Integral 2012.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Integral 2012.Pdf Autumn 2012 Volume 7 Massachusetts Institute of Technology 1ntegraL NEWS FROM THE MATHEMATICS DEPARTMENT AT MIT Annual Retreat Inside The first Mathematics Department Retreat took place late September, organized by • New Faculty 2 our graduate students. Over 150 depart- • Faculty and Student Awards 3 ment members, families, and guests trav- • Donor Profile and Building 2 4 eled to Purity Spring Resort in the White Mountains in New Hampshire for a splen- • Letter from Haynes Miller 5 did weekend of hiking, canoeing, picking • Department Retreat 6 mushrooms, doing mathematics and relax- • 2012 Doctorates 7 ing. Late nights laughing around the bon- • Alumni Corner, Outreach 8 fire and playing board games in the lodge made for a memorable time. We expect the Retreat to become an annual tradition. Building 2 Renovation MITx and edX Dear Friends, Preparations for the Building 2 renovation In other activities, the Department has been Greetings from MIT Mathematics! gathered speed over the summer. We’ve considering ways to participate in edX, the Faculty recruiting was tremendous last worked closely with Ann Beha Architects initiative for online education. The edX en- year and brought us four fantastic new and MIT planners to arrive at an excit- terprise is building technology to enhance individuals: Professors Alice Guionnet ing scheme that adds common spaces and the learning experience for MIT students (probability), Larry Guth (geometry and offices, mezzanines and skylights, and and to reach thousands or millions of stu- harmonic analysis), Bill Minicozzi (geo- takes good advantage of our outlooks over dents worldwide. The potential is extraordi- metric analysis and PDEs), and Assistant the Charles River. The schedule calls for nary, but the uncertainties are many. We are Professor Aaron Naber (Ricci solitons, construction to begin this summer. We’ll excited about the possibilities and we will collapsing theory). Jörn Dunkel (physical pack up our things and move to temporary work on overcoming the challenges. applied mathematics) will join us next year quarters in Building E17/18, which is being Visiting Committee refurbished too. Mathematics faculty and as Assistant Professor. I’ll close by thanking the members of our staff recently saw the E17/18 space during Visiting Committee, which convened this We filled two key staff positions with out- a lunch we served there. It met with general past spring under the leadership of its new standing people: Barbara Peskin joined approval—proximity to the Kendall Square chair, Art Samberg. I also thank my col- the department in January as Academic restaurants and the T station being seen as leagues for their excellent presentations and Administrator, with primary responsibil- a plus, as noted by several people. We will participation. The meeting was successful, ity for running MAS, the Mathematics be sharing E17/18 with Economics, whose with broad enthusiasm expressed for the Academic Services office. This office, and regular building will be renovated at the results of our recent faculty recruiting ef- hence Barbara herself, is our nexus for all same time. When we return to Building 2 forts and lots of discussion about how the things educational. With the growth in the after the work is done, Building E17/18 will Department could and should participate in mathematics major, now at over 350 stu- serve as swing space for other departments edX. The renovation was a major agenda dents the third largest at MIT, and assorted as their turn comes for major renovation. new technologies and other changes, we item. Lead architect Ann Beha came and are most fortunate to have Barbara, one of We are deeply grateful to Jim and Marilyn inspired us with her vision for new spaces our former PhDs, here with us. Barbara’s Simons, and the Simons Foundation, for at MIT. She knows the campus well from extensive mathematical experience as well the leadership gift that is helping make this her days as an architecture graduate student as managerial experience from leader- project possible. We are in the process of here. We appreciate the time invested by ship positions at Dragon Systems and the raising additional funds to cover as much everyone, as well as their helpful ideas and International Computer Science Institute of the remaining renovation cost as we can. their support. The MIT Administration and the Facilities will serve us well. Cynthia Shen arrived Have a good year! two months ago as Administrative Officer. Department have worked with us intensively Cynthia runs Headquarters and is respon- to produce a design that meets our needs. sible for the oversight of all department Simons Lectures finances and staff. She brings a great depth This year’s Simons Lectures will take place Michael Sipser of knowledge from her prior MIT positions in May, given by Emmanuel Candès and Department Head in finance at CSAIL and RLE. Raphaël Rouquier. 