Telehealth Transformation: COVID-19 and the Rise of Virtual Care

Total Page:16

File Type:pdf, Size:1020Kb

Telehealth Transformation: COVID-19 and the Rise of Virtual Care Journal of the American Medical Informatics Association, 0(0), 2020, 1–6 doi: 10.1093/jamia/ocaa067 Perspective Perspective Downloaded from https://academic.oup.com/jamia/advance-article-abstract/doi/10.1093/jamia/ocaa067/5822868 by guest on 01 June 2020 Telehealth transformation: COVID-19 and the rise of virtual care Jedrek Wosik,1 Marat Fudim,1 Blake Cameron,2 Ziad F. Gellad,3,4 Alex Cho,5 Donna Phinney,6 Simon Curtis,7 Matthew Roman,6,8 Eric G. Poon ,5,6 Jeffrey Ferranti,6,8,9 Jason N. Katz,1 and James Tcheng1 1Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA, 2Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA, 3Division of Gastroen- terology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA, 4Center for Health Services Research in Primary Care, Durham VA Medical Center, Durham, North Carolina, USA, 5Division of General Internal Medicine, De- partment of Medicine, Duke University School of Medicine, Durham, North Carolina, USA, 6Duke Network Services, Duke Univer- sity Health System, Durham, North Carolina, USA, 7Private Diagnostic Clinic, Duke Health Access Center, Durham, North Carolina, USA, 8Duke Health Technology Solutions, Durham, North Carolina, USA and 9Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA Corresponding Author: Jedrek Wosik, MD, Division of Cardiology, Department of Medicine and Division of Cardiology, Duke University School of Medicine, 2301 Erwin Road, Durham, NC, USA; [email protected] Received 14 April 2020; Editorial Decision 15 April 2020; Accepted 17 April 2020 ABSTRACT The novel coronavirus disease-19 (COVID-19) pandemic has altered our economy, society, and healthcare system. While this crisis has presented the U.S. healthcare delivery system with unprecedented challenges, the pandemic has catalyzed rapid adoption of telehealth, or the entire spectrum of activities used to deliver care at a distance. Using examples reported by U.S. healthcare organizations, including ours, we describe the role that telehealth has played in transforming healthcare delivery during the 3 phases of the U.S. COVID-19 pandemic: (1) stay-at- home outpatient care, (2) initial COVID-19 hospital surge, and (3) postpandemic recovery. Within each of these 3 phases, we examine how people, process, and technology work together to support a successful telehealth trans- formation. Whether healthcare enterprises are ready or not, the new reality is that virtual care has arrived. Key words: telemedicine, telehealth, COVID, pandemic The novel coronavirus disease 2019 (COVID-19) pandemic has tunities and limitations of each type of telehealth encounter is of- altered our economy, society, and healthcare system. While this fered (Table 1). crisis has presented the U.S. healthcare delivery system unprece- Telehealth programs overcome physical barriers to provide dented challenges, it has catalyzed rapid adoption of telehealth patients and caregivers access to convenient medical care. Health- and transformed healthcare delivery at a breathtaking pace.1,2 care systems with telehealth sustain the continuity of outpatient pa- The term telehealth refers to the entire spectrum of activities used tient care during this pandemic—in the midst of “stay-at-home” to deliver care at a distance—without direct physical contact orders and physical distancing measures, while reducing community with the patient. Telehealth encompasses both provider-to- and nosocomial spread. Telehealth also proves useful for inpatient patient and provider-to-provider communications, and can take care, in particular to help balance the supply of clinical services with place synchronously (telephone and video), asynchronously (pa- surge in demand across physical or geographical boundaries, con- tient portal messages, e-consults), and through virtual agents serve personal protective equipment, and provide isolated patients (chatbots) and wearable devices. A brief summary of the oppor- connection to family and friends.3,4 VC The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: [email protected] 1 2 Journal of the American Medical Informatics Association, 2020, Vol. 0, No. 0 Table 1. Classification of telehealth encounters Platform Use Case(s) Opportunities Limitations E-consult: Asynchronous During and after initial surge: As- Time efficient for specialists, con- Potentially shifts work to front- clinician-to-clinician sist frontline clinicians with tri- solidates care for patients line clinicians communication based age of urgent patient referrals New inpatient clinician-to-clini- Lack of physical exam or direct on record review (inpa- Assist frontline clinicians with cian billing codes available communication with patients tient and outpatient) management of low complexity