Small Wonders: Aquila a Monthly Sky Guide for the Beginning to Intermediate Amateur Astronomer Tom Trusock 23-Aug-2006

Total Page:16

File Type:pdf, Size:1020Kb

Small Wonders: Aquila a Monthly Sky Guide for the Beginning to Intermediate Amateur Astronomer Tom Trusock 23-Aug-2006 Small Wonders: Aquila A monthly sky guide for the beginning to intermediate amateur astronomer Tom Trusock 23-Aug-2006 Figure 1. W idefield map 2/11 Small Wonders: Aquila Target List Object Type Size Mag RA DEC B142-3 Dark Nebula 80.0'x50.0' 19h 41m 02.0s +10° 57' 58" NGC 6709 Open Cluster 15.0' 6.7 18h 51m 49.8s +10° 21' 30" NGC 6738 Open Cluster 15.0' 8.3 19h 01m 43.7s +11° 36' 36" NGC 6751 Planetary Nebula 26" 11.9 19h 06m 17.9s Þ05° 58' 55" NGC 6755 Open Cluster 15.0' 7.5 19h 08m 09.9s +04° 16' 37" NGC 6756 Open Cluster 4.0' 10.6 19h 09m 03.3s +04° 43' 00" NGC 6760 Globular Cluster 9.6' 9 19h 11m 33.5s +01° 02' 31" NGC 6781 Planetary Nebula 1.9' 11.4 19h 18m 48.9s +06° 33' 10" NGC 6804 Planetary Nebula 1.1' 12 19h 31m 55.6s +09° 14' 25" NGC 6814 Galaxy 3.0'x2.8' 11.3 19h 43m 03.7s Þ10° 18' 33" Challenge Objects Object Type Size Mag RA DEC Palomar 11 Globular Cluster 3.2‘ 11.9 19h 45m 40.8s Þ08° 01' 03" Aquila quila œ the stellar eagle and pet of Zeus, is probably one of the more interesting constella- tions that Messier and his contemporaries overlooked. Yes, that‘s right, there are no Mess- A ier objects in Aquila, but that doesn‘t mean there aren‘t any interesting targets œ quite the opposite! Aquila offers something for nearly everyone, and as a large scope owner and lover of planetary nebulae, it‘s one of my favorite constellations. Figure 2: Aquila - Region 1 Tom Trusock 23-Aug-2006 Small Wonders: Aquila 3/11 Crossen (in Binocular Astronomy) tells us that Aquila is one of the many constellations that the Greeks received from earlier civilizations in Mesopotamia. He states that the Sumerian Eagle con- sisted only of the Alpha, Beta, Gamma trio, and notes that the Bedouin called this asterism Al- Nasr al-Tair, —the Flying Eagle“, and writes that the ancient Greek version of the Eagle was flying perpendicular to the way it is today. Aquila occupies some prime summer real estate. Lying astride the Milky Way and bordered Scu- tum and Sagitta it‘s a fantastic area to pull through with a rich field scope or pair of binoculars. It‘s home to a number of significant and interesting stars œ Altair, the bright Cepheid Eta, the long period variable R Aquilae, the —local“ red dwarf Van Biesbroeck‘s Star and V603 Aquilae which, in 1918, was one of most brilliant novae recorded in the last 300 years. E. E. Barnard and a young 17 year old Leslie Peltier were the co-discovers. Burnham‘s indicates that at discovery it was al- ready brighter than Altair, and soon outshone nearly every star in the sky reaching a peak bril- liance of magnitude Þ1.4 Blue tinted Altair (Alpha) forms one corner of the summer triangle (Vega, Deneb and Altair) and is the 11th brightest star in the night sky. It has a distance of around 16 light years and an apparent magnitude of 0.77. It also has an optical companion of around 10th magnitude. If you happen to gaze at Altair with a small scope or set of binoculars, take a minute to check out the color contrast with red /orange Gamma just two degrees to the northwest. But it‘s not the stars that are the primary attraction in Aquila œ it‘s the deep sky objects. Although it sits nearly neatly the summer milky way, it‘s surprisingly deficient in open clusters (only 17 cataloged) and diffuse nebulae (only 1). On the other hand, there are 112 planetary nebulae, 133 dark nebulae, 3762 galaxies, 4 quasars and even three globulars. Although Messier didn‘t find anything to include in his catalog, rest assured there‘s plenty here. Barnard 142 & 143, NGC 6803 & 6804 Let‘s start with a couple of wide field or binocular ob- jects; the dark nebulae Barnard 142 and 143. Begin by looking just over a degree northwest from magnitude 2.72 Gamma Aql (Tarazed) for a couple of strangely shaped dark blotches. Known as the —Fish on the Platter Nebula“ these two are not difficult to spot even through small binoculars when sky conditions are good. Next drop about 3 degrees south west to pick up the planetary nebula NGC 6804. Sometimes called the —Snowball Nebula“ this should be visible in scopes as small as six inches. In a medium sized telescope, this is an impressive planetary and should