OPC Unified Architecture the Interoperability Standard

Total Page:16

File Type:pdf, Size:1020Kb

OPC Unified Architecture the Interoperability Standard 1 OPC Unified Architecture The Interoperability Standard Multiplatform Multivendor Secure Reliable 2 OPC: OPeness – PrODUCtivity – COLLABORATION 3 Welcome to the OPC Foundation, The OPC Foundation a global organization in which users, The OPC Foundation is dedicated to ensuring in- vendors and consortia collaborate teroperability in automation. By creating and main- taining open specifications that standardize the com- to develop standards for multivendor, munication. This communication includes acquired process data, alarm and event records, historical multiplatform, secure and reliable data and batch data. The information is transferred vertical and horizontal from multivendor enterprise interoperability in industrial automa- systems and between production devices. Produc- tion devices include sensors, instruments, PLCs, tion and other markets. RTUs, DCSs, HMIs, historians, trending subsystems, Thomas J. Burke alarm subsystems, and more. These systems are President and Executive Director OPC Foundation used in the process industry, manufacturing, and in acquiring and transporting energy, oil, gas and min- Contents OPC is the interoperability standard for secure, reli- Today there are over 20,000 OPC products from erals. able multivendor, multiplatform data exchange for more than 3,500 vendors with millions OPC based Industrial Automation. It provides open connectivity applications installed worldwide. This reinforces OPC across multiple products, regardless of hardware technology as the leading standard for interoperable platform or software operating system. data exchange between software applications from 2 OPC: OPeness – PrODUCtivity – multiple vendors. Openess Productivity Collaboration COLLABORATION The OPC standard is a series of specifications that are developed by industry vendors, end-users and The OPC Foundation’s vision is to manage a global – > 450 members – Industry standard – PLCopen 4 QUOTES software developers to facilitate data transmission organization in which users, vendors and consortia – Platform-neutral – Manufacturer-independent – BACnet Interest Group and exchange. OPC specifications define an inter- collaborate to create data transfer standards for mul- – All areas of application – Interoperability – FDI Cooperation 6 OPC UA AT A GLANCE face between clients and servers, as well as servers tivendor, multiplatform, secure and reliable interoper- – All connections – Reliability – EDDL and FDT and servers, for different fields of applications, in- ability in industrial automation. – MESA, MES-D.A.CH. 8 OPC FOUNDATION ORGANIZATION cluding access to real-time data, monitoring of – OMAC alarms and events, access to historical data and To support this vision, the OPC Foundation : – Mimosa, ISA-95, ISA-88 10 OPC UA TECHNOLOGY IN DETAIL other applications. ➞ Creates and maintains specifications. – MTConnect ➞ Ensures compliance with OPC specifications – Smard Grid 16 COMPLIANCE AND CERTIFICATION Since 1995 OPC has been gaining widespread via certification testing. – ODVA adoption across multiple industries. OPC Classic ➞ Collaborates with industry leading standard – MDIS 18 CASE STUDIES was first released in August, 1996 with support for organizations. Microsoft Windows. With the introduction of service- 26 OPC UA IS IEC62541 oriented architectures in industrial automation sys- This brochure will help you better understand OPC The OPC Vision tems, the OPC Foundation released the first OPC UA UA technology and what the OPC Foundation can 27 F URTHER INFORMATION specification in 2009 which provides a migration provide to your organization. For more information, path from OPC Classic to more secure and scalable please visit the OPC Foundation website at The Vision of the OPC Foundation is to provide the solutions that take advantage of Web services and a www.opcfoundation.org. best technology, specifications, certification and pro- unified data model. cesses to enable companies to build products and services that demonstrate multiplatform multivendor Sincerely, secure reliable interoperability. OPC Foundation members benefit by being able to take advantage of Thomas J. Burke the technology and marketing necessary to become President and Executive Director leaders in the industry supporting