Kinematics Equations

Total Page:16

File Type:pdf, Size:1020Kb

Kinematics Equations Kinematics Kinematic Equations Lana Sheridan De Anza College Jan 9, 2020 Last time • kinematic quantities • graphs of kinematic quantities Overview • relating graphs • derivation of kinematics equations 2.4 Acceleration 33 down! It is very useful to equate the direction of the acceleration to the direction of a force because it is easier from our everyday experience to think about what Pitfall Prevention 2.4 effect a force will have on an object than to think only in terms of the direction of Negative Acceleration Keep in the acceleration. mind that negative acceleration does not necessarily mean that an object is slowing down. If the acceleration is Q uick Quiz 2.4 If a car is traveling eastward and slowing down, what is the direc- negative and the velocity is nega- tion of the force on the car that causes it to slow down? (a) eastward (b) west- tive, the object is speeding up! ward (c) neither eastward nor westward Pitfall Prevention 2.5 Deceleration The word deceleration has the common popular connota- From now on, we shall use the term acceleration to mean instantaneous accelera- tion of slowing down. We will not tion. When we mean average acceleration, we shall always use the adjective average. use this word in this book because Because v 5 dx/dt, the acceleration can also be written as it confuses the definition we have x given for negative acceleration. dv d dx d 2x a 5 x 5 5 (2.12) x dt dt dt dt 2 That is, in one-dimensional motion, the accelerationa b equals the second derivative of x with respect to time. Conceptual Example 2.5 Graphical Relationships Between x, vx, and ax The position of an object moving along the x axis varies with time as in Figure 2.8a. Graph the velocity versus time and the acceleration versus time for the object. Acceleration vs. Time Graphs SOLUTION x The velocity at any instant is the slope of the tangent to the x–t graph at that instant. Between t 5 0 and t 5 tᎭ, the slope of the x–t graph increases uniformly, so the velocity increases linearly as shown in Figure 2.8b. Between tᎭ and tᎮ, the slope of the x–t graph is con- stant, so the velocity remains constant. Between tᎮ and t tᎭ tᎮ t Ꭿ t൳ t൴ t൵ t൳, the slope of the x–t graph decreases, so the value of a the velocity in the v –t graph decreases. At t , the slope x ൳ vx of the x–t graph is zero, so the velocity is zero at that instant. Between t൳ and t൴, the slope of the x–t graph and therefore the velocity are negative and decrease uni- t tᎭ tᎮ tᎯ t൳ t൴ t൵ formly in this interval. In the interval t൴ to t൵, the slope of the x–t graph is still negative, and at t൵ it goes to zero. b Finally, after t൵, the slope of the x–t graph is zero, mean- ax ing that the object is at rest for t . t൵. The acceleration at any instant is the slope of the tan- gent to the v –t graph at that instant. The graph of accel- t x t t t eration versus time for this object is shown in Figure 2.8c. tᎭ Ꭾ ൴ ൵ The acceleration is constant and positive between 0 and c tᎭ, where the slope of the vx–t graph is positive. It is zero Figure 2.8 (Conceptual Example 2.5) (a) Position–time graph between tᎭ and tᎮ and for t . t൵ because the slope of the v –t graph is zero at these times. It is negative between for an object moving along the x axis. (b) The velocity–time graph x for the object is obtained by measuring the slope of the position– tᎮ and t൴ because the slope of the vx–t graph is negative time graph at each instant. (c) The acceleration–time graph for during this interval. Between t൴ and t൵, the acceleration the object is obtained by measuring the slope of the velocity–time is positive like it is between 0 and tᎭ, but higher in value graph at each instant. because the slope of the vx–t graph is steeper. Notice that the sudden changes in acceleration shown in Figure 2.8c are unphysical. Such instantaneous changes cannot occur in reality. Question What does the area under an acceleration-time graph represent? 36 Chapter 2 Motion in One Dimension In Figure 2.10c, we can tell that the car slows as it moves to the right because its 36 Chapter 2 Motiondisplacement in One Dimension between adjacent images decreases with time. This case suggests the car moves to the right with a negative acceleration. The length of the velocity arrow Chapter 2 Motion in One Dimension 36 decreasesIn Figure in 2.10c, time weand can eventually tell that thereaches car slows zero. as From it moves this todiagram, the right we because see that its the displacementacceleration betweenand velocity adjacent arrows images are notdecreases in the withsame time. direction. This case The suggests car is moving the car withIn moves Figurea