The Deaths of Stars and the Lives of Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

The Deaths of Stars and the Lives of Galaxies Astronomical News Report on the ESO Workshop The Deaths of Stars and the Lives of Galaxies held at ESO Vitacura, Santiago, Chile, 8–12 April 2013 Henri M. J. Boffin1 amount of chemical elements produced along these lines, including the discovery Dave Jones1 (and expelled into the interstellar medium), of PNe in which there was a clear proof Roger Wesson1 knowing how many happen before the of mass transfer between the two compo­ AGB star evolves to become a white nents of the system, as well as showing dwarf (WD) is crucial, but also extremely that the jets observed in the PNe always 1 ESO dependent on the assumed mass-loss precede the formation of the PN itself. rate, whose exact mechanism is still far from being understood. This five­day meeting was attended Novae by about 100 astronomers and con- The situation is yet more complicated, sisted of 16 invited and 26 contributed as shown by Falk Herwig in his review on Close binaries containing a white dwarf talks and more than 40 posters, still the role that hydrodynamic mixing pro­ were the topic of the next session, and leaving ample time for discussions and cesses, which are closely related to the Claus Tappert reviewed our current social activities. A brief overview of convection and nuclear reaction rate knowledge of novae. A nova eruption is the topics is presented, from mass loss uncertainties, play in predictions of the a thermonuclear runaway on the surface in low- and high-mass stars and the evolution and nucleosynthetic yields of of the white dwarf component in a close ubiquitous importance of binaries, to AGB stars. He also talked about the role binary system known as a cataclysmic the influence of this ejected material on of rotation in AGB stars, and how it may variable (CV). During this event a certain galaxy evolution. be best investigated in interacting bina­ fraction of the previously accreted matter ries, such as the post-merger evolution is ejected as a shell, thus enriching the of coalescing He+CO WDs and other interstellar medium (ISM) with nuclear AGB and planetary nebulae sources similar to Sakurai’s object. Bina­ processed material. Due to the consider­ ries are also useful to explain the for- able increase in brightness during the The workshop started with a review of mation of planetary nebulae (PNe), as eruption, novae are observable in other the life of solar-like stars by Amanda Orsola de Marco explained. The problem galaxies, which makes them attractive as Karakas, with an emphasis on the asymp­ is to understand how the spherical mass- distance indicators. The class of novae totic giant branch (AGB) phase, when loss on the AGB can produce the colli­ may not be very homogeneous, however. stars lose most of their envelope mass in mated outflows seen in many PNe (Figure Nova eruptions are the primary mecha­ a series of episodic thermal pulses. 2). Magnetic fields alone cannot do the nism for mass loss in CVs, and as such These thermal pulses (TPs), which each trick — an additional source of angular they may well prevent the formation last only a couple of hundred years and momentum is needed — so that the of Type Ia supernovae (SNe) via the sin­ are separated by some hundred thou­ most natural explanation is that PNe con­ gle-degenerate mechanism since they sand years, increase the carbon content tain a close or wide binary system. This prevent the white dwarf from reaching of the envelope, and only a few TPs are has now been verified in many cases. the Chandra sekhar mass limit. Olivier required to make a solar-like star appear The remaining problem is how to go from Chesneau showed how adaptive optics as C-rich (C/O > 1). This enrichment in the known ~ 30% binary fraction of solar- and optical interferometry can be used to carbon alters the stellar opacity, but this like stars to the apparent ~ 80% binary study interacting binaries in detail, while was only very recently taken into account fraction in PNe. This, perhaps, implying Ken Shen and Ashley Ruiter presented in stellar evolution models, leading to that single stars do not form PNe at all! models of the formation of Type Ia SNe, a decrease in the time spent on the AGB A series of talks by the PN group in ESO and of the possible number of TPs. As Chile (Henri Boffin, Dave Jones, Amy Figure 1. The participants at the workshop in the the TPs are responsible for the final grounds of ESO Vitacura. Tyndall) presented further developments R. Wesson 38 The Messenger 152 – June 2013 it was an ~ 8 MA star. The case of SN 2009ip is even stranger as this object underwent several outbursts in a few H. Boffin et al. years, before actually exploding in 2012. The