industrial stan- OPC Foundation dards for industrial automation and other markets. [email protected] 4 QUOTES 5 »As a founding member of the OPC Foundation, »OPC UA is now available on the market and is prov- »OPC UA is the future oriented communication stan- »OPC UA allows a platform independent, easy and Siemens strives to create added value for its cus- ing to solve the key issues it was intended to. Honey- dard for the industry. The emergence of the 4th in- secure connection between SAP business systems tomers through driving automation as well as the fur- well is investing in OPC UA and expects to provide dustrial revolution will boost the need for OPC UA.« with distributed shop floor data even on smallest em- ther development and interoperability of technolo- leadership to ensure there is market acceptance and Dr. Reinhold Achatz, Head of Corporate Center Technology, Information & bedded devices.« gies between different system manufacturers. adoption. This is an exciting evolution for the OPC Quality, ThyssenKrupp AG, Former OPC board member and Vice President from 1996 till 2012. In many of our innovations – such as the network Foundation as it effectively solves many existing Veronika Schmid-Lutz, Product Owner Manufacturing, SAP AG management solution Sinema Server, the Human problems and expands the applicability of OPC far Machine Interface Simatic HMI, or the flexible, modu- beyond its current accepted scope historically.« lar motor management system Simocode pro – OPC standards have been applied. OPC UA is an imple- David Eisner, Honeywell, OPC board member mentation we attach especially great relevance to. Thus, we have always been strongly involved in this field, and were among the first companies to have their products certified. « Thomas Hahn, Siemens AG, OPC board member »OPC UA unlocks the potential for ERP to Factory »Just as the OPC Foundation once transformed data Floor communications“.« access and interoperability for industrial applications on the PC platform, it stands on the threshold of an- Commitment from Industry Leaders Dr. Jürgen K. Weinhofer, Vice President Control Architecture & Technology, Rockwell Automation, OPC board member other wave of transformation represented by the po- tential of the Internet of Things. Connected devices »ICONICS is well positioned to take advantage of the together with cloud services, unlimited storage, and new OPC UA interoperability standard with its new- open standards for security and communications are est SCADA, HMI and Analytics products which are enabling Intelligent Systems, paving the way for a designed to be “OPC UA to Core“.« new wave of insights, applications and business Russ L. Agrusa, CEO ICONICS, OPC board member models across the manufacturing landscape. The OPC UA standards play a key role in enabling this transformation and Microsoft is committed to work- ing with the OPC Foundation to best help meet it’s needs.« Rohit Bhargava, CTO WW Manufacturing & Resources Sector, Microsoft Corporation »OPC DA is the most popular and successful stan- »Beckhoff joined OPC Foundation in 1998 and early dard interface on the automation systems. Yokoga- provided OPC UA functionality integrated into small- wa joins OPC Foundation from the beginning and est embedded controller in 2008. Actively pushing has much contributed to the development of OPC the collaboration with PLCopen our customers al- interface. Now Yokogawa is fully committed itself to ready benefit from easy, secured connection from new promising OPC UA and will contribute to the »Emerson, as a founding member of the OPC Foun- our open PC based control philosophy up into MES development as ever.« dation, has and will remain committed to the vision of and cloud scenarios.« the OPC Foundation to develop standards for open Nobuaki Konishi, Yokogawa, President OPC Council Japan, Hans Beckhoff, Managing Director, Beckhoff Automation GmbH OPC board member connectivity in industrial automation systems and adjacent domains.