yield it‘s magnitude 13 central star to most observers. One of the things that stood out for me in my 12.1“ was the chain of 3-4 stars Figure 3: B142-3 visible right across the face. Look closely for mottling and changes in brightness in the outer shell. Carl Burton contributed the wonderful NGC 6804 image of figure 4. He took this with a C14 oper- ating at f12.4 mounted on an AP 1200 and an ST-8XE/AO-7 combo. While we‘re in the area, you might take some time to scan about a degree north for NGC 6803. You'll need a good set of finder charts though, as NGC 6803 is a good contrast to NGC 6804. Al- though it‘s located nearby, the two couldn‘t be more dissimilar. NGC 6803 is a difficult catch on the best of nights, appearing stellar at all but very high magnifications. To nab NGC 6803, you might try the time honored technique of —blinking“ using an OIII filter and flipping it in and out of the optical chain. Planetaries respond so well to this type of filter because it has the effect of im- proving the contrast between the planetary and the rest of the field. Look for a —star“ that doesn‘t dim when the OIII filter is in your field of vision. 23-Aug-2006 Tom Trusock 4/11 Small Wonders: Aquila Figure 4: NGC 6804 image courtesy Carl Burton NGC 6871 Since we‘re hunting planetaries, keep that OIII filter ready and head another 4 deg south west of NGC 6804 to find NGC 6781. In a medium sized telescope I found this planetary to be quite bright and very im- pressive. A chain of similar magnitude stars leads right into this planetary, giving it the illusion of being a lake at the bottom of some stellar waterfall. The planetary itself is a near perfect spatial bubble and in larger scopes, I find it reminds me somewhat of M57 in Lyra. This is my favorite planetary nebula in Aquila. Figure 5: NGC 6871 NGC 6738 & 6709 Now let‘s check out a couple of open clusters; NGC 6738 and 6709. Although classified as an open cluster in the NGC catalog, a new study by Boeche, Barbon, Henden, Munari and Agnolin has shown NGC 6738 to be an apparent concentration of a few bright stars and not a real cluster at all. Visually, it‘s a poorly concentrated grouping of stars of multiple magnitudes. There is a chain of stars running roughly north south through the proposed center of the —cluster“, and my mind connects these with another short chain running perpendicular and terminating on the N-S chain. In a 12“ scope, the —cluster“ looks a bit like an intersection with the brighter stars defining the roads. This object should be visible to moderate sized binoculars on a decent night. Tom Trusock 23-Aug-2006 Small Wonders: Aquila 5/11 Figure 6: NGC 6738 Figure 7: NGC 6709 By nearly any measure, I find NGC 6709 2.75 deg south west to be a —prettier“ open cluster. Visi- ble to the slightest optical aid, an 80mm resolves a significant number of stars, while larger scopes simply improve on the view. Carol Lakomiak provides us with this excellent sketch made through her 8“ SCT. Figure 8: Sketch of NGC 6709 courtesy Carol Lakomiak 23-Aug-2006 Tom Trusock 6/11 Small Wonders: Aquila Figure 9: Aquila - Region 2 NGC 6755 & 6756 Where you‘re finished here, head down to NGC 6756 and 6755. Located near each other, these clusters can be seen in the same field of view if your 6 inch (or larger) tele- scope will give you a ² deg (or better) field of view. In a small scope, these two clusters provide a nice contrast to one another, while the view thorough large telescopes begins to remind me of the Double Cluster. In any case NGC 6755 is clearly the larger and brighter. When studying NGC 6755, take care to look for a lane bisecting the cluster roughly North to South, and look for strings of stars radiat- ing out from the center. Figure 10: NGC 6755 & 6756 Tom Trusock 23-Aug-2006 Small Wonders: Aquila 7/11 NGC 6960 Dropping down to NGC 6760, this globular is a bright target and should be a fairly —easy“ catch even in small telescopes. A 12“ scope at high power just begins to hint at resolution of the globular, so don‘t expect M13 type experience. Still, this is a nice catch. Keep this image in mind when you look for the challenge object this eve- ning œ it‘s an excellent illustration on how differ- ent globulars can appear. Figure 11: NGC 6960 Figure 12: Aquila - Region 3 23-Aug-2006 Tom Trusock 8/11 Small Wonders: Aquila NGC 6751 Just off the tip of the Eagle, we find our last planetary for the night œ NGC 6751.
