Martian Windchill in Terrestrial Terms Randall Osczevski

Total Page:16

File Type:pdf, Size:1020Kb

Martian Windchill in Terrestrial Terms Randall Osczevski MARTIAN WINDCHILL IN TERRESTRIAL TERMS RANDALL OSCZEVSKI A two-planet model of windchill suggests that the weather on Mars is not nearly as cold as it sounds. he groundbreaking book The Case for Mars (Zubrin 1996) advocates human exploration and colonization of the red planet. One of its themes is that Mars is beset by dragons of the sort T that ancient mapmakers used to draw on maps in unexplored areas. The dragons of Mars are daunting logistical and safety challenges that deter human exploration. One such dragon must surely be its weather, for Mars sounds far too cold for human life. No place on Earth experiences the low temperatures that occur every night on Mars, where even in the tropics in summer the thermometer often reads close to –90°C and, in midlatitudes in winter, as low as –120°C. The mean annual temperature of Mars is –63°C (Tillman 2009) com- pared to +14°C on Earth (NASA 2010). We can only try to imagine how cold the abysmally low temperatures of Mars might feel, especially when combined with high speed winds Left: The High Arctic feels at least as cold as Mars, year round (Photo by R. Osczevski 1989). Right: Twin Peaks of Mars. (Photo by NASA, Pathfinder Mission 1997) AMERICAN METEOROLOGICAL SOCIETY APRIL 2014 | 533 Unauthenticated | Downloaded 09/30/21 08:37 PM UTC that sometimes scour the planet. This intensely bone- refer to the steady state heat transfer from the upwind chilling image of Mars could become a psychological sides of internally heated vertical cylinders having the barrier to potential colonists, as well as to public same diameter, internal thermal resistance, and core support for such ventures. Fortunately, it is an alien temperature as the human head. cold. Thermometer readings from Mars are highly misleading to terrestrials, who base their expecta- WINDCHILL. Air temperature alone is often a tions of thermal comfort on their experience with poor indicator of how cold the weather might feel. low temperatures in Earth’s much denser atmosphere. Wind, for example, makes a big difference to the A visitor to an educational National Aeronautics thermal sensation at any temperature. The original and Space Administration (NASA) website (NASA “windchill index,” invented by Siple and Passel (1946), 1997) noted that because the atmosphere of the planet combined the cooling effects of low temperatures and is so thin, “a –20°C temperature on Mars would not wind in a number that was proportional to the rate feel as cold as –20°C air on Earth.” They went on to of heat transfer from a small plastic cylinder. (Except wonder what a person on Mars would feel the tem- when referring to specific products, this paper will perature to be and suggested that “It might be more follow the originators, Siple and Passel, in spelling relevant to many people to see the values shown on windchill as one word, much as “rainfall,” “sunshine,” the website correlated to more human terms.” This and “frostbite” are each one word.) paper provides that missing perspective by expressing The windchill index was used successfully for the windchill on Mars as an Earth equivalent tem- decades until it was “improved” by expressing the perature (EET). EET is the air temperature on Earth, cooling power of the weather as an equivalent tem- in still air and without sunshine, that would result in perature (i.e., the air temperature that would cause the same heat transfer rate and surface temperature as the same heat transfer rate when there is no wind). the very cold but insubstantial winds of Mars. Although very popular, WCET is a deceptive simpli- The mathematical model used for this calculation fication that only seems to be easier to understand. was developed in 2001 to calculate the values in the Over the years, many authors have criticized the wind chill equivalent temperature (WCET) chart original WCET and the windchill index on which for North America (Osczevski and Bluestein 2005). it was based (Molnar 1960; Eagan 1964; Steadman In terms of heat loss rate, surface temperature, and 1971; Kessler 1993; Osczevski 1995, 2000; Bluestein cold sensation, EET is identical to the familiar WCET and Zecher 1999). In 2001, the calculation model was that is reported each winter across much of North updated (Bluestein and Osczevski 2002; Osczevski America. It therefore provides a familiar context for and Bluestein 2005) and a new WCET chart was assessing the rigors of weather on another planet, in produced for use in weather reports in Canada and this case Mars. the United States. While it is highly improbable that anyone would How cold it feels outside also depends on the ever directly experience the weather on Mars by