« Dr. Grant Wilson, Emerson, OPC board member 6 OPC UA AT A GLANCE 7 OPC UA at a Glance – Secure, reliable and platform-independent data communication OPC UA Object Method Variables Methods Service Set Attribute _ _ _ _ _ _____( ) (Programs) Service Set _ _ _ _ _ _____( ) (Data Access, PROTECTION AGAINST _ _ _ _ _ _____( ) PLATFORM INDEPENDENT DATA Historical COMMUNICATON UNAUTHORIZED ACCESS Data Access) OPC Unified Architecture is the new technology gen- OPC UA technology uses a mature security concept, Events eration of the OPC Foundation for the secure, reli- ensuring protection against unauthorized access or N able and vendor-neutral transport of raw data and sabotage of process data and as well against errors N Subscription pre-processed information from the sensor and field due to careless operation. The OPC UA security N Service Set level up to the manufacturing level and into the pro- concept encompasses options for user authentica- (Alarms & duction planning or ERP system. With OPC UA, all tion, the signing of messages and the encryption of Conditions) Standardized desired information is available to every authorized the transmitted user data. UA security is based on communication application and every authorized person at any time proven standards which are used
Recommended publications
  • Accessing PI System Using OPC Unified Architecture
    Accessing PI System using OPC Unified Architecture Alisher Maksumov OPC Development Group Lead OSIsoft, Inc. Agenda • What is OPC Unified Architecture? • OPC UA Web Services • Information Modeling • Client and Sever Communication • Exposing PI System • Server and Client Demo • OPC UA Roadmap • Summary What is OPC Unified Architecture? • Next generation of OPC technology – Platform independent • Designed with SOA principles – Extensible, discoverable – Well defined message syntax • Mapped into Web Services – WSDL, XML schema, SOAP – Message exchange over HTTP/HTTPS • Supports enhanced security – Certificates, Encryption, Signature • Adopts Information Modeling concepts – Browsable and discoverable Address Space model – Objects, Nodes, Types, Data Variables, Properties OPC UA Specification • Part 1 – Concepts • Part 2 – Security • Part 3 – Address Space Generic Parts • Part 4 – Services • Part 5 – Information Model • Part 6 – Mappings Mapping to Web Services • Part 7 – Profiles Supported features • Part 8 – Data Access • Part 9 – Alarms and Conditions Parts specific to classic • Part 10 – Programs OPC mapping • Part 11 – Historical Access • Part 12 – Discovery OPC Server discovery • Part 13 – Aggregates OPC UA Web Services • Defined in OPC UA Spec (Parts 4, 6) and OPC UA WSDL • Can be group into service sets: – Discovery Service Set • FindServers, GetEndpoints, RegisterServer – Secure Channel Service Set • OpenSecureChannel, CloseSecureChannel – Session Service Set • Create, Activate, Close Session – Node Management Service Set • Add and
    [Show full text]
  • OPC UA Server App OPC UA Server for Ctrlx CORE
    Application Manual OPC UA Server App OPC UA Server for ctrlX CORE R911403778, Edition 03 Copyright © Bosch Rexroth AG 2021 All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. Liability The specified data is intended for product description purposes only and shall not be deemed to be a guaranteed characteristic unless expressly stipulated in the contract. All rights are reserved with respect to the content of this documentation and the availability of the product. DOK-XCORE*-OPCUA*SERV*-AP03-EN-P DC-IA/EPI5 (TaDo/MePe) f5f200cddfc773880a347e883d356b4f, 3, en_US OPC UA Server App 3 / 31 Table of contents 1 About this documentation 4 2 Important directions on use 5 2.1 Intended use. 5 2.1.1 Introduction. 5 2.1.2 Areas of use and application . 5 2.2 Unintended use. 6 3 Safety instructions 7 4 Introduction into the OPC Unified Architecture 9 4.1 General information. 9 4.2 Overview on specifications . 9 4.3 Information model . 10 4.4 Service-oriented architecture . 10 5 Rexroth ctrlX OPC UA Server 17 5.1 The ctrlX OPC UA Server in the ctrlX AUTOMATION . 17 5.2 Installation on ctrlX CORE. 17 5.3 Properties. 19 5.4 Configuration . 19 5.4.1 Certificate configuration . 20 6 Related documentation 23 6.1 Overview. 23 6.2 ctrlX AUTOMATION. 23 6.3 ctrlX WORKS. 23 6.4 ctrlX CORE. 24 6.5 ctrlX CORE Apps. 24 7 Service and support 27 8 Index 29 R911403778, Edition 03 Bosch Rexroth AG 4 / 31 OPC UA Server App 1 About this documentation Editions of this documentation Edition Release Notes date 01 2020-06 First edition 02 2021-01 Revision ctrlX CORE version UAS-V-0106 03 2021-04 Revision ctrlX CORE version UAS-V-0108 Bosch Rexroth AG R911403778, Edition 03 OPC UA Server App 5 / 31 Intended use 2 Important directions on use 2.1 Intended use 2.1.1 Introduction Rexroth products are developed and manufactured to the state-of-the-art.
