch. 15) and the password <enter ; or use a modem to call (202) 512±1661, login as swais, no password <enter>, at the second login as regulations of the Administrative Committee of the Federal Register > > (1 CFR Ch. I). Distribution is made only by the Superintendent of newuser <enter , no password <enter . Documents, U.S. Government Printing Office, Washington, DC Assistance with online subscriptions 202±512±1530 20402. Single copies/back copies: The Federal Register provides a uniform system for making Paper or fiche 512±1800 available to the public regulations and legal notices issued by Assistance with public single copies 512±1803 Federal agencies. These include Presidential proclamations and Executive Orders and Federal agency documents having general FEDERAL AGENCIES applicability and legal effect, documents required to be published Subscriptions: by act of Congress and other Federal agency documents of public interest. -
Low Head Hydropower for Local Energy Solutions
Low Head Hydropower for Local Energy Solutions A.G. Pradeep Narrain LOW HEAD HYDROPOWER FOR LOCAL ENERGY SOLUTIONS LOW HEAD HYDROPOWER FOR LOCAL ENERGY SOLUTIONS DISSERTATION Submitted in fulfillment of the requirements of the Board for Doctorates of Delft University of Technology and of the Academic Board of the UNESCO-IHE Institute for Water Education for the Degree of DOCTOR to be defended in public on Monday, 9 October 2017, at 10:00 hours in Delft, the Netherlands by Arcot Ganesh Pradeep NARRAIN Master of Science in Water Resources Engineering and Management University of Stuttgart, Germany born in Bangalore, India This dissertation has been approved by the promotors: Prof.dr.ir. A.E. Mynett Prof.dr. N.G. Wright Composition of the doctoral committee: Chairman Rector Magnificus Delft University of Technology Vice-Chairman Rector UNESCO-IHE Prof.dr.ir. A.E. Mynett UNESCO-IHE / Delft University of Technology, promotor Prof.dr. N.G. Wright De Montfort University, UK / UNESCO-IHE, promotor Independent members: Prof.dr.ir. W.S.J. Uijttewaal Delft University of Technology Prof.dr.ir. C. Zevenbergen UNESCO-IHE / Delft University of Technology Prof. dr. G. Pender Heriot-Watt University, UK Prof.dr.-ing. U. Gärtner Esslingen University of Applied Sciences, Germany Prof.dr.ir. H.H.G. Savenije Delft University of Technology, reserve member CRC Press/Balkema is an imprint of the Taylor & Francis Group, an informa business © 2017, A.G. Pradeep Narrain Although all care is taken to ensure integrity and the quality of this publication and the information herein, no responsibility is assumed by the publishers, the author nor UNESCO- IHE for any damage to the property or persons as a result of operation or use of this publication and/or the information contained herein. -
The Inventory of the Richard Lourie Collection #1355
The Inventory of the Richard Lourie Collection #1355 Howard Gotlieb Archival Research Center lourie.r LOURIE, RICHARD 194O- 241C Deposit January 1988 OUTLINE OF INVENTORY 7 Boxes I. MANUSCRIPTS 1973, 1985-1987. A. Novels B. Translations c. Short Fiction D. Poetry E. Film Script F. Essay G. Translated Short Prose II. PRINTED REVIEWS, 1973-1986. III. CORRESPONDENCE, 1979-1988. IV. FINANCIAL STATEMENTS, 1986-1987. 1 LOURIE, RICHARD Deposit from Author June 1987, January 1988 I. MANUSCRIPTS 1973, 1985-1987 A. Novels, 1973, 1985, 1987 Box 1 1. FIRST LOYALTY. Harcourt Brace Jovanovich, 1985. a. Holograph on legal notepads (7), ca. 275 p. (#1) b. Draft. Under title STOLAT. Typescript with holo. corr., ca. 400 p. (#2) Box 1/2 c. Setting copy. Typescript with holo. corr., ca. 540 p. including front matter. (Box 1, #3; Box 2, #1) Box 2 d. Misc. draft pages. Typescript with holo. corr., 6 p. (#2) e. Outline. Holograph, 7 p. on 6 leaves. (#2) 2. SAGITTARIUS IN WARSAW. Vanguard Press, 1973. a. Setting copy. Typescript photocopy and typescript, both with holo. corr. 164 p. including front matter. (#3) b. Galley proofs. (#4) 3. ZERO GRAVITY. Harcourt Brace Jovanovich, 1987. a. Outlines and draft pages. 5 legal notepads, holograph, 141 p. (#5 - 6) b. Miscellaneous draft pages and notes. Typescript with holo. corr. and holograph, ca. 55 p. (#7) Box 3 c. Miscellaneous draft pages. Typescript with holo. corr. and holograph, ca. 65 p. (#1) d. Miscellaneous draft pages. Typescript with holo. corr., photocopy of typescript with holo. corr., and holograph, ca. 400 p. (#2) e.