Crystal Structure of Microsomal Prostaglandin E2 Synthase Provides Insight Into Diversity in the MAPEG Superfamily
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Comparative Modeling and Functional Characterization of Two Enzymes of the Cyclooxygenase Pathway in Drosophila Melanogaster
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2014 Comparative Modeling and Functional Characterization of Two Enzymes of the Cyclooxygenase Pathway in Drosophila melanogaster Yan Qi Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/94 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Comparative Modeling and Functional Characterization of Two Enzymes of the Cyclooxygenase Pathway in Drosophila melanogaster by Yan Qi A dissertation submitted to the Graduate Faculty in Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 i © 2014 Yan Qi All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Biology in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. _______ ______________________ Date Chair of Examining Committee Dr. Shaneen Singh, Brooklyn College _______ ______________________ Date Executive Officer Dr. Laurel A. Eckhardt ______________________ Dr. Peter Lipke, Brooklyn College ______________________ Dr. Shubha Govind, City College ______________________ Dr. Richard Magliozzo, Brooklyn College ______________________ Dr. Evros Vassiliou, Kean University Supervising Committee The City University of New York iii Abstract Comparative Modeling and Functional Characterization of Two Enzymes of the Cyclooxygenase Pathway in Drosophila melanogaster by Yan Qi Mentor: Shaneen Singh Eicosanoids are biologically active molecules oxygenated from twenty carbon polyunsaturated fatty acids. -
Eicosanoids in Carcinogenesis
4open 2019, 2,9 © B.L.D.M. Brücher and I.S. Jamall, Published by EDP Sciences 2019 https://doi.org/10.1051/fopen/2018008 Special issue: Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer” Available online at: Guest Editor: Obul R. Bandapalli www.4open-sciences.org REVIEW ARTICLE Eicosanoids in carcinogenesis Björn L.D.M. Brücher1,2,3,*, Ijaz S. Jamall1,2,4 1 Theodor-Billroth-Academy®, Germany, USA 2 INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, Germany, USA 3 Department of Surgery, Carl-Thiem-Klinikum, Cottbus, Germany 4 Risk-Based Decisions Inc., Sacramento, CA, USA Received 21 March 2018, Accepted 16 December 2018 Abstract- - Inflammation is the body’s reaction to pathogenic (biological or chemical) stimuli and covers a burgeoning list of compounds and pathways that act in concert to maintain the health of the organism. Eicosanoids and related fatty acid derivatives can be formed from arachidonic acid and other polyenoic fatty acids via the cyclooxygenase and lipoxygenase pathways generating a variety of pro- and anti-inflammatory mediators, such as prostaglandins, leukotrienes, lipoxins, resolvins and others. The cytochrome P450 pathway leads to the formation of hydroxy fatty acids, such as 20-hydroxyeicosatetraenoic acid, and epoxy eicosanoids. Free radical reactions induced by reactive oxygen and/or nitrogen free radical species lead to oxygenated lipids such as isoprostanes or isolevuglandins which also exhibit pro-inflammatory activities. Eicosanoids and their metabolites play fundamental endocrine, autocrine and paracrine roles in both physiological and pathological signaling in various diseases. These molecules induce various unsaturated fatty acid dependent signaling pathways that influence crosstalk, alter cell–cell interactions, and result in a wide spectrum of cellular dysfunctions including those of the tissue microenvironment. -
Characterization of Human Glutathione-Dependent Microsomal Prostaglandin E Synthase-1
Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, 171 77 Stockholm, Sweden Characterization of human glutathione-dependent microsomal prostaglandin E synthase-1 Staffan Thorén Stockholm 2003 ABSTRACT Prostaglandins (PGs) are lipid mediators, which act as local hormones. PGs are formed in most cells and are synthesized de novo from membrane-released arachidonic acid (AA) upon cell activation. Prostaglandin H synthase (PGHS) –1 or 2, also referred to as COX-1 and COX-2, metabolize AA to PGH2, which is subsequently converted in a cell-specific manner by downstream enzymes to biologically active prostanoids, i.e. PGE2, PGD2, PGF2α, PGI2 or TXA2. PGHS-1 is constitutively expressed in many cells and is mainly involved in housekeeping functions, such as vascular homeostasis, whereas PGHS-2 can be induced by proinflammatory cytokines at sites of inflammation. Prostaglandin E synthase (PGES) specifically catalyzes the conversion of PGH2 to PGE2, which is a biologically potent prostaglandin involved in several pathological conditions; including pain, fever, inflammation and possibly some forms of cancers and neurodegenerative diseases. mPGES-1 was initially identified as a homologue to microsomal glutathione transferase-1 (MGST1) with 37% identity on the amino acid sequence level and referred to as MGST1-like 1 (MGST1- L1). Based on the properties of MGST1-L1, regarding size, amino acid sequence, hydropathy and membrane localization, the protein was identified as a member of the MAPEG-superfamily (membrane- associated proteins in eicosanoid and glutathione metabolism). The superfamily consists of 16-18 kDa, integral membrane proteins with typical hydropathy profiles and diverse functions. The MAPEG family comprises six human members, which in addition to mPGES-1 are; 5-lipoxygenase activating protein (FLAP), leukotriene C4 synthase (LTC4S), MGST1, MGST2 and MGST3. -
GT Lauram.Sc Thesis (FINAL)
OPTIMIZATION OF OVER-EXPRESSION AND PURIFICATION OF HUMAN LEUKOTRIENE C4 SYNTHASE MUTANT R104A FOR STRUCTURE-FUNCTION STUDIES BY TWO-DIMENSIONAL CRYSTALLIZATION AND ELECTRON CRYSTALLOGRAPHY A Thesis Presented to The Academic Faculty by Laura Yaunhee Kim In Partial Fulfillment of the Requirements for the Degree Master of Science in the School of Biology Georgia Institute of Technology December 2012 OPTIMIZATION OF OVER-EXPRESSION AND PURIFICATION OF HUMAN LEUKOTRIENE C4 SYNTHASE MUTANT R104A FOR STRUCTURE-FUNCTION STUDIES BY TWO-DIMENSIONAL CRYSTALLIZATION AND ELECTRON CRYSTALLOGRAPHY Approved by: Dr. Ingeborg Schmidt-Krey, Advisor School of Biology School of Chemistry and Biochemistry Georgia Institute of Technology Dr. Thomas DiChristina School of Biology Georgia Institute of Technology Dr. Raquel L. Lieberman School of Chemistry and Biochemistry Georgia Institute of Technology Date Approved: July 24, 2012 I dedicate this work to my father Sun Dong Kim, mother In Ok Kim, and sister Esther Kim, who have supported me from the very beginning. This work could not have been completed without your love and encouragement. ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Inga Schmidt-Krey, for guiding and supporting me throughout my academic studies. I would like to thank her for her consistent availability and scientific input during every step of research. Without her guidance this work would not have been possible. I am in debt to my family and friends for their unflinching support and encouragement, without which none of this would be possible. I am also very grateful to all the Schmidt-Krey lab members, especially Matthew Johnson and Maureen Metcalfe, for their support and input into this work. -
Disruption of the Alox5ap Gene Ameliorates Focal Ischemic Stroke: Possible Consequence of Impaired Leukotriene Biosynthesis
Ström et al. BMC Neuroscience 2012, 13:146 http://www.biomedcentral.com/1471-2202/13/146 RESEARCH ARTICLE Open Access Disruption of the alox5ap gene ameliorates focal ischemic stroke: possible consequence of impaired leukotriene biosynthesis Jakob O Ström1, Tobias Strid2 and Sven Hammarström2* Abstract Background: Leukotrienes are potent inflammatory mediators, which in a number of studies have been found to be associated with ischemic stroke pathology: gene variants affecting leukotriene synthesis, including the FLAP (ALOX5AP) gene, have in human studies shown correlation to stroke incidence, and animal studies have demonstrated protective properties of various leukotriene-disrupting drugs. However, no study has hitherto described a significant effect of a genetic manipulation of the leukotriene system on ischemic stroke. Therefore, we decided to compare the damage from focal cerebral ischemia between wild type and FLAP knockout mice. Damage was evaluated by infarct staining and a functional test after middle cerebral artery occlusion in 20 wild type and 20 knockout male mice. Results: Mortality-adjusted median infarct size was 18.4 (3.2-76.7) mm3 in the knockout group, compared to 72.0 (16.7-174.0) mm3 in the wild type group (p < 0.0005). There was also a tendency of improved functional score in the knockout group (p = 0.068). Analysis of bone marrow cells confirmed that knockout animals had lost their ability to form leukotrienes. Conclusions: Since the local inflammatory reaction after ischemic stroke is known to contribute to the brain tissue damage, the group difference seen in the current study could be a consequence of a milder inflammatory reaction in the knockout group. -
