arXiv:2103.07313v1 [quant-ph] 12 Mar 2021 n hyaeeuvln nyi oeseilcases. special some in only equivalent are they and k ftenme fpriin htaeetnld ti ot oigt noting worth is It entangled. are that partitions of number the of unu ttscnas edvddinto divided be also can states quantum tts ih2 with states, optto [ computation [ cryptography quantum fmliatt unu tts esnbewyo lsicto is classification of way that, mo reasonable to much According A is separable. states states. quantum quantum of multipartite classification of the case, multipartite In † ∗ unu ttscnann tmost illustr at examples containing specific states Several quantum inequalities. well-known some using by fuetnldprils efis rsn h ento fquantu of sta definition quantum identify the to criteria present several first derive then We and particles, particles. unentangled of aywl-nw eaaiiyciei aebe rpsdt distingu to proposed been states have quantum criteria systems, bipartite separability For well-known not. Many or entangled is state [ rcsig[ processing 10 lcrncaddress: Electronic lcrncaddress: Electronic nneaaiiyaetodffrn ocpsivligtepartitions the involving concepts different two are -nonseparability nti ae efcso nte hrceiaino multipartite of characterization another on focus we paper this In n ftesgicn rbesi h td fqatmentanglemen quantum of study the in problems significant the of One h raiaino hsatcei sflos nSc Iw eiwbasic review we II Sec. In follows: as is article this of organization The safnaetlcneto unu hoy unu entangle quantum theory, quantum of concept fundamental a As – eeto fteqatmsae otiiga most at containing states quantum the of Detection 17 n optbemaue [ measures computable and ] fwihi ae ntenme fuetnldprils nt In particles. unentangled of most number at the containing on states based quantum is which of rtrabsdo ieetfrso nqaiiswihcnb can which inequalities of most forms at different on based criteria ycnrt examples. concrete by ASnmes 36.n 36.d 03.67.-a 03.65.Ud, 03.67.Mn, numbers: PACS 1 .I a enscesul dnie sakyigein o ieran wide a for ingredient key a as identified successfully been has It ]. hr r aydffrn lsictoso nageetfor entanglement of classifications different many are There ewrs utprieentanglement, multipartite Keywords: colo ahmtc n ttsis hnquNra Univ Normal Shangqiu Statistics, and Mathematics of School 6 7 ]. colo ahmtc n cec,HbiGOUiest,Sh University, GEO Science, and Mathematics of School colo ahmtclSine,HbiNra University, Normal Hebei Sciences, Mathematical of School k fl[email protected] [email protected] 6 k N − olg fPyis ee omlUiest,Shijiazhuang University, Normal Hebei Physics, of College h eeto of detection The . nnage atce.W hwta hs rtraaemor are criteria these that show We particles. unentangled 1 2 ,qatmdnecdn [ coding dense quantum ], N prieqatmsae a edvddinto divided be can states quantum -partite 18 k − – 22 nnage particles. unentangled 1 k k aebe rsne.Dffrn rmteaoeclassification, above the from Different presented. been have ] nneaaiiyhsbe netgtdetniey ayecetc efficient many extensively, investigated been has -nonseparability pouil ttsad( and states -producible k .INTRODUCTION I. − nnage atce n rvd eea entanglement several provide and particles unentangled 1 k egiYan Fengli − igGao Ting ine Qi Xianfei a Hong Yan 3 nnage atce,Cuh-cwr inequality Cauchy-Schwarz particles, unentangled 1 ,qatmtlprain[ teleportation quantum ], ∗ † e otiiga most at containing tes ossso eaal ttsadetnldstates. entangled and states separable of consists etpasacuilrl nqatminformation quantum in role crucial a plays ment k t dniyqatmsae containing states quantum identify oth )prieetnldsae yconsideration by states entangled 1)-partite + unu ttswihi ae ntenumber the on based is which states quantum a h ( the hat fsbytmin subsystem of ecmlctddet h ope structure complex the to due complicated re ttscnann tleast at containing states m utprieqatmsses one systems, quantum multipartite ae ntenme fpriin htare that partitions of number the on based t h datg forrslsi detecting in results our of advantage the ate riy hnqu460, 476000, Shangqiu ersity, s eaal rmetnldsae [ states entangled from separable ish hjahag002,China 050024, i ae,w anysuythe study mainly we paper, his hoyi odcd hte quantum a whether decide to is theory t nweg hc ilb sdi h rest the in used be will which knowledge k jahag003,China 050031, ijiazhuang k − sprbesae and states -separable k 504 China 050024, ffciefrsm states some for effective e )prieetnlmn n the and entanglement 1)-partite + 1 4 , nnage particles unentangled 5 ,fcoig[ factoring ], N eo plctos uhas such applications, of ge k prieqatmsystems, quantum -partite − nnage particles unentangled 1 6 ,adquantum and ], k k -nonseparable unentangled N -partite riteria 8 , 9 ]. 2 of the paper. In Sec. III, we provide our central results, several criteria that can effectively detect quantum states containing at most k 1 unentangled particles, and then their strengths are exhibited by several examples. Finally, − a brief summary is given in Sec. IV.