progenitor in this case is thought to be a luminous blue variable (i.e. not unlike η Carinae) with a mass of about 50–90 MA. Nathan Smith made the link between massive stars and planetary nebulae, presenting the similarities and dissimi- larities in the morphology of these two kinds of objects (Figure 3). Cool hyper­ giants with large circumstellar envelopes, Figure 2. The amazing bipolar planetary nebula that show evidence of mixed chemistry such as the “Rotten Egg Nebula”, are the Fleming 1 was shown by several speakers at the with emission from both silicate dust and massive analogues of OH/IR stars (i.e. workshop. polycyclic aromatic hydrocarbons. The embedded AGB stars), while rings are mixed­chemistry phenomenon is appar­ seen in both PNe (e.g., the Necklace either via double detonations or white ently best explained through hydrocarbon Nebula) and massive stars (SN 1987A is a dwarf mergers. chemistry in an ultraviolet-irradiated, fine example), and there are also clear dense torus. This highlights the need to resemblances between some PNe such consider carefully the shape of the PNe as Hubble 5 or the Ant Nebula (Mz 3) and Nebular abundances when determining nebular abundances. some of the most massive stars such as η Carinae. These bipolar outflows may Returning to the topic of PNe, Denise in fact represent evidence of explosive Gonçalves provided an overview of the From massive stars … to PNe again events also taking place in PNe. On the determination of nebular abundances, other hand, while PNe often present jets, and in particular, on the improvements The second day of the meeting dealt these are missing from massive stars. that have been achieved recently. Abun­ with more massive objects, starting with All circumstellar shells, around PNe or dances in PNe are particularly relevant a review of the evolution of massive massive stars, suffer the effects of ionisa­ to provide information about low-to- stars by Georges Meynet. Massive stars tion, photoevaporation, shocks, winds intermediate mass stellar nucleosynthe­ form only a very small fraction of all stars and explosions. As such, the wind inter­ sis, while at the same time, PNe archive produced in a given stellar generation, action mechanism for explaining PNe progenitor abundances of a elements. but nevertheless are of great importance: might be too naïve in many cases. To derive nebular abundances, two meth­ if only 0.3% of all stars have masses ods are widely used: the empirical ioni- above 8 MA, they contain 14% of all the sation correction factor (ICF) method and mass, and almost half of that is returned Making stars explode photoionisation model fitting. The former to the host galaxy in the form of pro­ is often the only one used, and despite cessed material with huge amounts of Going further in the evolution of massive severe shortcomings, can provide rea­ kinetic energy and on very short time­ stars, Hans-Thomas Janka presented sonable results, even though it is advisa­ scales. Nor can binarity be ignored, as the state of the art in explosion models, ble to extend the wavelength range used the most recent censuses show that the highlighting the importance of neutrino as much as possible. The second binary fraction of massive stars is more heating as the trigger for core-collapse method uses empirical abundances as than 50%, or even 70% in some cases. supernovae and the need to use 3D the input for photoionisation model fitting, Apart from mass transfer and drastic simulations — not only in explosion simu­ that is, the abundances are varied until evolution, binarity can imply tidal effects lations, but also for the proper initial the predicted line ratios (and emission that lead to extra mixing inside the stars. conditions inside the progenitor. 3D sim­ line maps if available) match the observa­ It is also likely that binaries produce ulations are very time-consuming, how­ tions. Unfortunately, abundances are not 50% of all existing Wolf–Rayet (WR) stars. ever, and require CPU power that is necessarily better determined from the hardly available yet. Nevertheless the few model-fitting method, but it can provide Massive stars will explode as super- 3D simulations that do exist clearly show more accurate ICFs than using the simple novae and/or gamma-ray bursts, and the different results than in 2D — models formulae in the literature. To apply one of study of these explosions can reveal exploding in 2D don’t necessarily do so in these methods, a wide range of software much about stellar evolution. Jose Groh 3D, but at the current state of the art, it exists, such as nebular, ELSA, 2D_Neb, stressed the fact that in some very rare is not clear if this is just a resolution NEAT, PyNeb, CLOUDY and MOCASSIN. cases, such as SN 2008bk, we are lucky issue.