Recommended publications
  • August 10Th 2019 August 2019 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message August 2019 Saturday, August 10th 2019 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Colleagues, Public Star Party follows at the I hope you found the third week of July exhilarating. The 50th Anniversary of the first Centennial Observatory moon landing was the common theme. I capped my observance by watching the C- SPAN replay of the CBS broadcast. It was not only exciting to watch the landing, but Club Officers to listen to Walter Cronkite and Wally Schirra discuss what Neil Armstrong and Buzz Robert Mayer, President Aldrin was relaying back to us. It was fascinating to hear what we have either accepted or rejected for years come across as something brand new. Hearing [email protected] Michael Collins break in from his orbit above in the command module also reminded me of the major role he played and yet others in the past have often overlooked – Gary Leavitt, Vice President fortunately, he is now receiving the respect he deserves. If you didn’t catch that, [email protected] then hopefully you caught some other commemoration, such as Turner Classic Movies showing For All Mankind, a spellbinding documentary of what it was like for Dr. Jay Hartwell, Secretary all of the Apollo astronauts who made it to the moon. Jim Tubbs, Treasurer / ALCOR For me, these moments of commemoration made reading the moon landing’s [email protected] anniversary issue from the Association of Lunar and Planetary Observers (ALPO) 208-404-2999 come to life as they wrote about the features these astronauts were examining – including the little craters named after the three astronauts.
    [Show full text]
  • I N S I D E T H I S I S S
    Publications from February/février 1998 Volume/volume 92 Number/numero 1 [669] The Royal Astronomical Society of Canada The Beginner’s Observing Guide This guide is for anyone with little or no experience in observing the night sky. Large, easy to read star maps are provided to acquaint the reader with the constellations and bright stars. Basic information on observing the moon, planets and eclipses through the year 2000 is provided. There The Journal of the Royal Astronomical Society of Canada Le Journal de la Société royale d’astronomie du Canada is also a special section to help Scouts, Cubs, Guides and Brownies achieve their respective astronomy badges. Written by Leo Enright (160 pages of information in a soft-cover book with a spiral binding which allows the book to lie flat). Price: $12 (includes taxes, postage and handling) Looking Up: A History of the Royal Astronomical Society of Canada Published to commemorate the 125th anniversary of the first meeting of the Toronto Astronomical Club, “Looking Up — A History of the RASC” is an excellent overall history of Canada’s national astronomy organization. The book was written by R. Peter Broughton, a Past President and expert on the history of astronomy in Canada. Histories on each of the centres across the country are included as well as dozens of biographical sketches of the many people who have volunteered their time and skills to the Society. (hard cover with cloth binding, 300 pages with 150 b&w illustrations) Price: $43 (includes taxes, postage and handling) Observers Calendar — 1998 This calendar was created by members of the RASC.
    [Show full text]
  • Planetary Nebulae
    Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies.
    [Show full text]
  • Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects
    Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Porto Alegre 2017 Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Dissertação elaborada sob orientação do Prof. Dr. Eduardo Luis Damiani Bica, co- orientação do Prof. Dr. Charles José Bon- ato e apresentada ao Instituto de Física da Universidade Federal do Rio Grande do Sul em preenchimento do requisito par- cial para obtenção do título de Mestre em Física. Porto Alegre 2017 Acknowledgements To my parents, who supported me and made this possible, in a time and place where being in a university was just a distant dream. To my dearest friends Elisabeth, Robert, Augusto, and Natália - who so many times helped me go from "I give up" to "I’ll try once more". To my cats Kira, Fen, and Demi - who lazily join me in bed at the end of the day, and make everything worthwhile. "But, first of all, it will be necessary to explain what is our idea of a cluster of stars, and by what means we have obtained it. For an instance, I shall take the phenomenon which presents itself in many clusters: It is that of a number of lucid spots, of equal lustre, scattered over a circular space, in such a manner as to appear gradually more compressed towards the middle; and which compression, in the clusters to which I allude, is generally carried so far, as, by imperceptible degrees, to end in a luminous center, of a resolvable blaze of light." William Herschel, 1789 Abstract We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties.