positive to the2.10c, velocity, right we with canbut atellwith negative that a negative the acceleration. car acceleration. slows as The it moves (This length totype of the the of right velocitymotion because arrowis exhib its - decreasesdisplacementited by a carin time thatbetween andskids eventually adjacent to a stop images afterreaches its decreases zero.brakes From are with applied.)this time. diagram, This The case wevelocity see suggests that and the accelthe - accelerationcareration moves are to inandthe opposite rightvelocity with directions.arrows a negative are Innot acceleration. terms in the of same our The earlier direction. length force ofThe discussion,the car velocity is moving imaginearrow withdecreasesa force a positive pulling in timevelocity, on and the but eventuallycar with opposite a negative reaches to the acceleration. zero. direction From (This itthis is moving:typediagram, of motionit weslows see isdown. thatexhib the- itedacceleration Each by a car purple that and skids accelerationvelocity to a arrowsstop arrow after are its innot brakesparts in the (b)are same andapplied.) direction.(c) of The Figure velocityThe 2.10car and is moving theaccel same- erationwithlength. a positive are Therefore, in oppositevelocity, these but directions. diagramswith a negative In represent terms acceleration. of our motion earlier (This of forcea particletype discussion, of undermotion constant imagine is exhib accel - - aitederation. force by pullinga This car that important on skids the car to analysis aopposite stop after model to itsthe brakeswill direction be arediscussed itapplied.) is moving: in theThe it next velocityslows section. down. and accel- erationEach arepurple in opposite acceleration directions. arrow Inin termsparts (b)of our and earlier (c) of forceFigure discussion, 2.10 is the imagine same length.aQ force uick Therefore,pulling Quiz 2.5 on Whichthesethe car diagrams one opposite of the represent to following the direction motion statements itof is a moving:particle is true? under it (a)slows constantIf adown. car accelis trav-- eration. Eacheling This purpleeastward, important acceleration its acceleration analysis arrow model mustin willparts be be eastward.(b) discussed and (c) (b) in of Ifthe Figurea nextcar is section.2.10 slowing is the down, same length.its acceleration Therefore, thesemust bediagrams negative. represent (c) A particle motion with of a constantparticle under acceleration constant accelcan - Qeration. uicknever QuizThis stop 2.5important and Which stay stopped. analysisone of the model following will be statements discussed isin true? the next (a) If section. a car is trav- eling eastward, its acceleration must be eastward. (b) If a car is slowing down, Q itsuick acceleration Quiz 2.5 Whichmust be one negative. of the following(c) A particle statements with constant is true? acceleration (a) If a car iscan trav- nevereling eastward,stop and stay its accelerationstopped. must be eastward. (b) If a car is slowing down, x 2.6its acceleration Analysis must Model: be negative. Particle (c) A particle with constant acceleration can never stop and stay stopped. Slope ϭ vxf Under Constant Acceleration x 2.6If the accelerationAnalysis of Model:a particle varies Particle in time, its motion can be complex and difficult Slope ϭ v Constant Accelerationx Graphs xf Underto analyze. Constant A very common Acceleration and simple type of one-dimensional motion, however, is i x that2.6 in Analysiswhich the acceleration Model: is Particle constant. In such a case, the average acceleration Slope ϭ vxi If the acceleration of a particle varies in time, its motion can be complex and difficult Slope ϭ vxf t a over any time interval is numerically equal to the instantaneous acceleration a t toUnder xanalyze.,avg AConstant very common Acceleration and simple type of one-dimensional motion, however, is x xi at any instant within the interval, and the velocity changes at the same rate through- thatIf the in acceleration which the acceleration of a particle isvaries constant. in time, In itssuch motion a case, can the be averagecomplex acceleration and difficult aSlope ϭ vxi out the motion. This situation occurs often enough that we identify it as an analysis t a over any time interval is numerically equal to the instantaneous acceleration a x t tox,avg analyze. A very common and simple type of one-dimensional motion, however, xis i atmodel: any instant the particle within the under interval, constant and theacceleration. velocity changes In the at discussion the same rate that through follows,- we vSlopex ϭ v that in which the acceleration is constant. In such a case, the average acceleration a xi outgenerate the motion.