Recommended publications
  • Constraints on Common Envelope Magnetic Fields from Observations Of
    MNRAS 439, 2014–2024 (2014) doi:10.1093/mnras/stu079 Advance Access publication 2014 February 10 Constraints on common envelope magnetic fields from observations of jets in planetary nebulae James Tocknell,1,2‹ OrsolaDeMarco1,2 and Mark Wardle1,2 1Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia 2Astronomy, Astrophysics and Astrophotonics Research Centre, Macquarie University, Sydney, NSW 2109, Australia Accepted 2014 January 13. Received 2014 January 13; in original form 2013 August 22 ABSTRACT The common envelope (CE) interaction describes the swallowing of a nearby companion by Downloaded from a growing, evolving star. CEs that take place during the asymptotic giant branch phase of the primary may lead to the formation of a planetary nebula (PN) with a post-CE close binary in the middle. We have used published observations of masses and kinematics of jets in four post-CE PN to infer physical characteristics of the CE interaction. In three of the four systems http://mnras.oxfordjournals.org/ studied, Abell 63, ETHOS 1 and the Necklace PN, the kinematics indicate that the jets were launched a few thousand years before the CE and we favour a scenario where this happened before Roche lobe overflow, although better models of wind accretion and wind Roche lobe overflow are needed. The magnetic fields inferred to launch pre-CE jets are of the order of a few gauss. In the fourth case, NGC 6778, the kinematics indicate that the jets were launched about 3000 yr after the CE interaction. Magnetic fields of the order of a few hundreds to a few thousands gauss are inferred in this case, approximately in line with predictions of post-CE magnetic fields.
    [Show full text]
  • Southern Sky: Telescopic
    Southern Sky: Telescopic - Caldwell - Binocular - Planetary Nebulae ID Other Desifnation Type RA Dec Con Size Mag CS B C NGC 104 47 Tucanae Gb 00 24 05.4 -72 04 51.9 Tuc 30.90 4.00 C NGC 121 ESO 50-SC12 Gb 00 26 48.0 -71 32 00.0 Tuc 1.50 10.60 99.90 126 Bet1Tuc * 00 31 32.7 -62 57 29.0 Tuc 4.37 127 Bet2Tuc * 00 31 33.6 -62 57 57.0 Tuc 4.54 NGC 292 SMC, Small Magellanic Cloud, Nubecula Minor Gx 00 52 36.0 -72 48 00.0 Tuc 319.10 2.30 14.00 NGC 330 OC 00 56 18.7 -72 27 45.0 Tuc 2.00 9.60 NGC 346 C+N 00 59 05.0 -72 10 36.0 Tuc 14.00 10.30 B C NGC 362 Gb 01 03 13.9 -70 50 53.9 Tuc 12.90 6.60 NGC 371 ESO 51-SC14 OC 01 03 30.0 -72 03 00.0 Tuc 7.50 13.80 99.90 NGC 419 Gb 01 08 17.3 -72 53 00.0 Tuc 2.60 10.00 B C NGC 1261 Gb 03 12 15.7 -55 12 57.1 Hor 6.90 8.40 NGC 1313 Topsy-Turvy Galaxy, Starburst Galaxy, ESO 82-11 Gx 03 20 05.4 -66 42 08.0 Ret 8.50 9.00 NGC 1549 Gx 04 15 45.0 -55 35 31.2 Dor 3.70 9.90 NGC 1553 Gx 04 16 10.5 -55 46 48.9 Dor 4.10 9.50 NGC 1566 Gx 04 20 00.5 -54 56 16.8 Dor 7.60 9.40 NGC 1763 IC 2115 OC 04 56 48.0 -66 25 00.0 Dor 25.00 99.90 99.90 NGC 1850 OC 05 08 44.9 -68 45 41.7 Dor 3.00 9.30 NGC 1955 C+N 05 26 10.0 -67 29 54.0 Dor 9.00 NGC 1962 C+N 05 26 19.0 -68 50 12.0 Dor 8.00 B C NGC 2070 Tarantula Nebula, Looped Nebula, 30 Doradus, True Lovers' Kn C+N 05 38 42.5 -69 06 03.3 Dor 40.00 8.20 NGC 2074 ESO 57-EN8 OC 05 39 06.0 -69 30 00.0 Dor 8.50 99.90 B C NGC 2516 OC 07 58 04.0 -60 45 12.0 Car 30.00 3.80 NGC 2547 OC 08 10 09.0 -49 12 54.0 Vel 20.00 4.70 B C IC 2391 Cr 191 OC 08 39 36.0 -52 55 00.0 Vel 60.00 2.50 99.90 IC
    [Show full text]