II. PRELIMINARIES

In this section, we introduce preliminary knowledge used in this paper. We consider a multiparticle quantum system with state space = , where (i =1, 2,...,N) denote d -dimensional Hilbert spaces. H H1 ⊗ H2 ⊗···⊗HN Hi i For convenience, we introduce the following concepts. An N-partite pure state ψ contains | i ∈ H1 ⊗ H2 ⊗···⊗HN k unentangled particles, if there is k + 1 partition γ γ γ such that 1| 2| · · · | k+1 k+1 ψ = φ , | i | liγl Ol=1 where φ is single-partite state for 1 6 l 6 k, while φ is a (N k)-particle state. A mixed state ρ | liγl | k+1iγk+1 − contains at least k unentangled particles, if it can be written as

ρ = p ψ(j) ψ(j) , j | ih | j X where p > 0 with p = 1, and ψ(j) is the pure state containing m unentangled particles with m > k [23–25]. j j | i j j Otherwise we say ρ contains at most k 1 unentangled particles. P − For N-partite quantum system , let H1 ⊗ H2 ⊗···⊗HN N N AiBi ρ = tr ( AiBi)ρ (1) hi=1 i i=1 N N  where ρ is the quantum state in , A ,B are operators acting on the i-th subsystem , and H1 ⊗ H2 ⊗···⊗HN i i Hi “tr” stands for trace operation. Inequalities play an important role in quantum information theory. In the following, we list some inequalities that will be used throughout the paper. Absolute value inequality:

n n a a . (2) i ≤ | i| i=1 i=1 P P

Cauchy-Schwarz inequality: x y 2 x x y y , (3) |h | i| ≤ h | ih | i

n 2 n n a b a2 b2 . (4) i i ≤ i i i=1  i=1  i=1  P P P Extending the Cauchy-Schwarz inequality is an important inequality known as the H¨older inequality:

1 1 n n p n q a b a p b q , (5) | i i|≤ | i| | i| i=1 i=1  i=1  P P P 1 1 where p,q > 1, + = 1. p q

III. MAIN RESULTS

Now let us state our criteria identifying quantum states containing at most k 1 unentangled particles for − arbitrary dimensional multipartite quantum systems. 3

Theorem 1. If an N-partite quantum states ρ contains at least k unentangled particles for 1 6 k 6 N 1, then − it satisfies

N AiBi ρ hi=1 i k+1 1 (6) N † † † † 2k+2 ( A A ) ( B B ) ( B B ) ( A A ) i i i i ρ i i i i ρ ≤ γ l=1 i∈γl ⊗ i/∈γl i∈γl ⊗ i/∈γl P  Q N N N N  where A ,B are operators acting on the i-th subsystem, the sum runs over all possible partitions γ γ = i i { | γ γ γ of N particles in which the number of particles in γ is 1 for 1 l k and is N k for i = k + 1 . 1| 2| · · · | k+1} l ≤ ≤ − If ρ violates inequality (6), then it contains at most k 1 unentangled particles. − Proof. First, we consider pure state ρ = ψ ψ containing k unentangled particles. Suppose that the pure state k+1 | ih |