Recommended publications
  • Two-Dimensional Rotational Kinematics Rigid Bodies
    Rigid Bodies A rigid body is an extended object in which the Two-Dimensional Rotational distance between any two points in the object is Kinematics constant in time. Springs or human bodies are non-rigid bodies. 8.01 W10D1 Rotation and Translation Recall: Translational Motion of of Rigid Body the Center of Mass Demonstration: Motion of a thrown baton • Total momentum of system of particles sys total pV= m cm • External force and acceleration of center of mass Translational motion: external force of gravity acts on center of mass sys totaldp totaldVcm total FAext==mm = cm Rotational Motion: object rotates about center of dt dt mass 1 Main Idea: Rotation of Rigid Two-Dimensional Rotation Body Torque produces angular acceleration about center of • Fixed axis rotation: mass Disc is rotating about axis τ total = I α passing through the cm cm cm center of the disc and is perpendicular to the I plane of the disc. cm is the moment of inertial about the center of mass • Plane of motion is fixed: α is the angular acceleration about center of mass cm For straight line motion, bicycle wheel rotates about fixed direction and center of mass is translating Rotational Kinematics Fixed Axis Rotation: Angular for Fixed Axis Rotation Velocity Angle variable θ A point like particle undergoing circular motion at a non-constant speed has SI unit: [rad] dθ ω ≡≡ω kkˆˆ (1)An angular velocity vector Angular velocity dt SI unit: −1 ⎣⎡rad⋅ s ⎦⎤ (2) an angular acceleration vector dθ Vector: ω ≡ Component dt dθ ω ≡ magnitude dt ω >+0, direction kˆ direction ω < 0, direction − kˆ 2 Fixed Axis Rotation: Angular Concept Question: Angular Acceleration Speed 2 ˆˆd θ Object A sits at the outer edge (rim) of a merry-go-round, and Angular acceleration: α ≡≡α kk2 object B sits halfway between the rim and the axis of rotation.