  • THE IMPACT of BINARIES on STELLAR EVOLUTION 03 – 07 July 2017 | ESO HQ, Garching, Germany
    An ESO Workshop on THE IMPACT OF BINARIES ON STELLAR EVOLUTION 03 – 07 July 2017 | ESO HQ, Garching, Germany Image: PN Fleming 1 Main topics: Binary statistics / problems in stellar evolution / stellar mergers / N-body systems / resolved and unresolved populations / chemical evolution / nucleosynthesis / GAIA / gravitational waves Contact: [email protected] submission deadline: 31 March 2017 http://www.eso.org/sci/meetings/2017/Imbase2017.html Registration deadline: 02 June 2017 SOC: • Giacomo Beccari (co-Chair, ESO, Germany) • Monika Petr-Gotzens (ESO, Germany) • Henri Boffin (Chair, ESO, Germany) • Antonio Sollima (Bologna, Italy) • Romano Corradi (GTC, Spain) • Christopher Tout (Cambridge, UK) • Selma de Mink (Amsterdam, the Netherlands) • Sophie Van Eck (Brussels, Belgium) Programme Invited speakers are indicated in bold. Invited talks are 25 min (+10 min for Q&A) and contributed talks are 15+5 min. MONDAY 3 July 2017 08:30 REGISTRATION 09:15 H.M.J. Boffin Welcome and introduction to the conference 09:50 M. Moe Statistics of Binary / Multiple Stars 10:25 J. Winters The nearby M dwarfs and their dance partners 10:45 COFFEE 11:15 C. Clarke Multiplicity at birth and how this impacts star formation 11:50 C. Ackerl Multiplicity among 3500 Young Stellar Objects in Orion A 12:10 P. Kroupa The impact of binary systems on the determination of the stellar IMF 12:45 LUNCH 14:15 M. Salaris Low- and intermediate-mass star evolution: open problems 14:50 P. Beck Oscillation double-lined binaries as test cases for understanding stellar evolution 15:10 X. Chen Formation of low-mass helium white dwarf binaries and constraints to binary and stellar evolution 15:30 A.
    [Show full text]
  • Twenty Years of Fors Twenty Years of Fors
    TWENTY YEARS OF FORS TWENTY YEARS OF FORS Front cover: Messier 66 Of‘‘ all instruments at Paranal, FORS is the Swiss Army knife. ’’ Editor, Design,Typesetting: Henri M.J. Boffin © ESO 2019 TWENTY YEARS OF FORS Twenty years ago, in 1999, the first of the two FORS instrument started regular operations. If FORS1 was removed after 10 years of operations, its twin, FORS2, is still very much in use, being one of the most demanded instruments at the Very Large Telescope, despite its age. This booklet aims at celebrating these two formidable workhorses by putting together, after a description of the instruments and their productivity, a subjective collection of ESO press releases dealing with them. The first set of press releases present the history of the instruments, while the remaining ones showcase some of the astounding achievements that they allowed. In between, a few among the most iconic images ever produced by FORS1 and FORS2 are shown. The list of scientific papers on which the science press releases were based is given at the end, together with a few of the Messenger articles that described the instruments. Table of Contents The FORS Instruments 5 FORS: the most powerful eye 8 First Major Astronomical Instrument Mounted on VLT 10 A Forceful Demonstration by FORS 11 Next VLT Instrument Ready for the Astronomers 14 The Comet with a Broken Heart 17 New Image of Comet Halley in the Cold 18 ESO Observations Show First Interstellar Asteroid is Like Nothing Seen Before 21 VLT Rediscovers Life on Earth 22 Inferno World with Titanium Skies 25 The