9 Glutathione S-Transferases
Enzyme Systems that Metabolise Drugs and Other Xenobiotics. Edited by Costas Ioannides Copyright # 2001 John Wiley & Sons Ltd ISBNs: 0-471-894-66-4 %Hardback); 0-470-84630-5 %Electronic) 9 Glutathione S-transferases Philip J. Sherratt and John D. Hayes University of Dundee, UK Introduction Glutathione S-transferase GST; EC 2.5.1.18) isoenzymes are ubiquitously distributed in nature, being found in organisms as diverse as microbes, insects, plants, ®sh, birds andmammals Hayes andPulford1995). The transferases possess various activities andparticipate in several differenttypes of reaction. Most of these enzymes can catalyse the conjugation of reduced glutathione GSH) with compounds that contain an electrophilic centre through the formation of a thioether bondbetween the sulphur atom of GSH and the substrate Chasseaud 1979; Mannervik 1985). In addition to conjugation reactions, a number of GST isoenzymes exhibit other GSH-dependent catalytic activities including the reduction of organic hydroperoxides Ketterer et al. 1990) andisomerisation of various unsaturatedcompoundsBenson et al. 1977; Jakoby andHabig 1980). These enzymes also have several non-catalytic functions that relate to the sequestering of carcinogens, intracellular transport of a wide spectrum of hydrophobic ligands, and modulation of signal transduction pathways Listowsky 1993; Adler et al. 1999; Cho et al. 2001). Glutathione S-transferases represent a complex grouping of proteins. Two entirely distinct superfamilies of enzyme have evolved that possess transferase activity Hayes andStrange 2000). The ®rst enzymes to be characterisedwere the cytosolic, or soluble, GSTs BoylandandChasseaud1969; Mannervik 1985). To dateat least 16 members of this superfamily have been identi®ed in humans Board et al. 1997, 2000; Hayes and Strange 2000). -
Crystal Structure of Microsomal Prostaglandin E2 Synthase Provides Insight Into Diversity in the MAPEG Superfamily
Crystal structure of microsomal prostaglandin E2 synthase provides insight into diversity in the MAPEG superfamily Tove Sjögrena,1, Johan Nordb, Margareta Eka, Patrik Johanssona, Gang Liub, and Stefan Geschwindnera,1 aDiscovery Sciences, AstraZeneca R&D Mölndal, S-43183 Mölndal, Sweden; and bDepartment of Neuroscience, AstraZeneca R&D Södertälje, S-151 85 Södertälje, Sweden Edited by R. Michael Garavito, Michigan State University, East Lansing, MI, and accepted by the Editorial Board January 17, 2013 (received for review October 24, 2012) fl Prostaglandin E2 (PGE2) is a key mediator in in ammatory re- with mPGES-1. Leukotriene C4 (LTC4) synthase, 5-lipoxygenase sponse. The main source of inducible PGE2, microsomal PGE2 syn- activating protein (FLAP), MGST2, and MGST3 are more dis- thase-1 (mPGES-1), has emerged as an interesting drug target for tantly related with a sequence identity of 15–30%. Initial struc- treatment of pain. To support inhibitor design, we have deter- tural characterization of the MAPEG family was done using mined the crystal structure of human mPGES-1 to 1.2 Å resolution. electron crystallography and showed that the members contain The structure reveals three well-defined active site cavities within four transmembrane helices and are organized as trimers (8, 9). the membrane-spanning region in each monomer interface of This was later confirmed by the X-ray crystal structures of FLAP the trimeric structure. An important determinant of the active (10) and LTC4 synthase (11, 12). There are also low-resolution site cavity is a small cytosolic domain inserted between trans- 3D electron crystallography structures of MGST1 and mPGES-1 membrane helices I and II. -
Mechanism of Enzymes Involved in Leukotriene C4 Biosynthesis
From Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden MECHANISM OF ENZYMES INVOLVED IN LEUKOTRIENE C4 BIOSYNTHESIS H. R. Shabbir Ahmad Stockholm 2016 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-Print AB © H. R. Shabbir Ahmad, 2016 ISBN 978-91-7676-368-1 Mechanism of Enzymes Involved in Leukotriene C4 Biosynthesis THESIS FOR DOCTORAL DEGREE (Ph.D.) By H. R. Shabbir Ahmad Opponent: Principal Supervisor: Tim Mantle, PhD Professor Jesper Z. Haeggström Trinity College Dublin Karolinska Institutet Ireland. Department of Medical Biochemistry and Biophysics Division of Chemistry II Examination Board: Co-supervisor(s): Professor Hans-Erik Claesson Karolinska Institutet Agnes Rinaldo-Matthis, PhD Department of Medicine, Solna. Karolinska Institutet Department of Medical Biochemistry and Professor Pia Ädelroth Biophysics Stockholm University Division of Chemistry II Department of Biochemistry and Biophysics Professor Ralf Morgenstern Docent Ylva Ivarsson Karolinska Institutet Uppsala University Institute of Environmental Medicine Department of Chemistry, BMC To my family ABSTRACT Cysteinyl leukotrienes (cys-LTs) are potent proinflammatory mediators associated with various diseases including asthma and allergic rhinitis. Leukotriene C4 synthase (LTC4S) and microsomal glutathione transferase 2 (MGST2) catalyze conjugation of the epoxide intermediate LTA4 with GSH to form LTC4, the parent compound of the cys-LTs. Both enzymes belong to the Membrane-Associated Proteins in Eicosanoid and Glutathione metabolism (MAPEG) super family of integral membrane proteins involved in the generation of lipid mediators and in the metabolism of xenobiotics. This thesis investigates the catalytic mechanism and regulation of LTC4S and MGST2. MGST2 can also catalyze conjugation of glutathione (GSH) with electrophilic substrates, such as 1-chloro-2,4-dinitrobenzene (CDNB) and also possesses GSH-dependent peroxidase activity. -
Biological Effects of Inhaled Hydraulic Fracturing Sand Dust VII. Neuroinflammation and Altered Synaptic Protein Expression
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Toxicol Manuscript Author Appl Pharmacol Manuscript Author . Author manuscript; available in PMC 2020 December 24. Published in final edited form as: Toxicol Appl Pharmacol. 2020 December 15; 409: 115300. doi:10.1016/j.taap.2020.115300. Biological effects of inhaled hydraulic fracturing sand dust VII. Neuroinflammation and altered synaptic protein expression Krishnan Sriram*, Gary X. Lin, Amy M. Jefferson, Walter McKinney, Mark C. Jackson, Amy Cumpston, Jared L. Cumpston, James B. Cumpston, Howard D. Leonard, Michael Kashon, Jeffrey S. Fedan Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States of America Abstract Hydraulic fracturing (fracking) is a process used to recover oil and gas from shale rock formation during unconventional drilling. Pressurized liquids containing water and sand (proppant) are used to fracture the oil- and natural gas-laden rock. The transportation and handling of proppant at well sites generate dust aerosols; thus, there is concern of worker exposure to such fracking sand dusts (FSD) by inhalation. FSD are generally composed of respirable crystalline silica and other minerals native to the geological source of the proppant material. Field investigations by NIOSH suggest that the levels of respirable crystalline silica at well sites can exceed the permissible exposure limits. Thus, from an occupational safety perspective, it is important to evaluate the potential toxicological effects of FSD, including any neurological risks. Here, we report that acute inhalation exposure of rats to one FSD, i.e., FSD 8, elicited neuroinflammation, altered the expression of blood brain barrier-related markers, and caused glial changes in the olfactory bulb, hippocampus and cerebellum. -
Structural and Functional Insights of Human 5-Lipoxygenase