    [Show full text]
  • Comtrol IO-Link to OPC UA
    FOR IMMEDIATE RELEASE CONTACT: Jordan DeGidio Marketing Specialist +1 763.957.6000 [email protected] Comtrol Implements OPC-UA connectivity with MultiLink™ on IO-Link Master family MINNEAPOLIS, Minnesota – April 21, 2017 — Comtrol Corporation, a manufacturer of industrial device connectivity products and the official North American IO-Link Competency Center, today announced the availability of OPC-UA support with its MultiLink™ technology on its IO-Link Master family of products. OPC Unified Architecture (OPC-UA) is a machine to machine communication protocol developed for industrial automation. OPC-UA allows customers to communicate with industrial equipment and systems for data connection and control, freely use an open standard, cross-platform, implement service-oriented architecture (SOA) software and utilize robust security. Comtrol’s MultiLink™ technology allows IO-Link Masters to simultaneously provide sensors Process data to PLC platforms, while also sending the sensors ISDU Service and Process data via Modbus TCP or OPC-UA upstream to IIoT/Industry 4.0 Cloud solutions or factory SCADA systems. Comtrol’s IO-Link Masters are available in three industrial Ethernet protocols: EtherNet/IP, Modbus TCP and PROFINET IO, which are all capable of running OPC UA with MultiLink™. “The OPC Foundation is very excited about the great work that Comtrol Corporation has been doing with the OPC UA technology. Their company specializes in quality networking and industrial data communication products, with the addition OPC UA to their portfolio of IO-Link Masters, factory automation users will have a seamless connection from IO-Link sensors and actuators to SCADA/HMI and cloud systems. This will add significant capability allowing seamless interoperability across the multitude of industrial networks and industrial devices says Thomas J Burke, OPC Foundation President & Executive Director.
    [Show full text]
  • Data Exchange in Distributed Mining Systems by OPC Unified Architec- Ture, WLAN and TTE VLF Technology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Technische Universität Bergakademie Freiberg: Qucosa REAL TIME MINING - Conference on Innovation on Raw Material Extraction Amsterdam 2017 Data exchange in distributed mining systems by OPC Unified Architec- ture, WLAN and TTE VLF technology. David Horner1, Friedemann Grafe2, Tobias Krichler1, Helmut Mischo1, Thomas Wilsnack2) 1 TU Bergakademie Freiberg 2 IBeWa Consulting ABSTRACT Mining operations rely on effective extraction policies, which base on concerted manage- ment and technical arrangements. In addition to commodities, mining of data is the in- creasingly matter of subject in mining engineering. The Horizon 2020 project – Real-Time- Mining supports the ongoing paradigm shift of pushing mining activities from discontinuous to continuous operation. In this respect, the partners TU Bergakademie Freiberg (TU BAF) and IBeWa Consulting tackle the issue of physical and logical data acquisition in under- ground mining. The first aspect of the project addresses the ‘logical’ provision of data. Mining technology is increasingly interacting among each other and integrated into globally distributed sys- tems. At the same time, the integration of current mining devices and machineries into su- perordinated systems is still complex and costly. This means only a few number of mining operators is capable to integrate their operation technology into a Supervisory Control and Data Acquisition (SCADA) system. TU BAF presents the middleware OPC Unified Archi- tecture, which is a platform independent middleware for data exchange and technology interconnection among distributed systems. By installing a SCADA demonstrator at the research and education mine Reiche Zeche, TU BAF intends to present the technical fea- sibility of a SCADA system basing on OPC UA even for SME mining operations.