    [Show full text]
  • PAGES FIXES VINCENNES.Indd
    Vente «Achat en Piste» (vente sans réserve) Paris - Vincennes Mardi 29 Septembre Vente à 20h30 Auctioneers Hugues ROUSSEAU Pascal GARRY Fabien MEGIE Couverture : @SCOOPDYGA Organisation Arqana Trot 32 Avenue Hocquart de Turtot BP 93 -14803 Deauville Tél : 02 31 81 81 00 – Fax : 02 31 81 81 23 Deauville Tél : 01 41 12 08 00 – Fax : 01 41 12 90 29 Saint-Cloud Réalisation ARQANA Société de ventes volontaires aux enchères publiques agréée en date du 8 mars 2007 sous le n° 2007- 613 Bernard de Reviers Commissaire-priseur de ventes volontaires 1 1 PRENEZ DATE POUR 2020/2021* ! Ventes d’Automne 27 et 28 Octobre - Cabourg Ventes du Grand Prix d’Amérique 2021 28 et 29 Janvier - Vincennes *Sous réserve de modifications. 2 3 Sommaire Index Contacts – Contacts Organigramme et contacts – Organisation and contacts 4 Conditions de vente 5 Informations pour les acheteurs – Buyers information Procédure de paiement – Payment procedure 15 - 16 Mandat - Purchase autorisation 18 -19 Demande d’agrément – Request for credit 20 Identification TVA -VAT registration 21 Renseignements pratiques – Useful information Contacts utiles – Useful contacts 22 Courtiers - Bloodstock agents 23 - 24 Transports de chevaux – Horse transport 25 - 26 Lexique Français/Anglais - French/English Glossary 27 Informations générales – General information Noms des chevaux Pères des chevaux à l’entraînement, des yearlings – Index to horses by sire 2 3 Organigramme et contacts Organisation and contacts ARQANA HOLDING Comité de direction - Board of Directions Président - President Vice-Présidents
    [Show full text]
  • Sir Ambrose Fleming, D.Sc., F.R.S., the President, to Give the Annual Address on " Some Recent Scientific Discoveries and Theories."
    JOURNAL OF THE TRANSACTIONS OF OR, VOL. LXIV. LONDON: lBublii!)ctr b!! tf)c institute, 1, <!i:cntrar JS11iitring-s;mcstmin1>trr, j,.00.1. A L L R I G H T S R E S E R V E D. 1932 760TH ORDINARY GENERAL MEETING, HELD IN COMMITTEE ROOM B, THE CENTRAL HALL, WESTMINSTER, S.W.1. ON MONDAY, JUNE 6TH, 1932, AT 4.30 P.M. DR. JAMES w. THIRTLE, M.R.A.S., IN THE CHAIR. The Minutes of the l~st Meeting were read, confirmed, and signed. The CHAIRMAN then called on Sir Ambrose Fleming, D.Sc., F.R.S., the President, to give the Annual Address on " Some Recent Scientific Discoveries and Theories." ANNUAL ADDRESS. SOil:IE RECENT SCIENTIFIC DISCOVERIES AND THEORIES. By Sm AMBROSE FLEMING, 1".R.S. (President). I. T is not an unprofitable occupation to take stock from time I to time of the intellectual position of civilized mankind in certain matters, and to endeavour to obtain a broad view of the achievements and tendencies of current thought in various regions of inquiry. Our present age is pre-eminently a scientific one. The ingenuity of the human mind has enabled us to devise innumerable instruments which vastly extend the range and power of the human organs of sense. Some of these appliances enable us to detect and measure physical agencies such as magnetic fields or electromagnetic waves which do not affect directly any of our senses. 210 SIR Al\'lBROSE FLEl\'lING, 1''.R.S., ON In some instances we have obtained means of seeing objects which never have been seen, nor indeed can be seen, by the unassisted human vision, as when a photographic plate is used in the focus of a telescope or microscope of suitable construction.