    [Show full text]
  • Authentic Data in the Classroom with the Sloan Digital Sky Survey
    Proc. of the GHOU 2007 in Tokyo Authentic Data in the Classroom with the Sloan Digital Sky Survey M. Jordan Raddick* 1 Student engagement with the process of science is a proven part of high­quality science education, but authentic science activities can be difficult in astronomy because of the difficulty students have in taking data. This paper describes how the Sloan Digital Sky Survey (SDSS) contributes to solving this problem by making its entire dataset available to students and the public, free of charge. The survey's SkyServer website (http://skyserver.sdss.org) includes simple tools to browse and search the data, as well as projects that use the data to teach science. The dataset is also a great source of independent research projects for students. 1. Introduction for each star or galaxy, including magnitudes and object types. Images are available as FITS files. Movements in science education reform in the The survey also measures follow­up spectra for United States and around the world frequently cite stars, galaxies and quasars. These spectra run from engagement with the process of science as a key 3800 to 9200 Ångstroms, and have a resolution of component of effective science learning, and 1.8 Ångstroms per pixel. They are available as GIF scientific inquiry as an important part of images or FITS files, and detailed line widths and understanding science [1,2]. strengths are available for each spectral line. Laboratory activities in other science subjects frequently make use of student inquiry labs, in which 3. SkyServer students make their own observations, interpret the results, and draw conclusions.
    [Show full text]
  • Direct N-Body Simulations of Globular Clusters--III. Palomar\, 4 on An
    MNRAS 000, 1–11 (2013) Preprint 14 September 2018 Compiled using MNRAS LATEX style file v3.0 Direct N-body simulations of globular clusters – III. Palomar4 on an eccentric orbit Akram Hasani Zonoozi1⋆, Hosein Haghi1, Pavel Kroupa2,3, Andreas H.W. K¨upper4†, Holger Baumgardt5 1Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), PO Box 11365-9161, Zanjan, Iran 2Helmholtz-Institut f¨ur Strahlen-und Kernphysik (HISKP), Universit¨at Bonn, Nussallee 14-16, D-53115 Bonn, Germany 3Charles University in Prague, Faculty of Mathematics and Physics, Astronomical Institute, V Holeˇsoviˇck´ach 2, CZ-180 00 Praha 8, Czech Republic 4Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA 5School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia Accepted .... Received ABSTRACT Palomar 4 is a low-density globular cluster with a current mass ≈ 30000 M⊙in the outer halo of the Milky Way with a two-body relaxation time of the order of a Hubble time. Yet, it is strongly mass segregated and contains a stellar mass function depleted of low-mass stars. Pal 4 was either born this way or it is a result of extraordi- nary dynamical evolution. Since two-body relaxation cannot explain these signatures alone, enhanced mass loss through tidal shocking may have had a strong influence on Pal 4. Here, we compute a grid of direct N-body simulations to model Pal4 on various eccentric orbits within the Milky Way potential to find likely initial conditions that reproduce its observed mass, half-light radius, stellar MF-slope and line-of-sight ve- locity dispersion.
    [Show full text]
  • The X-Ray Universe 2017
    The X-ray Universe 2017 6−9 June 2017 Centro Congressi Frentani Rome, Italy A conference organised by the European Space Agency XMM-Newton Science Operations Centre National Institute for Astrophysics, Italian Space Agency University Roma Tre, La Sapienza University ABSTRACT BOOK Oral Communications and Posters Edited by Simone Migliari, Jan-Uwe Ness Organising Committees Scientific Organising Committee M. Arnaud Commissariat ´al’´energie atomique Saclay, Gif sur Yvette, France D. Barret (chair) Institut de Recherche en Astrophysique et Plan´etologie, France G. Branduardi-Raymont Mullard Space Science Laboratory, Dorking, Surrey, United Kingdom L. Brenneman Smithsonian Astrophysical Observatory, Cambridge, USA M. Brusa Universit`adi Bologna, Italy M. Cappi Istituto Nazionale di Astrofisica, Bologna, Italy E. Churazov Max-Planck-Institut f¨urAstrophysik, Garching, Germany A. Decourchelle Commissariat ´al’´energie atomique Saclay, Gif sur Yvette, France N. Degenaar University of Amsterdam, the Netherlands A. Fabian University of Cambridge, United Kingdom F. Fiore Osservatorio Astronomico di Roma, Monteporzio Catone, Italy F. Harrison California Institute of Technology, Pasadena, USA M. Hernanz Institute of Space Sciences (CSIC-IEEC), Barcelona, Spain A. Hornschemeier Goddard Space Flight Center, Greenbelt, USA V. Karas Academy of Sciences, Prague, Czech Republic C. Kouveliotou George Washington University, Washington DC, USA G. Matt Universit`adegli Studi Roma Tre, Roma, Italy Y. Naz´e Universit´ede Li`ege, Belgium T. Ohashi Tokyo Metropolitan University, Japan I. Papadakis University of Crete, Heraklion, Greece J. Hjorth University of Copenhagen, Denmark K. Poppenhaeger Queen’s University Belfast, United Kingdom N. Rea Instituto de Ciencias del Espacio (CSIC-IEEC), Spain T. Reiprich Bonn University, Germany M. Salvato Max-Planck-Institut f¨urextraterrestrische Physik, Garching, Germany N.