ψ = ψl γl under the partition γ1 γ2 γk+1, where γl contains one particle for 1 l k, and γk+1 contains | i l=1 | i | | · · · | ≤ ≤ N k Nparticles. Then for any subsystems γl, we have − N A B h i iiρ i=1 NN N † † = AiBi ρ Bi Ai ρ shi=1 i hi=1 i k+1N N k+1 A B B†A† = i i ργt i i ργt st=1hi∈γt i t=1hi∈γt i kQ+1 N kQ+1 N A A† B†B i i ργt i i ργt ≤ st=1hi∈γt i t=1hi∈γt i = Q NA A† Q ANA† B†B B†B i i ργl i i ργt i i ργl i i ργt hi∈γl i t6=lhi∈γt i hi∈γl i t6=lhi∈γt i r N † Q N † N † Q N† = ( AiAi ) ( Bi Bi) ρ ( Bi Bi) ( AiAi ) ρ, h i∈γl ⊗ i/∈γl i h i∈γl ⊗ i/∈γl i r N N N N where ρ = ψ ψ . Here we have used the Cauchy-Schwarz inequality (3). Thus, γt | tiγt h t|

N AiBi ρ hi=1 i k+1 1 N † † † † k+1 ( A A ) ( B B ) ( B B ) ( A A ) i i i i ρ i i i i ρ ≤ l=1 i∈γl ⊗ i/∈γl i∈γl ⊗ i/∈γl  r  1 Qk+1 N N N N k+1 A A† B†B B†B A A† ( i i ) ( i i) ρ ( i i) ( i i ) ρ ≤ γ l=1 i∈γl ⊗ i/∈γl i∈γl ⊗ i/∈γl  r 1 P kQ+1 N N N N 2k+2 A A† B†B B†B A A† . = ( i i ) ( i i) ρ ( i i) ( i i ρ γ l=1 i∈γl ⊗ i/∈γl i∈γl ⊗ i/∈γl P  Q N N N N  It shows that inequality (6) is right for pure state containing k unentangled particles. Now, we consider the case of mixed state. Suppose ρ = pj ρj is a mixed state with pure states ρj containing j at least k unentangled particles, then P

N A B h i iiρ i=1 N N p A B ≤ j h i iiρj j i=1 k+1 1 P N † † † † 2k+2 pj ( AiA ) ( B Bi) ( B Bi) ( AiA ) i i ρj i i ρj , ≤ j γ l=1 i∈γl ⊗ i/∈γl i∈γl ⊗ i/∈γl   1 k+1 1 1 k+1 P P Q N † N † 2 N † N † 2 pj ( AiA ) ( B Bi) ( B Bi) ( AiA ) i i ρj i i ρj ≤ γ l=1 j i∈γl ⊗ i/∈γl i∈γl ⊗ i/∈γl  k+1 1  P Q P N N N N 2k+2 A A† B†B B†B A A† ( i i ) ( i i) ρ ( i i) ( i i ) ρ ≤ γ l=1 i∈γl ⊗ i/∈γl i∈γl ⊗ i/∈γl P  Q N N N N  4 where we have used the absolute value inequality (2), inequality (6) for pure states, the H¨older inequality (5) and Cauchy-Schwarz inequality (4). The proof is complete. Theorem 2. If an N-partite quantum states ρ is fully separable state (that is, it is the quantum state containing at least N 1 unentangled particles), then we have −

N N N A B A A† B†B . (7) h i iiρ ≤ i i ρ i i ρ i=1 s i=1 i=1 N N N

Of course, ρ is entangled if it violates the inequality (7). N Proof. Suppose that ψ = ψi is fully separable pure state, we have | i i=1 | i N N 2 AiBi |ψi hi=1 i N N N † † = AiBi |ψi Bi Ai |ψi hi=1 i h i=1 i N N N N † † = AiBi |ψii Bi Ai |ψii i=1h i l=1h i N N Q † Q † † † AiAi |ψii Bi Bi |ψii Bi Bi |ψii AiAi |ψii ≤ i=1 h i h i i=1 h i h i N q q Q † † Q = AiAi |ψii Bi Bi |ψii i=1h i h i N N Q † † A A B B , = i i ρ i i ρ i=1 i=1 N N where we have used the Cauchy-Schwarz inequality (3). Hence, inequality (7) holds for fully separable pure state. Similar to Theorem 1, we can find that (7) is guaranteed for fully separable mixed states. Here we need to point out that Theorem 2 is inequality (44) of Ref.[26]. Theorem 3. For any N-partite density matrix acting on Hilbert space ρ containing at ∈ H1 ⊗ H2 ⊗···⊗HN least k unentangled particles, where 1 k N 2, we have ≤ ≤ −