    [Show full text]
  • Combining Automationml and OPC UA
    Combining AutomationML and OPC UA Dr.-Ing. Miriam Schleipen © Fraunhofer IOSB 1 Agenda • Motivation • Plug-and-work principles • Goals • Mapping of AutomationML and OPC UA • Access to the AutomationML model in OPC UA • Examples • Conclusion and Outlook © Fraunhofer IOSB 2 Motivation - Changes • Continuous changes of production systems reconfiguration of hardware and software components • Objects to change within a manufacturing enterprise • Products • Technological or logistical processes • Parts of the manufacturing facilities • Software systems • Company’s organization • interoperability and seamless semantic integration necessary © Fraunhofer IOSB 3 Initial situation - ‚Babylon‘ on the shopfloor Visualization / SCADA Production Monitoring & Control ? ? ? ? Ωασχηµοδυ Τροχκενµοδυλ Abc_23-xy_Vors. Τεµπερατυρ Bbc_24-xy_T ist Γεσχηωινδιγκειτ Image sources: MOC Danner, KUKA, MAG, Schunk © Fraunhofer IOSB 4 Plug-and-work • Term definition: • setting up, modification or termination of interoperation between two or more involved parties with minimal effort • Note 1: The interoperability of those involved is assumed. • Note 2: The minimum effort can vary depending on the state of the art. • Note 3: Plug & play and plug & produce are synonyms or similar terms. Source: I4.0 Glossary of the VDI GMA technical committee 7.21 »Industrie 4.0« © Fraunhofer IOSB 5 Unique Datamodels (yesterday-Level 1, today-Level 2, tomorrow-Industrie 4.0) Visualisation/ Evaluation New Application Control Function Knowhow/Meaning Semantic Models („Industry
    [Show full text]
  • Integration of OPC Unified Architecture with Iiot Communication Protocols in an Arrowhead Translator
    Integration of OPC Unified Architecture with IIoT Communication Protocols in an Arrowhead Translator Jesper Rönnholm Engineering Physics and Electrical Engineering, master's level 2018 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Integration of OPC Unified Architecture with IIoT Communication Protocols in an Arrowhead Translator Jesper R¨onnholm Master's thesis Dept. of Computer Science, Electrical and Space Engineering Lule˚aUniversity of Technology Supervisors: Jerker Delsing, Hasan Derhamy 2018 Abstract This thesis details the design of a protocol translator between the industrial-automation protocol OPC UA, and HTTP. The design is based on the architecture of the protocol trans- lator of the Arrowhead framework, and is interoperable with all of its associated protocols. The design requirements are defined to comply with a service-oriented architecture (SOA) and RESTful interaction through HTTP, with minimal requirement of the consuming client to be familiar with OPC UA semantics. Effort is put into making translation as transparent as possible, but limits the scope of this work to exclude a complete semantic translation. The solution presented in this thesis satisfies structural- and foundational interoperability, and bridges interaction to be independent of OPC UA services. The resulting translator is capable of accessing the content of any OPC UA server with simple HTTP-requests, where addressing is oriented around OPC UA nodes. Preface I was first introduced to the opportunity of doing this project as part of master's thesis in 2015 by Prof. Jerker Delsing. He was the coordinator of the Arrowhead Project, which at the time was the largest industrial automation project in Europe, with 78 partners and a budget of 68 million euro.
    [Show full text]
  • OPC Unified Architecture Interoperability for Industrie 4.0 and the Internet of Things
    1 OPC Unified Architecture Interoperability for Industrie 4.0 and the Internet of Things IoT Industrie 4.0 M2M 2 Welcome to the OPC Foundation! As the international standard for vertical and horizontal communication, OPC-UA provides semantic interoper- ability for the smart world of connect- ed systems. Thomas J. Burke President und Executive Director OPC Foundation OPC Unified Architecture (OPC-UA) is the data ex- OPC-UA is an IEC standard and therefore ideally change standard for safe, reliable, manufacturer- suited for cooperation with other organizations. and platform-independent industrial communication. As a global non-profit organization, the OPC Foun- It enables data exchange between products from dation coordinates the further development of the different manufacturers and across operating sys- OPC standard in collaboration with users, manufac- tems. The OPC-UA standard is based on specifica- turers and researchers. Activities include: tions that were developed in close cooperation be- tween manufacturers, users, research institutes and ➞ Development and maintenance of specifications consortia, in order to enable safe information ex- ➞ Certification and compliance tests of change in heterogeneous systems. implementations ➞ Cooperation with other standards organizations OPC has been very popular in the industry and also becoming more popular in other markets like the This brochure provides an overview of IoT, M2M Internet of Things (IoT). With the introduction of Ser- (Machine to Machine) and Industrie 4.0 requirements vice-Oriented-Architecture (SOA) in industrial auto- and illustrates solutions, technical details and imple- mation systems in 2007, OPC-UA started to offer a mentations based on OPC-UA. scalable, platform-independent solution which com- The broad approval among representatives from re- bines the benefits of web services and integrated search, industry and associations indicates OPC-UA security with a consistent data model.