2 New Faculty Alice Guionnet, Professor of Mathematics, comes to MIT Larry Guth, Professor of Mathematics, arrives from NYU’s from École Normale Supérieure Lyon, where she was on the Courant Institute of Mathematical Sciences. Guth works faculty since 2000. Guionnet is a probabilist, specializing in systolic and harmonic analysis. He’s made major break- in random matrices, large deviations, free probability, and throughs on several long-standing questions including the the statistical mechanics of disordered systems. As Direc- endpoint multilinear Kakeya conjecture and the Erdös dis- tor of Research at ENS Lyon, she built a top-ranking prob- tinct distances problem in combinatorial geometry. ability group. Her distinctions include the Miller Institute Guth received his PhD at MIT in 2005 under Tom Mrowka. Fellowship, the Loève Prize, the Silver Medal of CNRS, and Following appointments at Stanford and the University of Simons Investigator. She received her PhD from ENS Paris Toronto, he joined the Courant Institute as Professor of under the guidance of Gérard Ben Arous. Mathematics in 2011. Aaron Naber, William Minicozzi, Assistant Professor Professor of Math- of Mathematics, has ematics, arrives from been a CLE Moore Johns Hopkins Uni- Instructor here since versity, where he has 2009. Naber is a been on the faculty geometric analyst since 1994. Mini- working on the large- cozzi’s field is geo- scale structure of metric analysis. His Riemannian ge- groundbreaking work ometry, Ricci flow, with Toby Colding singularity theory of settled several ma- harmonic maps, and jor problems in the Kähler geometry. theory of embedded Naber completed minimal surfaces his PhD at Princeton of 3 manifolds. For University in 2009 these contributions, under Gang Tian. they shared the 2010 Veblen Prize in Geometry. Mini- cozzi received his PhD from Stanford University in 1994 under Richard Schoen. 3 Faculty Achievements Student Awards Igor Rodnianski was awarded the ten lectures on determinantal point Graduate students Sheel Ganatra, 2011 Fermat Prize by the Toulouse processes and representation theory. Hoeskuldur Halldorsson, and Alejan- Mathematics Institute, “for his funda- Paul Seidel gave the 2012 Mordell dro Morales received the Charles and mental contributions to the study of Lecture at Cambridge University and Holly Housman Award for excellence the equations of general relativity and the 2011-2012 Distinguished Lecture in undergraduate teaching. Steven Sam of the propagation of light on curved Series at UCLA. David Vogan was received the Charles W. and Jennifer C. space-times.” Bonnie Berger was elected President of the American Johnson Prize for an outstanding paper elected fellow of the American Acad- Mathematical Society, starting Feb- accepted for publication. emy of Arts and Sciences and fellow ruary 2013. Undergraduate Fan Wei ’12 received the Jon A. Bucsela Prize in Math- of the International Society for Com- Ju-Lee Kim was promoted to Professor. putational Biology. Bjorn Poonen was ematics for distinguished scholastic elected fellow of the American Acade- Abhinav Kumar and Jonathan Kelner achievement, professional promise, my of Arts and Sciences. Alice Guion- were promoted to Associate Professor. and enthusiasm for mathematics. She net and Paul Seidel were chosen to be also received the Alice T. Schafer Prize Simons Investigators by the Simons Research Staff Awards for excellence in mathematics by an Foundation. Victor Kac was selected Alejandro Rodriguez and Andrew undergraduate woman in mathematics, given by the Association for Women to be a Simons Fellow by the Simons Sutherland each received the School in Mathematics. Undergraduate Amol Foundation. Mark Behrens received of Science Infinite Mile Award. Aggarwal ’15 and his mentor, gradu- the 2011 School of Science Prize Andrew was also awarded the Selfridge ate student Guozhen Wang, shared the for Excellence in Graduate Teaching. Prize for the top paper at the Algo- Hartley Rogers Jr. Prize for the best Pavel Etingof was selected to be the rithmic Number Theory Symposium. SPUR paper. Jacob Steinhardt ’12 re- next Robert E. Collins Distinguished He was recently promoted to Principal ceived a Hertz fellowship to support his