    [Show full text]
  • Kinematics, Impulse, and Human Running
    Kinematics, Impulse, and Human Running Kinematics, Impulse, and Human Running Purpose This lesson explores how kinematics and impulse can be used to analyze human running performance. Students will explore how scientists determined the physical factors that allow elite runners to travel at speeds far beyond the average jogger. Audience This lesson was designed to be used in an introductory high school physics class. Lesson Objectives Upon completion of this lesson, students will be able to: ஃ describe the relationship between impulse and momentum. ஃ apply impulse-momentum theorem to explain the relationship between the force a runner applies to the ground, the time a runner is in contact with the ground, and a runner’s change in momentum. Key Words aerial phase, contact phase, momentum, impulse, force Big Question This lesson plan addresses the Big Question “​What does it mean to observe?” Standard Alignments ஃ Science and Engineering Practices ஃ SP 4​. Analyzing and interpreting data ஃ SP 5​. Using mathematics and computational thinking ஃ MA Science and Technology/Engineering Standards (2016) ஃ HS-PS2-10(MA)​. Use algebraic expressions and Newton’s laws of motion to predict changes to velocity and acceleration for an object moving in one dimension in various situations. ஃ HS-PS2-3.​ Apply scientific principles of motion and momentum to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. ஃ NGSS Standards (2013) HS-PS2-2. ​Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
    [Show full text]
  • Kinematics Big Ideas and Equations Position Vs
    Kinematics Big Ideas and Equations Position vs. Time graphs Big Ideas: A straight line on a p vs t graph indicates constant speed (and velocity) An object at rest is indicated by a horizontal line The slope of a line on a p vs. t graph = velocity of the object (steeper = faster) The main difference between speed and velocity is that velocity incorporates direction o Speed will always be positive but velocity can be positive or negative o Positive vs. Negative slopes indicates the direction; toward the positive end of an axis (number line) or the negative end. For motion detectors this indicates toward (-) and away (+), but only because there is no negative side to the axis. An object with continuously changing speed will have a curved P vs. t graph; (curving steeper – speeding up, curving flatter – slowing down) (Instantaneous) velocity = average velocity if P vs. t is a (straight) line. Velocity vs Time graphs Big Ideas: The velocity can be found by calculating the slope of a position-time graph Constant velocity on a velocity vs. time graph is indicated with a horizontal line. Changing velocity is indicated by a line that slopes up or down. Speed increases when Velocity graph slopes away from v=0 axis. Speed decreases when velocity graph slopes toward v=0 axis. The velocity is negative if the object is moving toward the negative end of the axis - if the final position is less than the initial position (or for motion detectors if the object moves toward the detector) The slope of a velocity vs.
    [Show full text]
  • Chapter 4 One Dimensional Kinematics
    Chapter 4 One Dimensional Kinematics 4.1 Introduction ............................................................................................................. 1 4.2 Position, Time Interval, Displacement .................................................................. 2 4.2.1 Position .............................................................................................................. 2 4.2.2 Time Interval .................................................................................................... 2 4.2.3 Displacement .................................................................................................... 2 4.3 Velocity .................................................................................................................... 3 4.3.1 Average Velocity .............................................................................................. 3 4.3.3 Instantaneous Velocity ..................................................................................... 3 Example 4.1 Determining Velocity from Position .................................................. 4 4.4 Acceleration ............................................................................................................. 5 4.4.1 Average Acceleration ....................................................................................... 5 4.4.2 Instantaneous Acceleration ............................................................................. 6 Example 4.2 Determining Acceleration from Velocity .........................................
    [Show full text]
  • Rotational Motion and Angular Momentum 317
    CHAPTER 10 | ROTATIONAL MOTION AND ANGULAR MOMENTUM 317 10 ROTATIONAL MOTION AND ANGULAR MOMENTUM Figure 10.1 The mention of a tornado conjures up images of raw destructive power. Tornadoes blow houses away as if they were made of paper and have been known to pierce tree trunks with pieces of straw. They descend from clouds in funnel-like shapes that spin violently, particularly at the bottom where they are most narrow, producing winds as high as 500 km/h. (credit: Daphne Zaras, U.S. National Oceanic and Atmospheric Administration) Learning Objectives 10.1. Angular Acceleration • Describe uniform circular motion. • Explain non-uniform circular motion. • Calculate angular acceleration of an object. • Observe the link between linear and angular acceleration. 10.2. Kinematics of Rotational Motion • Observe the kinematics of rotational motion. • Derive rotational kinematic equations. • Evaluate problem solving strategies for rotational kinematics. 10.3. Dynamics of Rotational Motion: Rotational Inertia • Understand the relationship between force, mass and acceleration. • Study the turning effect of force. • Study the analogy between force and torque, mass and moment of inertia, and linear acceleration and angular acceleration. 10.4. Rotational Kinetic Energy: Work and Energy Revisited • Derive the equation for rotational work. • Calculate rotational kinetic energy. • Demonstrate the Law of Conservation of Energy. 10.5. Angular Momentum and Its Conservation • Understand the analogy between angular momentum and linear momentum. • Observe the relationship between torque and angular momentum. • Apply the law of conservation of angular momentum. 10.6. Collisions of Extended Bodies in Two Dimensions • Observe collisions of extended bodies in two dimensions. • Examine collision at the point of percussion.