    [Show full text]
  • OPC Unified Architecture for Mtconnectr
    OPC Unified Architecture for MTConnect R Companion Specification Release Candidate 2.0RC8 February 19, 2019 MTConnect R is a registered trademark of AMT - The Association for Manufacturing Technology. Use of MTConnect R is limited to use as specified on http://www.mtconnect.org/. February 19, 2019 Specification Type: Industry Standard Specification Comments: Title: OPC Unified Architecture for MT- Date: February 19, 2019 Connect Version: 2.0RC8 Software: LaTeX Authors: William Sobel, Randy Armstrong, Source: OPC_UA_MTConnect_2.0RC8.pdf John Turner, Russell Waddell, Shaurabh Singh Owner: MTConnect Institute Status: Release Candidate Document History Version Date Reason Comments Mantis 2.00 RC8 2019-02-18 Revision Added list of tables 4631 2.00 RC8 2019-02-18 Revision Added table for reset triggers and suggested status codes 4630 2.00 RC8 2019-02-18 Revision Removed data rate issue from page 77 4629 2.00 RC7 2019-02-12 Revision 2.0 RC6: 8.4.6.2 MTConnect Condition Branching Example – 4608 Need to improve documentation of condition branching 2.00 RC7 2019-02-12 Revision Document 2.0 RC 6: 8.4.7 Messages – need to improve message 4607 handling 2.00 RC7 2019-02-12 Node Ids List of NodeIds as CSV 4612 2.00 RC7 2019-02-12 Revision A chapter for Profiles and Namespaces needs to be added 4611 2.00.06 2019-01-22 Revision Added missing class types and made MTMessageType a Variable instead of an Event 2.00.05 2018-12-09 Revision Fixed Composition 2.00.04 2018-11-30 Initial Initial Release Candidate MTConnect R OPC UA Companion Specification - Release Candidate 2.0RC8 i Contents 1 Scope1 2 OPC Unified Architecture for MTConnect Companion Specification Goals2 3 Who Will Find Benefit from this Companion Specification?3 4 Normative References3 4.1 OPC UA References............................
    [Show full text]
  • Process Automation Device Information Model (PA-DIM™)
    Process Automation Device Information Model Technical White Paper Process Automation Device Information Model Executive Summary Today’s process automation field devices communicate with host systems over either analog 4-20mA connections, sometimes with embedded digital HART data; or via 2-wire digital fieldbus connections conforming generally to the FOUNDATION Fieldbus (FF) or PROFIBUS PA standards as well as wireless protocols like Wireless HART or ISA 100. Initiatives all over the world such as Industrie 4.0 (I 4.0), Industrial Internet of Things (IIoT), Open Process Automation Forum (OPAF) and the NAMUR Open Architecture (NOA) are working on concepts for digital transformation. The enormous installed base in the process industries requires a digital transformation solution which can make use of information from devices communicating via current field communication solutions. Each of these existing communication protocols employs different software structures, or information model, to represent the same information. To ensure interoperability and seamless access to device information it is necessary to standardize on the form and basic contents of the information models for certain device classes independent of a specific communication protocol. Thus enabling seamless instrumentation information flow throughout the enterprise. FieldComm Group (FCG), OPC Foundation (OPCF) and PROFIBUS/PROFINET International (PI) have taken the initiative to jointly standardize and specify the information model for Process Automation Devices - PA-DIM.