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Structural and functional insights of human 5-lipoxygenase Nathaniel Carson Gilbert Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Gilbert, Nathaniel Carson, "Structural and functional insights of human 5-lipoxygenase" (2011). LSU Doctoral Dissertations. 1747. https://digitalcommons.lsu.edu/gradschool_dissertations/1747 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. STRUCTURAL AND FUNCTIONAL INSIGHTS OF HUMAN 5-LIPOXYGENASE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Nathaniel Carson Gilbert B.S., Louisiana State University, 2006 May 2011 DEDICATION This work is in part dedicated to my parents, James and Evelyn Gilbert, who have always supported my educational growth and knew the importance of higher learning. Also to my sister Ashley Ussery and her family: Chris, Chloe, and Noah Ussery for supporting me and reminding me what is most important in life. They, along with the rest of my family and family- in-law, for keeping me motivated in the pursuit of academic excellence. I would also like to dedicate this work to Doug and Emily Caldwell and their son Benjamin Caldwell, whose life was too short, for spurring my interest into all things learned. -
Human Leukotriene C4 Synthase at 4.5 A˚Resolution in Projection
Structure, Vol. 12, 2009–2014, November, 2004, 2004 Elsevier Ltd. All rights reserved. DOI 10.1016/j.str.2004.08.008 Human Leukotriene C4 Synthase at 4.5 A˚ Resolution in Projection Ingeborg Schmidt-Krey,1,* Yoshihide Kanaoka,2 MGST3, FLAP, and microsomal prostaglandin E syn- Deryck J. Mills,1 Daisuke Irikura,2 thase-1 (Jakobsson et al., 1999). The amino acid se- 1 2 2 Winfried Haase, Bing K. Lam, K. Frank Austen, quence of the human LTC4S is 44%, 31%, and 27% and Werner Ku¨ hlbrandt1 identical to that of human MGST2, FLAP, and MGST3, 1Department of Structural Biology respectively, and has less similarity to that of MGST1 Max-Planck-Institute of Biophysics (18% identity) and microsomal prostaglandin E syn- Marie-Curie-Strasse 15 thase-1 (14% identity). 60439 Frankfurt am Main LTC4S shows overlapping and distinct enzymatic Germany properties as compared to other members of the MAPEG 2 Department of Medicine family. MGST2 (Jakobsson et al., 1996) and MGST3 (Ja- Harvard Medical School and kobsson et al., 1997) can also conjugate LTA4 as well Division of Rheumatology, Immunology, and Allergy as xenobiotics with reduced glutathione in vitro, while Brigham and Women’s Hospital LTC4S has strict substrate specificity for LTA4 (Nicholson 2ϩ One Jimmy Fund Way et al., 1993). LTC4S activity is augmented by Mg ions Boston, Massachusetts 02115 and phosphatidylcholine and is inhibited by Co2ϩ ions (Nicholson et al., 1992a). N-ethylmaleimide, a sulfhydryl group reactive agent, activates MGST1 (Morgenstern et Summary al., 1980) but inhibits LTC4S activity in the human leuke- mic monoblast cell line, U937 (Nicholson et al., 1992b) and the recombinant human LTC4S (B.K.L., unpublished Leukotriene (LT) C4 synthase, an 18 kDa integral mem- results). -
Cysteinyl Leukotrienes As Potential Pharmacological Targets for Cerebral Diseases
Hindawi Mediators of Inflammation Volume 2017, Article ID 3454212, 15 pages https://doi.org/10.1155/2017/3454212 Review Article Cysteinyl Leukotrienes as Potential Pharmacological Targets for Cerebral Diseases 1 1 1 1,2 2 Paolo Gelosa, Francesca Colazzo, Elena Tremoli, Luigi Sironi, and Laura Castiglioni 1Centro Cardiologico Monzino IRCCS, Via Carlo Parea 4, 20138 Milan, Italy 2Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Giuseppe Balzaretti 9, 20133 Milan, Italy Correspondence should be addressed to Luigi Sironi; [email protected] Received 26 January 2017; Revised 10 April 2017; Accepted 19 April 2017; Published 18 May 2017 Academic Editor: Elzbieta Kolaczkowska Copyright © 2017 Paolo Gelosa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cysteinyl leukotrienes (CysLTs) are potent lipid mediators widely known for their actions in asthma and in allergic rhinitis. Accumulating data highlights their involvement in a broader range of inflammation-associated diseases such as cancer, atopic dermatitis, rheumatoid arthritis, and cardiovascular diseases. The reported elevated levels of CysLTs in acute and chronic brain lesions, the association between the genetic polymorphisms in the LTs biosynthesis pathways and the risk of cerebral pathological events, and the evidence from animal models link also CysLTs and brain diseases. This review will give an overview of how far research has gone into the evaluation of the role of CysLTs in the most prevalent neurodegenerative disorders (ischemia, Alzheimer’s and Parkinson’s diseases, multiple sclerosis/experimental autoimmune encephalomyelitis, and epilepsy) in order to understand the underlying mechanism by which they might be central in the disease progression.