Scholar. Jacob Fox was selected to be Research Scientist. graduate studies. George Arzeno ’14, the next recipient of the Edmund F. Jon Schneider ’13, Shawn Tsosie ’12, Kelly Research Award. Michael Sipser Staff Award and Fan Wei ’12 were Poster Session was selected to be the next holder of Erin McGrath, Director of Development Winners at the Joint Meetings of the the Barton L. Weller Professorship. for the Mathematics and Physics de- AMS and MAA. Alexei Borodin gave the 2012 London partments, received the 2012 MIT Mathematical Society Lectures at Excellence Award in the category of Another Putnam Record the University of Glasgow, a series of Serving the Client. We had a record-breaking year at the 2011 William Lowell Putnam Math- ematical Competition. An astonishing 36% of all high scorers in this North MLK Visiting Assistant Professor Terrence Blackman American competition were MIT stu- dents. Precisely speaking, of the 81 Terrence Blackman high scorers (Honorable Mention and is spending this year higher), MIT had 29, more than the with us as Dr.
Recommended publications
  • A Historical Perspective of Spectrum Estimation
    PROCEEDINGSIEEE, OF THE VOL. 70, NO. 9, SEPTEMBER885 1982 A Historical Perspective of Spectrum Estimation ENDERS A. ROBINSON Invited Paper Alwhrct-The prehistory of spectral estimation has its mots in an- times, credit for the empirical discovery of spectra goes to the cient times with the development of the calendar and the clock The diversified genius of Sir Isaac Newton [ 11. But the great in- work of F’ythagom in 600 B.C. on the laws of musical harmony found mathematical expression in the eighteenthcentury in terms of the wave terest in spectral analysis made its appearanceonly a little equation. The strueto understand the solution of the wave equation more than a century ago. The prominent German chemist was fhlly resolved by Jean Baptiste Joseph de Fourier in 1807 with Robert Wilhelm Bunsen (18 1 1-1899) repeated Newton’s his introduction of the Fourier series TheFourier theory was ex- experiment of the glass prism. Only Bunsen did not use the tended to the case of arbitrary orthogollpl functions by Stmn and sun’s rays Newton did. Newtonhad found that aray of Liowillein 1836. The Stum+Liouville theory led to the greatest as empirical sum of spectral analysis yet obbhed, namely the formulo sunlight is expanded into a band of many colors, the spectrum tion of quantum mechnnics as given by Heisenberg and SchrMngm in of the rainbow. In Bunsen’s experiment, the role of pure sun- 1925 and 1926. In 1929 John von Neumann put the spectral theory of light was replaced by the burning of an old rag that had been the atom on a Turn mathematical foundation in his spectral represent, soaked in a salt solution (sodium chloride).
    [Show full text]
  • I. Overview of Activities, April, 2005-March, 2006 …
    MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights
    [Show full text]
  • Martin Gardner Receives JPBM Communications Award
    THE NEWSLETTER OF THE MATHEMATICAL ASSOCIAnON OF AMERICA Martin Gardner Receives JPBM voIome 14, Number 4 Communications Award Martin Gardner has been named the 1994 the United States Navy recipient of the Joint Policy Board for Math­ and served until the end ematics Communications Award. Author of of the Second World In this Issue numerous books and articles about mathemat­ War. He began his Sci­ ics' Gardner isbest known for thelong-running entific Americancolumn "Mathematical Games" column in Scientific in December 1956. 4 CD-ROM American. For nearly forty years, Gardner, The MAA is proud to count Gardneras one of its Textbooks and through his column and books, has exertedan authors. He has published four books with the enormous influence on mathematicians and Calculus Association, with three more in thepipeline. This students of mathematics. September, he begins "Gardner's Gatherings," 6 Open Secrets When asked about the appeal of mathemat­ a new column in Math Horizons. ics, Gardner said, "It's just the patterns, and Previous JPBM Communications Awards have their order-and their beauty: the way it all gone to James Gleick, author of Chaos; Hugh 8 Section Awards fits together so it all comes out right in the Whitemore for the play Breaking the Code; Ivars end." for Distinguished Peterson, author of several books and associate Teaching Gardner graduated Phi Beta Kappa in phi­ editor of Science News; and Joel Schneider, losophy from the University of Chicago in content director for the Children's Television 10 Personal Opinion 1936, and then pursued graduate work in the Workshop's Square One TV.