    [Show full text]
  • Kinematics Definition: (A) the Branch of Mechanics Concerned with The
    Chapter 3 – Kinematics Definition: (a) The branch of mechanics concerned with the motion of objects without reference to the forces that cause the motion. (b) The features or properties of motion in an object, regarded in such a way. “Kinematics can be used to find the possible range of motion for a given mechanism, or, working in reverse, can be used to design a mechanism that has a desired range of motion. The movement of a crane and the oscillations of a piston in an engine are both simple kinematic systems. The crane is a type of open kinematic chain, while the piston is part of a closed four‐bar linkage.” Distinguished from dynamics, e.g. F = ma Several considerations: 3.2 – 3.2.2 How do wheels motions affect robot motion (HW 2) 3.2.3 Wheel constraints (rolling and sliding) for Fixed standard wheel Steered standard wheel Castor wheel Swedish wheel Spherical wheel 3.2.4 Combine effects of all the wheels to determine the constraints on the robot. “Given a mobile robot with M wheels…” 3.2.5 Two examples drawn from 3.2.4: Differential drive. Yields same result as in 3.2 (HW 2) Omnidrive (3 Swedish wheels) Conclusion (pp. 76‐77): “We can see from the preceding examples that robot motion can be predicted by combining the rolling constraints of individual wheels.” “The sliding constraints can be used to …evaluate the maneuverability and workspace of the robot rather than just its predicted motion.” 3.3 Mobility and (vs.) Maneuverability Mobility: ability to directly move in the environment.
    [Show full text]
  • Engineering Mechanics
    Course Material in Dynamics by Dr.M.Madhavi,Professor,MED Course Material Engineering Mechanics Dynamics of Rigid Bodies by Dr.M.Madhavi, Professor, Department of Mechanical Engineering, M.V.S.R.Engineering College, Hyderabad. Course Material in Dynamics by Dr.M.Madhavi,Professor,MED Contents I. Kinematics of Rigid Bodies 1. Introduction 2. Types of Motions 3. Rotation of a rigid Body about a fixed axis. 4. General Plane motion. 5. Absolute and Relative Velocity in plane motion. 6. Instantaneous centre of rotation in plane motion. 7. Absolute and Relative Acceleration in plane motion. 8. Analysis of Plane motion in terms of a Parameter. 9. Coriolis Acceleration. 10.Problems II.Kinetics of Rigid Bodies 11. Introduction 12.Analysis of Plane Motion. 13.Fixed axis rotation. 14.Rolling References I. Kinematics of Rigid Bodies I.1 Introduction Course Material in Dynamics by Dr.M.Madhavi,Professor,MED In this topic ,we study the characteristics of motion of a rigid body and its related kinematic equations to obtain displacement, velocity and acceleration. Rigid Body: A rigid body is a combination of a large number of particles occupying fixed positions with respect to each other. A rigid body being defined as one which does not deform. 2.0 Types of Motions 1. Translation : A motion is said to be a translation if any straight line inside the body keeps the same direction during the motion. It can also be observed that in a translation all the particles forming the body move along parallel paths. If these paths are straight lines. The motion is said to be a rectilinear translation (Fig 1); If the paths are curved lines, the motion is a curvilinear translation.