physical properties of the medium in which one is exposing bare skin to the virtual vacuum that passes immersed. Many have experienced the shock of dis- as its atmosphere, it is also unlikely that anyone on covering that immersion in 20°C water feels much Earth would choose to face a WCET of –60°C without colder than being in air at the same temperature. proper protection. Both EET and WCET are indices Water carries the heat away from the body much of the potential cooling power of the weather, whether faster than air does at the same temperature. We or not anyone actually experiences it directly. They do not often experience this nuance of windchill on Earth because atmospheric properties do not vary greatly from place to place or from day to day, but AFFILIATIONS: OSCZEVSKI*—Defence Research and Development Canada, Toronto, Ontario, Canada they do from planet to planet. Earth’s atmosphere, *Retired being much denser than that of Mars, is analogous CORRESPONDING AUTHOR: Randall Osczevski, 246 Plymouth to the water in the above example. Trail, Newmarket, ON L3Y 6G7, Canada E-mail: [email protected] THE ATMOSPHERE OF MARS. Composition and The abstract for this article can be found in this issue, following the pressure. The air we breathe on Earth is mostly nitro- table of contents. gen, with significant oxygen, a bit of argon, and trace DOI:10.1175/BAMS-D-12-00158.1 amounts of other gases. The atmosphere of Mars is In final form 7 July 2013 almost entirely carbon dioxide (95%). The pressure at the surface is typically less than 1% of the sea level air 534 | APRIL 2014 Unauthenticated | Downloaded 09/30/21 08:37 PM UTC pressure on Earth. At the Viking 1 and 2 landing sites Bluestein’s (2005) windchill model, with the same of the 1970s the pressure averaged 8.5 mb (Tillman diameter, constant internal temperature, internal 2009). At the Viking 2 site it varied with season, being thermal resistance, and emissivity. Both cylinders about 10 mb in the Northern Hemisphere winter move into the wind at walking speed. Just what the and 7.5 mb in the late summer. On Earth, where the walking speed on Mars might be (Hawkey 2005) mean atmospheric pressure is 1,013 mb, pressures has yet to be determined, so an average terrestrial as low as those on Mars are only encountered in the walking speed of 1.34 m s–1 was used for both planets. stratosphere at an altitude of 32 km (110,000 ft) (ICAO Comparison of the Grashof number for free convec- 1993). This is two-and-a-half times the altitude at tion in still air or CO2 with the Reynolds number for which commercial airliners fly and more than three forced convection in the same gas confirms that on times the height of Mount Everest. both planets, free convection at this minimum rela- tive wind speed is only about a tenth of the forced Ambient temperatures on Mars. Viking 2, which landed convection and so may be neglected (Incropera and on Mars in 1976 at latitude 48°N, operated for over DeWitt 1996). On Mars, forced convection accounts 1,000 sols (Martian days) and provided the longest for only about a quarter of the total heat transfer at and the most nearly complete record of weather low wind speeds. Radiation is the dominant heat conditions on Mars (Tillman 2009). Martian sols are transfer mechanism on Mars at low to moderate wind 40 min longer than Earth days, and the solar year speeds. To calculate radiant heat transfer, the two- has 669 sols (Williams 2009). Wind and temperature planet model assumes that the ground temperature data for the first 1,000 sols that Viking 2 operated are on Mars is equal to the ambient temperature, which presented in Fig. 1. In summer, ambient temperatures, is approximately true when averaged over the whole measured at 1.5 m above the surface, ranged from a sol. The reference condition for calculating equivalent low of –80°C at night to a comparatively balmy high temperature is not still “air” (CO2) on Mars, but in of –30°C in during the day. In winter, they varied still air on Earth, at night. from roughly –120°C at night to –100°C during the Physical properties of CO . daylight hours. 2 The properties of CO2 gas at 8.5 mb, at the extremely low temperatures found Winds on Mars. Because of the physical size of robot on Mars, were extracted from an online calculator landers like Vikings 1 and 2, wind speeds on Mars (MegaWatSoft 2009) for a series of temperatures have never been measured 10 m above the ground, as down to –55°C, which was the low temperature they are by convention on Earth. The Viking landers limit of the calculator. Trend lines were fitted to the measured the wind at a height of 1.5 m, which is con- data to develop regression equations for thermal venient for modeling windchill as 1.5 m is about the conductivity, k; kinematic viscosity, n; and the height of the average adult’s nose.