    [Show full text]
  • Publications of Members, 1930-1954
    THE INSTITUTE FOR ADVANCED STUDY PUBLICATIONS OF MEMBERS 1930 • 1954 PRINCETON, NEW JERSEY . 1955 COPYRIGHT 1955, BY THE INSTITUTE FOR ADVANCED STUDY MANUFACTURED IN THE UNITED STATES OF AMERICA BY PRINCETON UNIVERSITY PRESS, PRINCETON, N.J. CONTENTS FOREWORD 3 BIBLIOGRAPHY 9 DIRECTORY OF INSTITUTE MEMBERS, 1930-1954 205 MEMBERS WITH APPOINTMENTS OF LONG TERM 265 TRUSTEES 269 buH FOREWORD FOREWORD Publication of this bibliography marks the 25th Anniversary of the foundation of the Institute for Advanced Study. The certificate of incorporation of the Institute was signed on the 20th day of May, 1930. The first academic appointments, naming Albert Einstein and Oswald Veblen as Professors at the Institute, were approved two and one- half years later, in initiation of academic work. The Institute for Advanced Study is devoted to the encouragement, support and patronage of learning—of science, in the old, broad, undifferentiated sense of the word. The Institute partakes of the character both of a university and of a research institute j but it also differs in significant ways from both. It is unlike a university, for instance, in its small size—its academic membership at any one time numbers only a little over a hundred. It is unlike a university in that it has no formal curriculum, no scheduled courses of instruction, no commitment that all branches of learning be rep- resented in its faculty and members. It is unlike a research institute in that its purposes are broader, that it supports many separate fields of study, that, with one exception, it maintains no laboratories; and above all in that it welcomes temporary members, whose intellectual development and growth are one of its principal purposes.
    [Show full text]
  • Richard Schoen – Mathematics
    Rolf Schock Prizes 2017 Photo: Private Photo: Richard Schoen Richard Schoen – Mathematics The Rolf Schock Prize in Mathematics 2017 is awarded to Richard Schoen, University of California, Irvine and Stanford University, USA, “for groundbreaking work in differential geometry and geometric analysis including the proof of the Yamabe conjecture, the positive mass conjecture, and the differentiable sphere theorem”. Richard Schoen holds professorships at University of California, Irvine and Stanford University, and is one of three vice-presidents of the American Mathematical Society. Schoen works in the field of geometric analysis. He is in fact together with Shing-Tung Yau one of the founders of the subject. Geometric analysis can be described as the study of geometry using non-linear partial differential equations. The developments in and around this field has transformed large parts of mathematics in striking ways. Examples include, gauge theory in 4-manifold topology, Floer homology and Gromov-Witten theory, and Ricci-and mean curvature flows. From the very beginning Schoen has produced very strong results in the area. His work is characterized by powerful technical strength and a clear vision of geometric relevance, as demonstrated by him being involved in the early stages of areas that later witnessed breakthroughs. Examples are his work with Uhlenbeck related to gauge theory and his work with Simon and Yau, and with Yau on estimates for minimal surfaces. Schoen has also established a number of well-known and classical results including the following: • The positive mass conjecture in general relativity: the ADM mass, which measures the deviation of the metric tensor from the imposed flat metric at infinity is non-negative.