Patient-initiated second opinion patients where there is limited requests are possible Downloaded from https://academic.oup.com/jamia/advance-article-abstract/doi/10.1093/jamia/ocaa067/5822868 by guest on 01 June 2020 capacity among specialists Remote patient monitor- All phases: efficient method of Respond to clinical data outside Requires staffing infrastructure ing:Gather patient out- patient care, especially those of regular clinic visits Data ideally is integrated into side traditional with chronic conditions Recordings can be automatically EHR for sustainable workflow healthcare setting via sent to clinicians connected device or pa- Payers support remote patient tient reported out- monitoring activities comes (synchronous or asynchronous) Patient-initiated messag- All phases: time-efficient han- Patient initiates communication Requires technology infrastruc- ing: Synchronous chats dling of straightforward issues. when convenient ture and staffing with automated or live Able to get FAQs and use self- Potential lack of context, agents service tools requires tight integration with Asynchronous patient Live or autonomous text-based the EHR to be optimally useful portal messaging options Telephone visit: Synchro- During and after initial surge: re- Universally accessible, even in Currently devalued by most nous patient-clinician place some face-to-face visits the most ill/low socioeconomic payers, inability to conduct a communication by status patients physical exam, loss of nonver- phone bal cues Video visit: Synchronous During COVID-19 surge: repla- Slight improvement in clinical Technology requirements: patient-clinician com- ces face-to-face visit care (nonverbal communica- Outpatient requires broadband munication with both After initial surge: expansion of tion, physical exam depending Internet, computer/smart de- audio and video, with virtual interactions across all on bedside facilitator and vice; may need digital periph- possible ancillary and sectors of the healthcare sys- peripherals) erals (eg, stethoscope, otoscope) telemetry equipment tem; More favorable reimbursement Most complex/sickest patients unbundling of services through by payers may be least able to partici- technology pate/access care Inpatient requires mobile/zoom- able camera with microphone and speaker Need infection prevention/saniti- zation protocol for devices COVID-19: coronavirus disease 2019; EHR: electronic health record. Using examples reported by U.S. healthcare organizations, in- virus. Adoption of telehealth requires changes in both patient- cluding ours, we describe the role telehealth has played in transform- related and clinical care processes. The target is to dramatically de- ing healthcare delivery during the 3 phases of the U.S. COVID-19 crease the proportion of in-person care, offering in-person clinic vis- pandemic: (1) stay-at-home outpatient care, (2) initial COVID-19 its only for patients who cannot access telehealth technology or who hospital surge, and (3) postpandemic recovery (Figure 1). Within have urgent (but not emergency-level) clinical concerns that require each of these 3 phases, we examine how people, process, and tech- detailed physical examination. nology work together to support this telehealth conversion.5 This Before the outbreak, many health systems had low rates of tele- framework offers health systems integral components for a success- health utilization for routine care.6 Even health systems with rela- ful transformation. tively high telehealth adoption performed fewer than 100 video visits per day.7 Now, many are seeing >600 patients per day via video, with many in-person clinic replaced with video or telephone PHASE 1: OUTPATIENT CARE DURING “STAY-AT- visits. At our institution, the share of telehealth visits has increased HOME” ORDERS within a 4-week period from <1% of total visits to 70% of total vis- Social distancing and “stay-at-home” orders began in earnest in the its, reaching more than 1000 video visits per day (Figure 2). United States in March 2020 and will likely remain for an extended By May 1, 2020, our institution will have fully provisioned and period after the peak surge period. Telehealth services provide the trained all clinicians to provide both inpatient and outpatient tele- opportunity to maintain access and continuity of medical care while health services. To manage this shift, a centralized telehealth call reducing the potential for community and nosocomial spread of the center was created, staffed by newly hired and repurposed
Recommended publications
  • World Journal of Advanced Research and Reviews