Recommended publications
  • A Winter Forecasting Handbook Winter Storm Information That Is Useful to the Public
    A Winter Forecasting Handbook Winter storm information that is useful to the public: 1) The time of onset of dangerous winter weather conditions 2) The time that dangerous winter weather conditions will abate 3) The type of winter weather to be expected: a) Snow b) Sleet c) Freezing rain d) Transitions between these three 7) The intensity of the precipitation 8) The total amount of precipitation that will accumulate 9) The temperatures during the storm (particularly if they are dangerously low) 7) The winds and wind chill temperature (particularly if winds cause blizzard conditions where visibility is reduced). 8) The uncertainty in the forecast. Some problems facing meteorologists: Winter precipitation occurs on the mesoscale The type and intensity of winter precipitation varies over short distances. Forecast products are not well tailored to winter Subtle features, such as variations in the wet bulb temperature, orography, urban heat islands, warm layers aloft, dry layers, small variations in cyclone track, surface temperature, and others all can influence the severity and character of a winter storm event. FORECASTING WINTER WEATHER Important factors: 1. Forcing a) Frontal forcing (at surface and aloft) b) Jetstream forcing c) Location where forcing will occur 2. Quantitative precipitation forecasts from models 3. Thermal structure where forcing and precipitation are expected 4. Moisture distribution in region where forcing and precipitation are expected. 5. Consideration of microphysical processes Forecasting winter precipitation in 0-48 hour time range: You must have a good understanding of the current state of the Atmosphere BEFORE you try to forecast a future state! 1. Examine current data to identify positions of cyclones and anticyclones and the location and types of fronts.
    [Show full text]
  • * Corresponding Author Address: Mark A. Tew, National Weather Service, 1325 East-West Highway, Silver Spring, MD 20910; E-Mail: [email protected]
    P1.13 IMPLEMENTATION OF A NEW WIND CHILL TEMPERATURE INDEX BY THE NATIONAL WEATHER SERVICE Mark A. Tew*1, G. Battel2, C. A. Nelson3 1National Weather Service, Office of Climate, Water and Weather Services, Silver Spring, MD 2Science Application International Corporation, under contract with National Weather Service, Silver Spring, MD 3Office of the Federal Coordinator for Meteorological Services and Supporting Research, Silver Spring, MD 1. INTRODUCTION group is called the Joint Action Group for Temperature Indices (JAG/TI) and is chaired by the NWS. The goal of The Wind Chill Temperature (WCT) is a term used to JAG/TI is to internationally upgrade and standardize the describe the rate of heat loss from the human body due to index for temperature extremes (e.g., Wind Chill Index). the combined effect of wind and low ambient air Standardization of the WCT Index among the temperature. The WCT represents the temperature the meteorological community is important, so that an body feels when it is exposed to the wind and cold. accurate and consistent measure is provided and public Prolonged exposure to low wind chill values can lead to safety is ensured. frostbite and hypothermia. The mission of the National After three workshops, the JAG/TI reached agreement Weather Service (NWS) is to provide forecast and on the development of the new WCT index, discussed a warnings for the protection of life and property, which process for scientific verification of the new formula, and includes the danger associated from extremely cold wind generated implementation plans (Nelson et al. 2001). chill temperatures. JAG/TI agreed to have two recognized wind chill experts, The NWS (1992) and the Meteorological Service of Mr.