    [Show full text]
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • Rapport Annuel 2014-2015
    RAPPORT ANNUEL 2014-2015 Présentation du rapport annuel 1 Programme thématique 2 Autres activités 12 Grandes Conférences et colloques 16 Les laboratoires du CRM 20 Les prix du CRM 30 Le CRM et la formation 34 Les partenariats du CRM 38 Les publications du CRM 40 Comités à la tête du CRM 41 Le CRM en chiffres 42 Luc Vinet Présentation En 2014-2015, contrairement à ce qui était le cas dans (en physique mathématique) à Charles Gale de l’Université les années récentes, le programme thématique du CRM a McGill et le prix CRM-SSC (en statistique) à Matías été consacré à un seul thème (très vaste !) : la théorie des Salibián-Barrera de l’Université de Colombie-Britannique. nombres. L’année thématique, intitulée « La théorie des Les Grandes conférences du CRM permirent au grand public nombres : de la statistique Arithmétique aux éléments Zêta », de s’initier à des sujets variés, présentés par des mathémati- a été organisée par les membres du CICMA, un laboratoire ciens chevronnés : Euler et les jets d’eau de Sans-Souci du CRM à la fine pointe de la recherche mondiale, auxquels il (par Yann Brenier), la mesure des émotions en temps réel faut ajouter Louigi Addario-Berry (du Groupe de probabilités (par Chris Danforth), le mécanisme d’Anticythère (par de Montréal). Je tiens à remercier les quatre organisateurs de James Evans) et l’optique et les solitons (par John Dudley). cette brillante année thématique : Henri Darmon de l’Univer- L’année 2014-2015 fut également importante du point de sité McGill, Chantal David de l’Université Concordia, Andrew vue de l’organisation et du financement du CRM.
    [Show full text]
  • Curriculum Vitae.Pdf
    Lan-Hsuan Huang Department of Mathematics Phone: (860) 486-8390 University of Connecticut Fax: (860) 486-4238 Storrs, CT 06269 Email: [email protected] USA http://lhhuang.math.uconn.edu Research Geometric Analysis and General Relativity Employment University of Connecticut Professor 2020-present Associate Professor 2016-2020 Assistant Professor 2012-2016 Institute for Advanced Study Member (with the title of von Neumann fellow) 2018-2019 Columbia University Ritt Assistant Professor 2009-2012 Education Ph.D. Mathematics, Stanford University 2009 Advisor: Professor Richard Schoen B.S. Mathematics, National Taiwan University 2004 Grants • NSF DMS-2005588 (PI, $250,336) 2020-2023 & Honors • von Neumann Fellow, Institute for Advanced Study 2018-2019 • Simons Fellow in Mathematics, Simons Foundation ($122,378) 2018-2019 • NSF CAREER Award (PI, $400,648) 2015-2021 • NSF Grant DMS-1308837 (PI, $282,249) 2013-2016 • NSF Grant DMS-1005560 and DMS-1301645 (PI, $125,645) 2010-2013 Visiting • Erwin Schr¨odingerInternational Institute July 2017 Positions • National Taiwan University Summer 2016 • MSRI Research Member Fall 2013 • Max-Planck Institute for Gravitational Physics, Germany Fall 2010 • Institut Mittag-Leffler, Sweden Fall 2008 1 Journal 1. Equality in the spacetime positive mass theorem (with D. Lee), Commu- Publications nications in Mathematical Physics 376 (2020), no. 3, 2379{2407. 2. Mass rigidity for hyperbolic manifolds (with H. C. Jang and D. Martin), Communications in Mathematical Physics 376 (2020), no. 3, 2329- 2349. 3. Localized deformation for initial data sets with the dominant energy condi- tion (with J. Corvino), Calculus Variations and Partial Differential Equations (2020), no. 1, No. 42. 4. Existence of harmonic maps into CAT(1) spaces (with C.