    [Show full text]
  • Kinematics and Dynamics in Noninertial Quantum Frames of Reference
    Home Search Collections Journals About Contact us My IOPscience Kinematics and dynamics in noninertial quantum frames of reference This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2012 J. Phys. A: Math. Theor. 45 465306 (http://iopscience.iop.org/1751-8121/45/46/465306) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 200.17.209.129 The article was downloaded on 01/11/2012 at 10:30 Please note that terms and conditions apply. IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 45 (2012) 465306 (19pp) doi:10.1088/1751-8113/45/46/465306 Kinematics and dynamics in noninertial quantum frames of reference R M Angelo and A D Ribeiro Departamento de F´ısica, Universidade Federal do Parana,´ PO Box 19044, 81531-980, Curitiba, PR, Brazil E-mail: renato@fisica.ufpr.br Received 4 May 2012, in final form 21 September 2012 Published 31 October 2012 Online at stacks.iop.org/JPhysA/45/465306 Abstract From the principle that there is no absolute description of a physical state, we advance the approach according to which one should be able to describe the physics from the perspective of a quantum particle. The kinematics seen from this frame of reference is shown to be rather unconventional. In particular, we discuss several subtleties emerging in the relative formulation of central notions, such as vector states, the classical limit, entanglement, uncertainty relations and the complementary principle. A Hamiltonian formulation is also derived which correctly encapsulates effects of fictitious forces associated with the accelerated motion of the frame.
    [Show full text]
  • 19.Kinematics
    19. KINEMATICS Kinematics is the branch of mathematics that deals So, we define velocity as the rate of change of with the motion of a particle in relation to time. In displacement. this topic, we are concerned with quantities such as displacement (and distance), velocity (and speed) and Displacement Velocity= acceleration. In studying the motion of objects, we Time will examine travel graphs, laws of motion and the application of calculus to problems in kinematics. When the velocity (or speed) of a moving object is increasing the object is accelerating. If the velocity Speed, distance and time or speed decreases it is said to be decelerating. When a particle moves at a constant speed, its rate of Acceleration is, therefore, the rate of change of change of distance remains the same. Constant speed velocity. Constant acceleration is calculated from the is calculated from the basic formula formula Distance Velocity Speed = Acceleration = Time Time If speed changes in an interval, the average speed When speed is constant, there is no acceleration, that during the period of travel can be calculated from the is, acceleration is equal to zero. formula: Since acceleration is velocity per unit time, units for acceleration will take the form such as ms-2, cms-2, Total distance covered or travelled kmh-2. For example: Average Speed = −1 Total time taken Velocity ms 1 1 2 Acceleration = = = ms− − = ms− Time s Units In calculations involving speed, distance and time, Example 2 units must be consistent. So, if the units in a given A car starts from rest and within 10 seconds is situation are not consistent, then we ought to change moving at a velocity of 20ms-1.
    [Show full text]
  • Basic Mechanics: Kinematic Variables
    CHAPTER 1 Basic Mechanics: © GlobalStock/iStockphoto.com© Kinematic Variables Chapter Objectives At the end of this chapter, you will be able to: • Describe the three-dimensional reference frame used to analyze human movements • Explain the importance of the center of mass of a body • Describe diff erent types of motion • Explain the relationships between the kinematic variables of position, velocity, and acceleration • Use the equations of motion to determine the outcome of movement tasks • Describe the diff erent technologies that can be used to record linear and angular kinematic variables and the relative merits of each 9781284022124_CH01_001_028.indd 1 11/02/15 9:59 PM 2 Chapter 1 Basic Mechanics: Kinematic Variables Key Terms Acceleration First central difference Linear displacement Second central difference method method Angular displacement Position General motion Translation Central difference formulae Radial acceleration Kinematic variables Velocity Equations of motion Rotation 9781284022124_CH01_001_028.indd 2 11/02/15 9:59 PM The Mechanical Reference Frame 3 Chapter Overview Mechanics is the study of the forces that act on a body and the changes in motion aris- ing from these forces. This chapter will focus on the kinematic variables associated with a biomechanical analysis of human movements. Kinematic variables allow the description of the motion of a body without reference to variables that act to change the motion of the body. (The variables that act to change the motion of a body, kinetic variables, will be covered elsewhere.) An appreciation of the kinematic variables associated with an athlete’s movements will allow the strength and conditioning prac- titioner to use specific technologies to assess an athlete’s performance in a variety of movement tasks.