    [Show full text]
  • Yeah, There Is a Difference Measuring Road Weather and Using It!
    Yeah, There is a Difference Measuring Road Weather and Using it! Jon Tarleton Head of Transportation Marketing – Meteorologist Twitter: @jontarleton What are we going to talk about? . The weather of course! But when and what matters! . The weather before, during, and after a storm. The weather around frost. Let’s start with nothing and build on it. When we are done you will know what information is good information! Page 2 © Vaisala 10/20/2016 [Name] There is weather… And then there is road weather… Page 3 © Vaisala 10/20/2016 [Name] Let’s start at the beginning! Page 4 © Vaisala 10/20/2016 [Name] You just got your fleet of new plows! Page 5 © Vaisala 10/20/2016 [Name] But otherwise you are Anytown, USA Page 6 © Vaisala 10/20/2016 [Name] Approaching winter storm Page 7 © Vaisala 10/20/2016 [Name] Air temperature .Critical in telling us the type of precipitation. .How do we measure it? .Measured from 6ft off the ground .In a white vented enclosure .Combined with wind it has an impact on our road surface. Page 8 © Vaisala 10/20/2016 [Name] Thermodynamics 101 .To understand how the air impacts our pavement we must understand how heat transfers from objects, and between the air and objects. Sun Air Subgrade Page 9 © Vaisala 10/20/2016 [Name] Wind Page 10 © Vaisala 10/20/2016 [Name] Wind – An important piece of the weather . Lows typical move from southwest to northwest. System may not always contain all of the precipitation types. Best snow is usually approx. L 250 miles north of center of low.
    [Show full text]
  • Weather Elements
    In this chapter Temperature Humidity Clouds Precipitation WEATHER ELEMENTS TEMPERATURE per cent of the incoming radiation. The more energy a surface absorbs, the more heat it will eventually release Heat is one form of energy. The sun radiates energy in back into the atmosphere. waves, in this case short waves, to the earth. The atmosphere does not absorb short-wave energy readily. The clouds, dust and water vapour in the atmosphere To show your students that the rate at which energy is absorbed depends on the colour of a deflect about half of the sun's energy back into space. material, try Activity number 7 on page 8-9 in What passes through is absorbed by the land and water the Activity Section. and converted to heat. The earth radiates this back as Eventually, all the energy the sun radiates to earth long-wave energy, which then warms the air above. In returns to outer space creating the global balance of short, the earth acts as a radiator, which you probably energy. This prevents the earth from heating up or know already, if you have ever walked down a long stretch cooling down. of sidewalk or across a large parking lot on a hot day and watched (or felt) the heat rise from the pavement. The temperature on your thermometer this morning, however, was probably affected more by the season, the Several factors affect how much of the sun's energy a time of day, the latitude, and the geography of your area surface, such as a field, absorbs. One is its colour.
    [Show full text]
  • NOTES and CORRESPONDENCE the Steadman Wind Chill
    DECEMBER 1998 NOTES AND CORRESPONDENCE 1187 NOTES AND CORRESPONDENCE The Steadman Wind Chill: An Improvement over Present Scales ROBERT G. QUAYLE National Climatic Data Center, Asheville, North Carolina ROBERT G. STEADMAN School of Agricultural Science, La Trobe University, Bundoora, Victoria, Australia 19 February 1998 and 24 June 1998 ABSTRACT Because of shortcomings in the current wind chill formulation, which did not consider the metabolic heat generation of the human body, a new formula is proposed for operational implementation. This formula, referred to as the Steadman wind chill, is based on peer-reviewed research including a heat generation and exchange model of an appropriately dressed person for a range of low temperatures and wind speeds. The Steadman wind chill produces more realistic wind chill equivalents than the current NWS formulation. It is easy to determine from tables (calculated by application of a quadratic ®t in both U.S. and metric units) with values accurate to within 18C. 1. Introduction freezing water to actually freeze under various wind and temperature conditions rather than any human physio- Many scientists have noted de®ciencies in the current logical model of heat loss and gain under equivalent wind chill scale (e.g., Court 1992; Dixon and Prior 1987; conditions. The major consequence is that water, not Driscoll 1985, 1992, 1994; Kessler 1993, 1994, 1995; having a metabolic heat source and not being appro- Horstmeyer 1994; Osczevski 1995; Schwerdt 1995; priately attired in human clothing, produces colder wind Steadman 1995). There was a session partly devoted to chills (for given wind and temperature conditions) than this topic at the 22d Annual Workshop on Hazards Re- those experienced by live, clothed humans.