    [Show full text]
  • Limiting Magnitude: 17 (Texp~ 1H, RV ~ 100M/S)
    The Right Instrument for your Science Case Henri Boffin ESO Karen Humby, The Messenger An amazing suite Imagers EFOSC2 visible SOFI IR Spectrographs: Resolving Power versus l FORS2 visible HAWK-I NB, JHKs ESPRESSO VISIR M 100 000 NACO AO JHK, Lp UVES CRIRES SPHERE AO visible, JHK HR HR Multiplex 10 000 FLAMES X-shooter FORS2 MXU LR KMOS IFU (24 arms) VISIR Resolving power Resolving IR MUSE IFU 1’x1’ MUSE KMOS & SINFONI SINFONI IFU 1000 FLAMES 130 fibers FORS2 & SPHERE VIMOS LR Polarimeters FORS2 100 100 1000 10 000 EFOSC2 Wavelength (nm) SOFI Interferometry SPHERE PIONIER NACO GRAVITY VIRCAM Attached to VISTA, a 4m telescope Wide-field infrared imager 0.9–2.5 μm Pixel: 0.34” BB and NB filters FoV: 1. 5 deg2 in 6 pawprints 16 CCDs OMEGACAM Attached to the 2.6-metre VLT Survey Telescope (VST) Visible: 350 to 1000 nm BB and NB Filters 32 individual CCDs Pixel size: 0.21” FoV: 1 x 1 degree Orion in full VISTA Optical Infrared FORS2 FORS2 A wonderful German understatement! It should be called FOcal Reducer Fast Imager and low dispersion Single and Multi-Object Spectropolarimeter FORFISMOS The Workhorse instrument in Paranal! FORS Iconic Images FOV: 7’x7’ Pixel scale: 0.125” (2[\!<(28:!0,!Imaging 789:"] FH/!15,/I+!5.345)4!J234K65.5+J!5*!+H/!L,031!L3)1!.34)5+-1/! I36I-63+/1!M0,!3!N05)+!*0-,I/!0M!G/,0!I060-,!OP%<!*+3,Q!RH5IH!R0-61! 45S/!3!:$T!0M!?!5)!0)/!H0-,!R5+H!13,U!*UVW!I6/3,!I0)15+50)*W!3!*//5)4! 7XY2!0M!%@EZZ!3)1!3)!35,.3**!0M!'@"@!FH/!=W!BW!<!.34)5+-1/*!3,/! I36I-63+/1!-*5)4!+H/!L,031L3)1!M56+/,*!0M!+H/!*+3)13,1!5)*+,-./)+! I0)M54-,3+50)@!
    [Show full text]
  • Arxiv:1905.06367V2 [Astro-Ph.EP] 27 Aug 2019 Spheric and Surface Properties, a Comprehensive Model of Known Stellar Systems
    Draft version August 29, 2019 Typeset using LATEX twocolumn style in AASTeX63 VPLanet: The Virtual Planet Simulator Rory Barnes,1, 2 Rodrigo Luger,3, 2 Russell Deitrick,4, 2 Peter Driscoll,5, 2 Thomas R. Quinn,1, 2 David P. Fleming,1, 2 Hayden Smotherman,1 Diego V. McDonald,1 Caitlyn Wilhelm,1, 2 Rodolfo Garcia,1, 2 Patrick Barth,6 Benjamin Guyer,1 Victoria S. Meadows,1, 2 Cecilia M. Bitz,7, 2 Pramod Gupta,1, 2 Shawn D. Domagal-Goldman,8, 2 and John Armstrong9, 2 1Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195, USA 2NASA Virtual Planetary Laboratory Lead Team, USA 3Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA 4Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, CH-3012, Bern, Switzerland 5Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Rd, Washington, DC, 20015, USA 6Max Planck Institute for Astronomy, K¨onigstuhl 17, 69117 Heidelberg, Germany 7Atmospheric Sciences Department, University of Washington, Box 951640, Seattle, WA 98195, USA 8Planetary Environments Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 9Department of Physics, Weber State University, Ogden, UT 84408-2508, USA ABSTRACT We describe a software package called VPLanet that simulates fundamental aspects of planetary system evolution over Gyr timescales, with a focus on investigating habitable worlds. In this initial release, eleven physics modules are included that model internal, atmospheric, rotational, orbital, stellar, and galactic processes. Many of these modules can be coupled simultaneously to simulate the evolution of terrestrial planets, gaseous planets, and stars.