    [Show full text]
  • Physics 1200 Mechanics, Kinematics, Fluids, Waves • Lecturer: Tom Humanic
    Physics 1200 Mechanics, Kinematics, Fluids, Waves • Lecturer: Tom Humanic • Contact info: Office: Physics Research Building, Rm. 2144 Email: [email protected] Phone: 614 247 8950 • Office hours: Tuesday 3:00 pm, Wednesday 11:00 am My lecture slides may be found on my website at http://www.physics.ohio-state.edu/~humanic/ Chapter 1 Measurement, units, … Units SI units meter (m): unit of length kilogram (kg): unit of mass second (s): unit of time Units The Role of Units in Problem Solving THE CONVERSION OF UNITS 1 ft = 0.3048 m 1 mi = 1.609 km 1 hp = 746 W 1 liter = 10-3 m3 The Role of Units in Problem Solving Example: Interstate Speed Limit Express the speed limit of 65 miles/hour in terms of meters/second. Use 5280 feet = 1 mile and 3600 seconds = 1 hour and 3.281 feet = 1 meter. & miles # & miles #& 5280 feet #& 1 hour # feet Speed = $65 !(1)(1)= $65 !$ !$ != 95 % hour " % hour "% mile "% 3600 s " second & feet # & feet #& 1 meter # meters Speed = $95 !(1)= $95 !$ ! = 29 % second " % second "% 3.281 feet " second Scalars and Vectors A scalar quantity is one that can be described by a single number: temperature, speed, mass A vector quantity deals inherently with both magnitude and direction: velocity, force, displacement Chapter 2 Kinematics in One Dimension Displacement 1 dimensional motion: the car can only travel either to the left or right -x +x xo = initial position vector x = final position vector Δx = x − xo = displacement vector Displacement xo = 2.0 m Δx = 5.0 m x = 7.0 m Δx = x − xo = 7.0 m − 2.0 m = 5.0 m Speed and Velocity Average speed is the distance traveled divided by the time required to cover the distance.
    [Show full text]
  • Kinematics and One Dimensional Motion Kinematics Vocabulary Position
    Kinematics Vocabulary • Kinema means movement Kinematics and One Dimensional Motion • Mathematical description of motion –Position 8.01 – Time Interval – Displacement W02D1 – Velocity; absolute value: speed – Acceleration – Averages of the later two quantities. Coordinate System in One Position Dimension • A vector that points from origin to body. Used to describe the position of a point in space • Position is a function of time • In one dimension: A coordinate system consists of: 1. An origin at a particular point in space 2. A set of coordinate axes with scales and labels 3. Choice of positive direction for each axis: unit vectors G 4. Choice of type: Cartesian or Polar or Spherical xi()txt= ()ˆ Example: Cartesian One-Dimensional Coordinate System 1 Concept Question: Displacement Vector Displacement An object goes from one point in space to another. After Change in position the object arrives at its destination, the magnitude of vector of the object its displacement is: during the time 1) either greater than or equal to interval Δt = t − t 2 1 2) always greater than 3) always equal to 4) either smaller than or equal to G 5) always smaller than Δ≡riix()txt − ()ˆˆ ≡Δ xt () ()21 6) either smaller or larger than the distance it traveled. Average Velocity Instantaneous Velocity G G The average velocity, v () t , is the displacement Δ r divided by the time interval Δt • For each time interval Δ t , we calculate the x- component of the average velocity. As Δ→ t 0 , we G generate a sequence of the x-component of the G ΔΔr x ˆˆ vii()tvt≡= =x () average velocities.
    [Show full text]