    [Show full text]
  • Driving in the Winter Factsheet
    Driving in the Winter FactSheet HS04-010B (9-07) Even in Texas the onset of winter can bring severe • Winter Storm Watch winter weather conditions. Employers and employees alerts the public to the who drive for a living need to be aware of how to possibility of a blizzard, drive in winter weather. The leading cause of death heavy snow, freezing rain, during a winter storm is driving accidents and multiple or heavy sleet. vehicle accidents are more likely in severe winter weather conditions. Employers and employees can • Winter Storm Warning is take steps to increase safety while driving in winter issued when a combination of heavy snow, heavy weather. freezing rain, or heavy sleet is expected. • Plan ahead and allow plenty of time for travel. • Winter Weather Advisories are issued when An employer should maintain information on its accumulations of snow, freezing rain, freezing employees’ driving destinations, driving routes, drizzle, and sleet may cause significant and estimated time of arrivals. Drivers should inconvenience and moderately dangerous be patient while driving, because trip time can conditions. increase in winter weather. • Snow is frozen precipitation formed when • Winterize vehicles before traveling in winter temperatures are below freezing in most of the weather. Before driving have a mechanic atmosphere from the earth’s surface to cloud check the following items on vehicles: battery; level. antifreeze; wipers and windshield washer fluid; ignition system; thermostat; lights; flashing • Sleet, also know as ice pellets, is formed when hazard lights; exhaust system; heater; brakes; precipitation or raindrops freeze before hitting defroster; tires (check for adequate tread); and the ground.
    [Show full text]
  • The Basis of Wind Chill RANDALL J
    ARCTIC VOL. 48, NO. 4 (DECEMBER 1995) P. 372– 382 The Basis of Wind Chill RANDALL J. OSCZEVSKI1 (Received 21 June 1994; accepted in revised form 16 August 1995) ABSTRACT. The practical success of the wind chill index has often been vaguely attributed to the effect of wind on heat transfer from bare skin, usually the face. To test this theory, facial heat loss and the wind chill index were compared. The effect of wind speed on heat transfer from a thermal model of a head was investigated in a wind tunnel. When the thermal model was facing the wind, wind speed affected the heat transfer from its face in much the same manner as it would affect the heat transfer from a small cylinder, such as that used in the original wind chill experiments carried out in Antarctica fifty years ago. A mathematical model of heat transfer from the face was developed and compared to other models of wind chill. Skin temperatures calculated from the model were consistent with observations of frostbite and discomfort at a range of wind speeds and temperatures. The wind chill index was shown to be several times larger than the calculated heat transfer, but roughly proportional to it. Wind chill equivalent temperatures were recalculated on the basis of facial cooling. An equivalent temperature increment was derived to account for the effect of bright sunshine. Key words: bioclimatology, cold injuries, cold weather, convective heat transfer, face cooling, frostbite, heat loss, survival, wind chill RÉSUMÉ. La popularité de l’indice de refroidissement du vent a souvent été expliquée par le fait qu’on peut la relier plus ou moins à l’effet du vent sur le transfert thermique à partir de la peau nue, le plus souvent celle du visage.