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • Science in the Urantia Papers
    Science ¾ Scientific Validation of the UB z By Denver Pearson z By Phil Calabrese ¾ Seraphic Velocities ¾ Astronomy The Scientific Integrity of the Urantia Book by Denver Pearson As scientifically minded readers first peruse the Urantia Book, it soon occurs to them that many of its statements on the natural sciences conflict with currently held data and theories. In the minds of many this gives rise to doubts about the truthfulness of those statements. Wisdom would lead us to realize that nothing short of perfection is perfect, and anything touched by human hands has fingerprints. This should be our guiding thoughts as we contemplate the accuracy of the scientific content of the Urantia Papers. Several years ago, at the first scientific symposium, it was implied by one of the speakers that the revelation contains errors. This implication is alarming. More recently, at the second symposium held in Oklahoma, an interesting publication named "The Science Content of The Urantia Book" was made available (this document is obtainable from the Brotherhood of Man Library). In this publication is an article entitled "Time Bombs" in which the author suggests that the revelators planted certain inaccurate scientific statements in the book in order to prevent it from becoming a fetish. He states "...the revelators incorporated safeguards in the papers that would form The Urantia Book to diminish the tendency to regard it as an object of worship. What safeguards did they use? Suppose they decided to make sure that mortals reading it understood that some cosmological statements in the book would be found to be inaccurate".
    [Show full text]
  • Observatories
    NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES FY 1997 PROVISIONAL PROGRAM PLAN September 19,1996 TABLE OF CONTENTS I. INTRODUCTION AND OVERVIEW 1 II. THE DEVELOPMENT PROGRAM: MILESTONES PAST AND FUTURE 3 IE. NIGHTTIME PROGRAM 6 A. Major Projects 6 1. SOAR ".""".6 2. WIYN 8 B. Joint Nighttime Instrumentation Program 9 1. Overview 9 2. Description of Individual Major Projects 10 3. Detectors 13 4. NOAO Explorations of Technology (NExT) Program 14 C. USGP 15 1. Overview 15 2. US Gemini Instrument Program 16 D. Telescope Operations and User Support 17 1. Changes in User Services 17 2. Telescope Upgrades 18 a. CTIO 18 b. KPNO 21 3. Instrumentation Improvements 24 a. CTIO 24 b. KPNO 26 4. Smaller Telescopes 29 IV. NATIONAL SOLAR OBSERVATORY 29 A. Major Projects 29 1. Global Oscillation Network Group (GONG) 30 2. RISE/PSPT Program 33 3. SOLIS 34 4. Study of CLEAR 35 B. Instrumentation 36 1. General 36 2. Sacramento Peak 36 3. NSO/KittPeak 38 a. Infrared Program 38 b. Telescope Improvement 40 C. Telescope Operations and User Support 41 1. Sacramento Peak 41 2. NSO/KittPeak 42 V. THE SCIENTIFIC STAFF 42 VI. EDUCATIONAL OUTREACH 45 A. Educational Program 45 1. Direct Classroom Involvement 46 2. Development of Instructional Materials 46 3. WWW Distribution of Science Resources 47 4. Outreach Advisory Board 47 5. Undergraduate Education 47 6. Graduate Education 47 7. Educational Partnership Programs 47 B. Public Information 48 1. Press Releases and Other Interactions With the Media 48 2. Images 48 3 Visitor Center 48 C.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]