N N N N † † † † † † † † U ( A A )U A A U U ( A A )UnUm + (N k 1) U ( A A )U h m i i niρ ≤ h i i iρh m n i i iρ − − h m i i miρ m6=n i=1 m6=n s i=1 i=1 m i=1 P N P N N P N (8) where A are any operator of the subsystem , and U = 1 1 u 1 1 with u being i Hi m 1 ⊗···⊗ m−1 ⊗ m ⊗ m+1 ⊗···⊗ N m any operator of the subsystem and 1 being identity matrix of the subsystem . If ρ violates (8), then it Hm j Hj contains at most k 1 unentangled particles. − Proof. We begin with pure state. Suppose that the pure state ψ contains k unentangled particles, then there | i is a partition γ1 γk+1 with γl containing one particle for 1 l k, and γk+1 containing N k particles, it can | · · · |k+1 ≤ ≤ − be written as ψ = ψl γl . When m,n in γk+1, we can obtain | i l=1 | i N N U ( A A†)U † h m i i niρ i=1 NN N U A A† U † U A A† U † m( i i ) m ρ n( i i ) n ρ (9) ≤ sh i=1 i h i=1 i NN NN U ( A A†)U † + U ( A A†)U † h m i i miρ h n i i niρ i=1 i=1 , ≤ N 2 N where first inequality holds because of Cauchy-Schwarz inequality (3) and second inequality follows from mean inequality. When m γ , n γ ′ and l = l′, we have ∈ l ∈ l 6

N N N † † † † † † Um( AiA )U ρ ( A A ) U U ( A A )UnUm (10) h i ni ≤ h i i iρh m n i i iρ i=1 s i=1 i=1

N N N

5 by Cauchy-Schwarz inequality (3). Combining (9) and (10) leads to

N U ( A A†)U † h m i i niρ m6=n i=1 P N N N † † † † = Um( A iAi )Un ρ + Um( AiAi )Un ρ ′ ′ m∈γl,n∈γl ,l6=l h i=1 i | m,n∈γk+1,m6=n |h i=1 i

P NN N P N † † † † ( AiAi ) ρ UmUn( AiAi )UnUm ρ ′ ′ ≤ m∈γl,n∈γl ,l6=l sh i=1 i h i=1 i N N 1 P N † † N † † + ( Um( AiAi )Um ρ + Un( AiAi )Un ρ) 2 m,n∈γl,m6=n h i=1 i h i=1 i PN N n N N † † † † † † AiAi ρ UmUn( AiAi )UnUm ρ + (N k 1) Um( AiAi )Um ρ. ≤ m6=n shi=1 i h i=1 i − − m h i=1 i P N N P N Hence, inequality (8) holds for any pure state containing k unentangled particles. It is easy to prove that it is also right for any mixed state containing at least k unentangled particles by utilizing absolute value inequality, inequality (8) for pure states, and the Cauchy-Schwarz inequality (4). Theorem 4. For any N-partite fully separable state ρ, one has

N N N † † † † † † U ( A A )U ( A A ) U U ( A A )UnUm (11) h m i i niρ ≤ h i i iρh m n i i iρ i=1 s i=1 i=1