    [Show full text]
  • Appendix a Gempak Parameters
    GEMPAK Parameters APPENDIX A GEMPAK PARAMETERS This appendix contains a list of the GEMPAK parameters. Algorithms used in computing these parameters are also included. The following constants are used in the computations: KAPPA = Poisson's constant = 2 / 7 G = Gravitational constant = 9.80616 m/sec/sec GAMUSD = Standard atmospheric lapse rate = 6.5 K/km RDGAS = Gas constant for dry air = 287.04 J/K/kg PI = Circumference / diameter = 3.14159265 References for some of the algorithms: Bolton, D., 1980: The computation of equivalent potential temperature., Monthly Weather Review, 108, pp 1046-1053. Miller, R.C., 1972: Notes on Severe Storm Forecasting Procedures of the Air Force Global Weather Central, AWS Tech. Report 200. Wallace, J.M., P.V. Hobbs, 1977: Atmospheric Science, Academic Press, 467 pp. TEMPERATURE PARAMETERS TMPC - Temperature in Celsius TMPF - Temperature in Fahrenheit TMPK - Temperature in Kelvin STHA - Surface potential temperature in Kelvin STHK - Surface potential temperature in Kelvin N-AWIPS 5.6.L User’s Guide A-1 October 2003 GEMPAK Parameters STHC - Surface potential temperature in Celsius STHE - Surface equivalent potential temperature in Kelvin STHS - Surface saturation equivalent pot. temperature in Kelvin THTA - Potential temperature in Kelvin THTK - Potential temperature in Kelvin THTC - Potential temperature in Celsius THTE - Equivalent potential temperature in Kelvin THTS - Saturation equivalent pot. temperature in Kelvin TVRK - Virtual temperature in Kelvin TVRC - Virtual temperature in Celsius TVRF - Virtual
    [Show full text]
  • ENVIRONMENTAL METER [email protected] 1.800.561.8187
    USER MANUAL ENVIRONMENTAL METER Model EN510 Additional User Manual Translations available at 1.800.561.8187 www. .com [email protected] Introduction Thank you for selecting the Extech EN510 Environmental Meter. This instrument measures Air Velocity with Air temperature, Air Flow (volume), Light, Relative Humidity % with Air temperature, Dew Point temperature, Web bulb temperature, Type K temperature (external probe), Heat Index temperature, and Wind Chill temperature. The backlit LCD includes primary and secondary displays plus a variety of intuitive status indicators. This device is shipped fully tested and calibrated and, with proper use, will provide years of reliable service. Please visit our website ( ) to check for the latest version and translations of this User Manual, Product Updates, Product Registration, and Customer Support. Features • Professional environmental meter with programming menu for user-customization • Selectable units of measure • Air velocity with air temperature readings • Air Flow (Volume) measurements in CFM (ft3) and CMM (m3) units • Light measurements in Foot candle and LUX units • Environmental measurements: Relative humidity % with air temperature, Dew point temperature, Wet bulb temperature, Wind chill temperature, Heat Index temperature, and Type K temperature (with external probe connected) • Low-friction ball bearing mounted vane wheel for high accuracy low air velocity measurements • Built-in barometric sensor for precise atmosphere and altitude monitoring • MAX-MIN Recording • Display Hold freezes displayed reading for convenience • Compact, light-weight, easy-to-use, ergonomic design with lanyard • Backlit LCD automatically reverses orientation to match selected sensor mode Safety • Please read the entire User Manual and Quick Start before operating this device. • Use the meter only as specified and do not attempt to service or open the meter housing.
    [Show full text]
  • Weather Products
    Forecast Products The Zone Forecast Product highlights the expected sky condition, type and probability of precipitation, visibility restrictions, and temperature Zone affecting individual counties for each 12-hour period out through 7 days. Forecast ZFP Wind direction and speed are also included in the forecast out to 60 hours. WFO Paducah issues the zone forecast by 4 a.m. and 3:30 p.m. under the Product header ZFPPAH. This forecast is updated as needed to meet changing weather conditions. Refer to Appendix A for a guide to ZFP terminology. WFO Paducah provides detailed digital forecast data via the Area/Point Forecast Matrices. These products display forecast weather parameters in 3, 6, and 12-hour intervals through 7 days. Incorporated into a matrix format, this product creates a highly detailed forecast, allowing for an at-a- Area/Point AFM glance view of a large number of forecast elements. The AFM contains Forecast forecasts for each county within the WFO Paducah forecast area, while PFM the PFM shows forecasts for specific cities. WFO Paducah issues the Matrices Area/Point Forecast Matrices by 4 a.m. and 3:30 p.m. under the respective headers of AFMPAH and PFMPAH. These products are updated every 3 hours and as needed to meet changing weather conditions. Refer to Appendix B for a detailed guide to interpreting the AFM and PFM. WFO Paducah issues the Area Forecast Discussion twice daily by 4 a.m. and 3:30 p.m. under the header AFDPAH. This product provides scientific Area insight into the thought process of the forecast team at Paducah.