    [Show full text]
  • Introducing the Mini-DML Project Thierry Bouche
    Introducing the mini-DML project Thierry Bouche To cite this version: Thierry Bouche. Introducing the mini-DML project. ECM4 Satellite Conference EMANI/DML, Jun 2004, Stockholm, Sweden. 11 p.; ISBN 3-88127-107-4. hal-00347692 HAL Id: hal-00347692 https://hal.archives-ouvertes.fr/hal-00347692 Submitted on 16 Dec 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Introducing the mini-DML project Thierry Bouche Université Joseph Fourier (Grenoble) WDML workshop Stockholm June 27th 2004 Introduction At the Göttingen meeting of the Digital mathematical library project (DML), in May 2004, the issue was raised that discovery and seamless access to the available digitised litterature was still a task to be acomplished. The ambitious project of a comprehen- sive registry of all ongoing digitisation activities in the field of mathematical research litterature was agreed upon, as well as the further investigation of many linking op- tions to ease user’s life. However, given the scope of those projects, their benefits can’t be expected too soon. Between the hope of a comprehensive DML with many eYcient entry points and the actual dissemination of heterogeneous partial lists of available material, there is a path towards multiple distributed databases allowing integrated search, metadata exchange and powerful interlinking.
    [Show full text]
  • Department of Mathematics
    Department of Mathematics The Department of Mathematics seeks to maintain its top ranking in mathematics research and education in the United States. The department is a key part of MIT’s educational mission at both the undergraduate and graduate levels and produces the most sought-after young researchers. Key to the department’s success is recruitment of the best faculty members, postdoctoral associates, and graduate students in an ever more competitive environment. The department strives to be diverse at all levels in terms of race, gender, and ethnicity. It continues to serve the varied needs of its graduate students, undergraduate students majoring in mathematics, and the broader MIT community. Awards and Honors The faculty received numerous distinctions this year. Professor Victor Kac received the Leroy P. Steele Prize for Lifetime Achievement, for “groundbreaking contributions to Lie Theory and its applications to Mathematics and Mathematical Physics.” Larry Guth (together with Netz Katz of the California Institute of Technology) won the Clay Mathematics Institute Research Award. Tomasz Mrowka was elected as a member of the National Academy of Sciences and William Minicozzi was elected as a fellow of the American Academy of Arts and Sciences. Alexei Borodin received the 2015 Loève Prize in Probability, given by the University of California, Berkeley, in recognition of outstanding research in mathematical probability by a young researcher. Alan Edelman received the 2015 Babbage Award, given at the IEEE International Parallel and Distributed Processing Symposium, for exceptional contributions to the field of parallel processing. Bonnie Berger was elected vice president of the International Society for Computational Biology.
    [Show full text]
  • Department of Mathematics, Report to the President 2015-2016
    Department of Mathematics The Department of Mathematics continues to be the top-ranked mathematics department in the United States. The department is a key part of MIT’s educational mission at both the undergraduate and graduate levels and produces top sought- after young researchers. Key to the department’s success is recruitment of the very best faculty, postdoctoral fellows, and graduate students in an ever-more competitive environment. The department aims to be diverse at all levels in terms of race, gender, and ethnicity. It continues to serve the varied needs of the department’s graduate students, mathematics majors, and the broader MIT community. Awards and Honors The faculty received numerous distinctions this year. Professor Emeritus Michael Artin was awarded the National Medal of Science. In 2016, President Barack Obama presented this honor to Artin for his outstanding contributions to mathematics. Two other emeritus professors also received distinctions: Professor Bertram Kostant was selected to receive the 2016 Wigner Medal, in recognition of “outstanding contributions to the understanding of physics through Group Theory.” Professor Alar Toomre was elected member of the American Philosophical Society. Among active faculty, Professor Larry Guth was awarded the New Horizons in Mathematics Prize for “ingenious and surprising solutions to long standing open problems in symplectic geometry, Riemannian geometry, harmonic analysis, and combinatorial geometry.” He also received a 2015 Teaching Prize for Graduate Education from the School of Science. Professor Alexei Borodin received the 2015 Henri Poincaré Prize, awarded every three years at the International Mathematical Physics Congress to recognize outstanding contributions in mathematical physics. He also received a 2016 Simons Fellowship in Mathematics.
    [Show full text]