    [Show full text]
  • Iotworx™ ICONICS Iot Gateway Technology
    IoTWorX™ ICONICS IoT Gateway Technology March 2017 An ICONICS Whitepaper www.iconics.com CONTENTS About This Document ..................................................................................................................................................................................... 2 Overview and Market Needs ........................................................................................................................................................................ 3 Connecting the Internet of Things ........................................................................................................................................................ 3 What is an IoT Gateway? ........................................................................................................................................................................... 4 Who Needs a Gateway, Anyway? .......................................................................................................................................................... 4 IoT Gateway Security and Device Management .............................................................................................................................. 4 Target Markets .............................................................................................................................................................................................. 5 Introduction to ICONICS IoTWorX ............................................................................................................................................................
    [Show full text]
  • Profinet Communication Card for the Cern Cryogenics Crate Electronics Instrumentation R.K
    16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-MOCPL03 PROFINET COMMUNICATION CARD FOR THE CERN CRYOGENICS CRATE ELECTRONICS INSTRUMENTATION R.K. Mastyna, J. Casas-Cubillos, E. Blanco Vinuela, N. Trikoupis, CERN, Geneva, Switzerland M. Felser, Bern University of Applied Sciences, BFH, Switzerland Abstract In order to simplicity the architecture the whole func- tionality of the FEC was moved to the crate which is now The ITER-CERN collaboration agreement initiated the smart device able to calculate, transform the raw input data development of a PROFINET® communication interface, and communicate directly with the PLC (see the Figure 2). which may replace the WorldFIP interface in non-radiation Due to the fact that the WorldFIP protocol is not recom- areas. The main advantage of PROFINET® mended for new installations the Ethernet based is a simplified integration within the CERN controls infra- PROFINET® protocol is used. The communication be- structure that is based on industrial Programmable Logic tween CIET SCADA and CRATE runs through OPC Controllers (PLCs). UA™, as this protocol is going to be available CERN prepared the requirements and subcontracted the in the netX51 chip. OPC UA™ also allows direct connec- design of a communication card prototype to the Bern Uni- tion between the CRATE and cloud data analysis module. versity of Applied Sciences (BFH). The designed PROFINET® card prototype uses the netX Integrated Cir- cuit (IC)© for PROFINET® communication and a FPGA to collect the electrical signals from the back-panel (elec- trical signals interface for instrumentation conditioning cards).
    [Show full text]
  • OPC Unified Architecture – Advantages And
    V1.1 GB OPC FOUNDATION – www.OPCfOUndAtiOn.Org Open OPC Unified Architecture – – > 450 members – Platform-neutral Advantages and possibilities of use – All areas of application for manufacturers and users of – All connections automation, IT or MES products Productivity – Industry standard OPC UA – Manufacturer-independent – Interoperability ➞ OPC Unified Architecture is the on which they are used. OPC UA – Reliability new technology generation of the supplements the existing OPC OPC Foundation for the secure, industry standard by important Standardised reliable and vendor-neutral trans- characteristics such as platform communication Collaboration port of raw data and pre-pro- independence, scalability, high via internet and – Device Integration cessed information from the man- availability and Internet capability. via firewalls – IEC 61131-3 / PLCopen – Analyzer Device Integration ufacturing level into the production OPC UA is no longer based on – ISA-95, ISA-88 planning or ERP system. With DCOM, but has been conceived ➞ OPC UA uses an – MTConnect optimized TCP-based UA OPC UA, all desired information is on the basis of a service-oriented – Smard Grid binary protocol for data ex- available to every authorised appli- architecture (SOA). OPC UA can – Field Device Integration change; Web Services and cation and every authorised per- therefore be ported very easily. – EDDL and FDT HTTP are additionally sup- son at any time and in any place. Today, OPC UA already forms ported. It is sufficient to This function is independent of the the bridge between the Enterprise open up just a single port in AddrESS: manufacturer from which the ap- level down to embedded automa- a firewall. Integrated secu- plications originate, the program- tion components – independent of rity mechanisms ensure se- OPC Foundation ming language in which they were Microsoft-, UNIX- or other operat- cure communication via the 16101 N.
    [Show full text]