    [Show full text]
  • HCPRD Weather Procedures
    HENRY COUNTY SCHOOL DISTRICT GUIDELINES FOR OUTDOOR EXTRACURRICULAR ACTIVITIES DURING EXTREME HOT AND HUMID WEATHER 1. Each school shall have and use a digital psychrometer, or a similar device for measuring environmental factors. The digital psychrometer is used to measure the Wet Bulb Temperature (WBT), which is derived by evaluating the combined dry air temperature, humidity, ground radiated heat and the wind speed at that particular location. Conditions are subject to change during the practice/activity; therefore, measurements should be taken at regular intervals throughout the practice/activity. Measurements should be taken at the practice/activity site. a. All Activities: Monitor and follow all guidelines. b. The school Athletic Director or his/her designee: Will be required to measure and document the Wet Bulb Temperature (WBT) prior to outdoor practice through the month of August, during spring practice in May, and other times when conditions warrant. Additional measurements should be taken during practice as conditions warrant. c. The Athletic Director or his/her designee will make a determination if activities should be postponed or cancelled due to unsafe conditions. All fall outdoor activities must adhere to this decision, including band and ROTC. 2. Practices and games should be held early in the morning and later in the evening to avoid times when environmental conditions are generally more severe. 3. An unlimited supply of water shall be available to participants during practices and games. a. Coaches/Supervisors shall inform all students participating that water is always available or accessible and they will be given permission anytime he/she asks for water.
    [Show full text]
  • Methods of Oabservation At
    WORLD METEOROLOGICAL ORGANIZATION TECHNICALTECHNICAL NOTE NOTE No. No. 123 2 THEMETHODS ASSESSMENT OF OABSERVATION OF HUMAN BIOCLIMATE AT SEA A LIMITED REVIEW OF PHYSICAL PARAMETERS PART I – SEA SURFACE TEMPERATURE by Professor H.E. LANDSBERG WMO-No.WMO-No. 26. 331 TP. 8 Secretariat of the World Meteorological Organization – Geneva – Switzerland WORLD METEOROLOGICAL ORGANIZATION TECHNICAL NOTE No. 123 THE ASSESSMENT OF HUMAN BIOCLIMATE A LIMITED REVIEW OF PHYSICAL PARAMETERS by Professor H. E. Landsberg eel Rapporteur for Human Biometeorology IWMO - No. 331 I Secretariat of the World Meteorological Organization .. Geneva .. Switzerland 1972 © 1972, World Meteorological Organization NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the "World Meteorological Organization concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. CONTENTS Page Foreword . V Summary (English, French, Russian, Spanish). VII Introduction .. XI Historical notes .. I Basic considerations 2 Some physiological aspects 4 Meteorological measures to represent environmental stress. 12 Bioclimatic classification attempts . 22 The expanding scope of human bioclimatology 30 References . 33 FOREWORD At its fourth session (Stockholm, 1965), the WMO Commission for Climatology (now Commission for Special Applications of Meteorology and Climatology) appointed Professor H. E. Landsberg as Rapporteur for Human Bio­ meteorology. In this capacity Professor Landsberg prepared a comprehensive survey paper on physical bioclimatology dealing with the expression in physical laws of the thermal influences of climate. At its fifth session (Geneva, 1969), the Commission expressed its satisfaction with this report and recommended that it be published as a WMO Technical Note.
    [Show full text]