N N N for any m = n. If ρ does not satisfy the above inequality (11), then it is entangled. 6 Proof. The proof of this result is quite similar to Theorem 3. Note that there is only one case that m,n belong to different γ if ρ = ψ ψ is fully separable pure state, which ensures that inequality (11) is true for fully separable l | ih | pure state. Hence, inequality (11) also holds for fully separable mixed states. The following examples shows that the power of our results by comparison with Observation 5 in Ref.[25]. Example 1. For the family of quantum states 1 p ρ(p)= p Ψ Ψ + − 1, | 5ih 5| 55 1 4 where Ψ5 = iiiii . | i √5 i=0 | i Applying TheoremP 1 by choosing Ai = 1 0 ,Bi = 0 0 , we can get that, if p > 0.0016, ρ contains at most 3 | ih | | ih | unentangled particles; if p> 0.0173, ρ contains at most 2 unentangled particles; if p> 0.0325, ρ contains at most 1 unentangled particles; if p > 0.0399, ρ contains at most 0 unentangled particles. But Observation 5 in Ref.[25] cannot detect any quantum states containing at most k unentangled particles for 0 k 3. ≤ ≤ Example 2. Consider the N-qubit mixed states, 1 p ρ(p)= p G G + − 1, | ih | 2N 1 where G = ( 0 ⊗N + 1 ⊗N ). | i √2 | i | i Let A = 1 0 ,B = 0 0 , then by using Theorem 1, we know that ρ(p) contains at most N 3 unentangled i | ih | i | ih | − particles when p

1 − p ′ TABLE I: For ρ(p) = p|GihG| + 1, the thresholds of pN−2, pN 2 for the quantum states containing at most N − 3 2N − unentangled particles detected by Theorem 1 and Observation 5 in Ref.[25] for 9 ≤ N ≤ 15, respectively, are illustrated. ′ When pN−2

N 9 10 11 12 13 14 15 pN−2 0.1263 0.0824 0.0519 0.0317 0.0189 0.0111 0.0064

′ pN−2 0.1547 0.1350 0.1197 0.1076 0.0977 0.0894 0.0824

k=2 p 1.0 a : N = 6 b : N = 7 0.8 c : N = 8 d : N = 9 0.6

0.4

0.2 a d c b q 0.0 0.2 0.4 0.6 0.8 1.0

⊗N ⊗N 1 − p − q FIG. 1: Detection quality of Theorem 3 for the state ρ(p, q) = p|WN ihWN | + qσx |WN ihWN |σx + 1 for k = 2 2N when N = 6, 7, 8, 9. The area enclosed by magenta a (green line b, blue line c, red line d), p axis, line q = 1 − p and q axis corresponds to the quantum states containing at most 1 unentangled particles when N =6(N = 7, N = 8, N = 9), respectively.

When p = 0, the quantum state ρ(p, q) is 1 q ρ(q)= qσ⊗N W W σ⊗N + − 1. x | N ih N | x 2N By choosing u = σ , A = 1 0 , our Theorem 3 can identify more quantum states containing at most k 1 m x i | ih | − unentangled particles than Observation 5 in Ref.[25] when N =8. For1 k 6, when q < q q′ , these quantum ≤ ≤ k ≤ k states containing at most k 1 unentangled particles which only can be detected by our Theorem 3, but not by − Observation 5 in Ref.[25]. The exact value of q and q′ for 1 k 6 are shown in the Table II. k k ≤ ≤

IV. CONCLUSION

In this paper, we have investigated the problem of detection of quantum states containing at most k 1 unentan- − gled particles. Several criteria for detecting states containing at most k 1 unentangled particles were presented − for arbitrary dimensional multipartite quantum systems. It turned out that our results were effective by some specific examples. We hope that our results can contribute to a further understanding of entanglement properties of multipartite quantum systems. 7

⊗N ⊗N 1 − q ′ TABLE II: For ρ(q)= qσx |WN ihWN |σx + 1 when N = 8, the thresholds of qk, qk for the quantum states containing 2N at most k − 1 unentangled particles detected by Theorem 3 and Observation 5 in Ref.[25] for 1 ≤ k ≤ 6, respectively, are ′ illustrated. When qk < q ≤ 1 and qk < q ≤ 1, ρ(q) contains at most k − 1 unentangled particles detected by our Theorem 3 and Observation 5 in Ref.[25], respectively. The symbol \ means that Observation 5 in Ref.[25] cannot identify any quantum states containing at most 0 unentangled particles and at most 1 unentangled particles. k 1 2 3 4 5 6

qk 0.2889 0.1579 0.1028 0.0725 0.0533 0.0400

′ qk \ \ 0.8647 0.6392 0.4587 0.3234

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos: 12071110, 11701135 and 11947073; the Hebei Natural Science Foundation of China under Grant Nos: A2020205014, A2018205125 and A2017403025, and the Education Department of Hebei Province Natural Science Foundation under Grant No: ZD2020167, and the Foundation of Hebei GEO University under Grant No. BQ201615.