    [Show full text]
  • Astronomy 2013 Index
    Astronomy Magazine 2013 Index SUBJECT INDEX A AAS (American Astronomical Society), 3:13, 5:16, 6:16 Abell 6 (planetary nebula), 12:73 Abell 30 (planetary nebula), 3:13 Abell 36 (planetary nebula), 11:73 Abell 68 (galaxy cluster), 7:74 Abell 399 (galaxy cluster), 3:13 Abell 401 (galaxy cluster), 3:13 air glow, 8:89 Aldrin, Buzz, 6:24–29 Alessi objects, 10:12 Allan Hills A81001 (meteorite), 2:12 ALMA. See Atacama Large Millimeter/submillimeter Array (ALMA) Alpha Centauri A (star), 6:12 Alpha Centauri Bb (exoplanet), 10:22–24 Alpha Lyrae. See Vega (Alpha Lyrae) (star) Alpha Magnetic Spectrometer (AMS), 8:13 Alpha Ursae Minoris (Polaris) (star), 4:9, 9:12 amateur astronomy 40 years of, 8:52–57 inexpensive solar observation, 3:35 observations in spring, 3:14, 50–55 observing color of comets, 3:18 resources for amateur astronomers, 6:65 seeking evidence of ancient stellar remnants, 8:76–79 American Astronomical Society (AAS), 3:13, 5:16, 6:16 AMS (Alpha Magnetic Spectrometer), 8:13 Andromeda Galaxy (M31) black holes in, 4:17, 10:14 collision with Milky Way, 4:24–29 dwarf galaxies surrounding, 5:13, 6:13 hydrogen gas clouds, 5:18, 9:17 number of stars in, 5:13 search for star clusters, 4:13 Andromeda Project, 4:13 Antares (star), 4:73 Antares rocket, 8:12 antimatter, 8:13 APEX (Atacama Pathfinder Experiment) radio telescope, 11:74 Apollo missions, 6:6 arcminutes and arcseconds, 7:16 Arecibo radio telescope, 12:10 Arp 142 (galaxy pair), 11:11 arXiv website, 10:14 ASKAP (Australian Square Kilometre Array Pathfinder), 2:11 Asterion (constellation),
    [Show full text]
  • Habitable Worlds 2021 Workshop Open Engagement Abstracts
    Habitable Worlds 2021 Workshop Open Engagement Abstracts # Title Abstract Authors 8 Rocky Worlds and We live in a system with multiple rocky planets, but only Earth hosts intelligent life. How did Earth L. Weiss; their Siblings and Venus become twice as large as Mercury and Mars? Did Jupiter help or hinder the growth of the terrestrial planets? Multi-planet systems are natural laboratories that will help us answer these Institute for Astronomy, questions. I am leading a NASA Key Strategic Mission Support Survey to measure the composition University of Hawai'i at diversity in a magnitude-limited sample of multi-planet systems. I will discuss my team's recent Manoa, Honolulu, HI mass measurements, including characterizations of rocky planets and discoveries of distant Jovian companions, and highlight future opportunities for characterizing rocky planets and their siblings. 9 How Stellar Flares Stellar flares have been observed to produce powerful bursts of radiation over a wide range of C. Dong [1], M. Jin [2], M. and Storms Regulate wavelengths, among which X-rays and EUV constitute the major ionizing stellar radiation for Lingam [3,4], K. France [5], J. Atmospheric Losses planetary atmospheres at low and high altitudes, respectively. Stellar flares are considered an Green [6]; from the TRAPPIST-1 impediment to habitability, especially in the case of close-in exoplanets around M-dwarfs since Planets some of these stars are highly active. At the same time, there has been a growing awareness that 1 Princeton University, coronal mass ejections (CMEs) - sometimes termed as stellar storms - associated with stellar flares Princeton, NJ, pose severe threats to planetary atmospheric retention.
    [Show full text]
  • The Importance of Binarity in the Formation and Evolution of Planetary Nebulae David Jones
    1 The importance of binarity in the formation and evolution of planetary nebulae David Jones Abstract It is now clear that a binary evolutionary pathway is responsible for a significant fraction of all planetary nebulae, with some authors even going so far as to claim that binarity may be a near requirement for the formation of an observable nebula. In this chapter, we will discuss the theoretical and observational support for the importance of binarity in the formation of planetary nebulae, initially focussing on common envelope evolution but also covering wider binaries. Furthermore, we will highlight the impact that these results have on our understanding of other astrophysical phenomena, including supernovae type Ia, chemically peculiar stars and circumbinary exoplanets. Finally, we will present the latest results with regards to the relationship between post-common-envelope central stars and the abundance discrepancy problem in planetary nebulae, and what further clues this may hold in forwarding our understanding of the common envelope phase itself. 1.1 Introduction Planetary nebulae (PNe) are glowing shells of gas and dust surrounding (pre-)white dwarfs (pre-WD). The canonical formation scenario for PNe is a single star of low to intermediate initial mass, which has recently evolved off the AGB (and is thus a pre-white dwarf), ionising its own slow-moving AGB ejecta that has been swept up into a shell by a fast, tenuous wind originating from the central star (Kwok et al., 1978). This model, frequently referred to as the Interacting Stellar Winds (ISW) model, successfully reproduces a wide- range of PN properties, however it fails to account for the plethora of elaborate, often highly axisymmetric, morphologies observed (Balick and Frank, 2002).
    [Show full text]