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009). [2] A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991). [3] C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69, 2881 (1992). [4] C. H. Bennett, G. Brassard, C. Cr´epeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895 (1993). [5] T. Gao, F. L. Yan, and Y. C. Li, Optimal controlled teleportation, Europhys. Lett. 84, 50001 (2008). [6] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26, 1484 (1997). [7] C. H. Bennett and D. P. DiVincenzo, Quantum information and computation, Nature 404, 247 (2000). [8] O. G¨uhne and G. T´oth, Entanglement detection, Phys. Rep. 474, 1 (2009). [9] N. Friis, G. Vitagliano, M. Malik, and M. Huber, Entanglement certification from theory to experiment, Nat. Rev. Phys. 1, 72-87 (2019). [10] A. S. M. Hassan and P. S. Joag, Separability criterion for multipartite quantum states based on the Bloch representation of density matrices, Quantum Inf. Comput. 8, 773 (2008). [11] A. Gabriel, B. C. Hiesmayr, and M. Huber, Criterion for k-separability in mixed multipartite systems, Quantum Inf. Comput. 10, 829 (2010). [12] T. Gao and Y. Hong, Detection of genuinely entangled and nonseparable n-partite quantum states, Phys. Rev. A 82, 062113 (2010). [13] T. Gao, Y. Hong, Y. Lu, and F. L. Yan, Efficient k-separability criteria for mixed multipartite quantum states, Europhys. Lett. 104, 20007 (2013). [14] Y. Hong, S. Luo, and H. Song, Detecting k-nonseparability via quantum Fisher information, Phys. Rev. A 91, 042313 (2015). [15] L. Liu, T. Gao, and F. L. Yan, Separability criteria via sets of mutually unbiased measurements, Sci. Rep. 5, 13138 (2015). [16] Y. Hong and S. Luo, Detecting k-nonseparability via local uncertainty relations, Phys. Rev. A 93, 042310 (2016). [17] L. Liu, T. Gao, and F. L. Yan, Separability criteria via some classes of measurements, Sci. China Phys. Mech. Astron. 60, 100311 (2017). [18] T. C. Wei and P. M. Goldbart, Geometric measure of entanglement and applications to bipartite and multipartite quantum states, Phys. Rev. A 68, 042307 (2003). [19] A. R. R. Carvalho, F. Mintert, and A. Buchleitner, Decoherence and multipartite entanglement, Phys. Rev. Lett. 93, 230501 (2004). [20] Z. H. Ma, Z. H. Chen, J. L. Chen, C. Spengler, A. Gabriel, and M. Huber, Measure of genuine multipartite entanglement with computable lower bounds, Phys. Rev. A 83, 062325 (2011). [21] Y. Hong, T. Gao, and F. L. Yan, Measure of multipartite entanglement with computable lower bounds, 8

Phys. Rev. A 86, 062323 (2012). [22] T. Gao, F. L. Yan, and S. J. van Enk, Permutationally invariant part of a density matrix and nonseparability of N-qubit states, Phys. Rev. Lett. 112, 180501 (2014). [23] O. G¨uhne, G. T´oth, and H. J. Briegel, Multipartite entanglement in spin chains, New J. Phys. 7, 229 (2005). [24] G. T´oth, C. Knapp, O. G¨uhne, and H. J. Briegel, Spin squeezing and entanglement, Phys. Rev. A 79, 042334 (2009). [25] G. T´oth, Multipartite entanglement and high-precision metrology, Phys. Rev. A 85, 022322 (2012). [26] S. W¨olk, M. Huber, and O. G¨uhne, Unified approach to entanglement criteria using the Cauchy-Schwarz and H¨older inequalities, Phys. Rev. A 90, 022315 (2014).