    World Journal of Advanced Research and Reviews, 2020, 07(02), 218–226 World Journal of Advanced Research and Reviews e-ISSN: 2581-9615, Cross Ref DOI: 10.30574/wjarr Journal homepage: https://www.wjarr.com (RESEARCH ARTICLE) Implementation and evaluation of telepharmacy during COVID-19 pandemic in an academic medical city in the Kingdom of Saudi Arabia: paving the way for telepharmacy Abdulsalam Ali Asseri *, Mohab Mohamed Manna, Iqbal Mohamed Yasin, Mashael Mohamed Moustafa, Fatmah Mousa Roubie, Salma Moustafa El-Anssasy, Samer Khalaf Baqawie and Mohamed Ahmed Alsaeed Associate Professor Imam Abdulrahman Bin Faisal University; Director of Pharmacy services at King Fahad University Hospital, KSA. Publication history: Received on 07 July 2020; revised on 22 August 2020; accepted on 25 August 2020 Article DOI: https://doi.org/10.30574/wjarr.2020.7.2.0250 Abstract King Fahad University Hospital, a leading public healthcare institution in the Eastern region of KSA, implemented a disruptive innovation of Telepharmacy in pursuit of compliance with the National COVID-19 Response Framework. It emerged and proved to be an essential and critical pillar in suppression and mitigation strategies. Telepharmacy innovation resulted in Pharmacy staffing protection and provided uninterrupted access and care continuum to the pharmaceutical services, both for COVID-19 and Collateral care. This reform-oriented initiative culminated in adopting engineering and administrative controls to design the workflows, practices, and interactions between healthcare providers, patients, and pharmaceutical frontline staff. Pharmaceutical services enhanced its surge capacity (14,618 OPD requests & 10,030 Inpatient orders) and improved capability (41,242 counseling sessions) to address the daunting challenge of complying with the inpatient needs and robust outpatient pharmaceutical consumer services.
    [Show full text]
  • Computing the Future
    STA2015 1/8/2015 Computing the Future The Evolving Roles of Informatics and Information Technology in Health Care Edward H. Shortliffe, MD, PhD Professor of Biomedical Informatics and Senior Advisor to the Executive Vice Provost College of Health Solutions, Arizona State University Adjunct Faculties, Columbia University and Weill Cornell Medical College Annual Meeting Society for Technology in Anesthesia Royal Palms Resort & Spa Phoenix, AZ January 8, 2014 ©EHShortliffe 2015 1 STA2015 1/8/2015 ©EHShortliffe 2015 2 STA2015 1/8/2015 What I Would Like to Discuss . •Reflections on the evolution of technologies in our society, to provide context for considering health information technology (HIT) and its future •Discussion of the evolution of informatics as a discipline •Some words about nomenclature •Relationship of informatics to HIT • Assessment of our current state •Some examples from anesthesiology •Anticipating future directions ©EHShortliffe 2015 3 STA2015 1/8/2015 Analogy: Commercial Aviation Roughly where we are today in the evolution of health information technology relative to what we envision Analogy: Evolution of Personal Computing Devices ©EHShortliffe 2015 4 STA2015 1/8/2015 1980s Subsequently .. •Network connectivity (Internet and wireless) •Modern PCs, Macs, netbooks, etc. •Smartphones •Tablet computing •Smart devices •Personal devices •And more to come . ©EHShortliffe 2015 5 STA2015 1/8/2015 The Evolving Paradigm White House at night President Bush calls for universal implementation of electronic health records within 10 years
    [Show full text]
  • A Career in Health Care Informatics: the Outlook and Options Table of Contents a Career in Health Care Informatics: the Outlook and Options
    A Career in Health Care Informatics: The Outlook and Options Table of Contents A Career in Health Care Informatics: The Outlook and Options Introduction 3 Health Care Informatics vs. Nursing Informatics 5 Job Growth and Outlook 6 Careers in Health Care Informatics 12 Chief Medical Information Officer (CMIO) 14 Director of Clinical Information Systems 16 Data Scientist 18 Health Informatics Consultant 19 Professor of Health Informatics 21 Researcher 22 Breaking into the Field 24 INTRODUCTION Health Care Informatics Vs. Nursing Informatics Health care informatics has been a distinct discipline for several decades now. But it has moved to the forefront over the last five years with health care organizations making the transition to electronic health records (EHRs). Today, the health care informatics industry is exploding and the Bureau of Labor Statistics predicts that jobs in the field will “grow much faster than the average for all occupations.” Defined by the U.S. National Library of Medicine as the “interdisciplinary study of the design, development, adoption and application of IT-based innovations in health care services delivery, management and planning,” health care informatics was propelled to popularity with the passage of the Health Information Technology for Economic and Clinical Health Act. Under this law, health centers, including hospitals, clinics and private physician offices, were required to create and maintain electronic medical records for every patient by the year 2015. 3 INTRODUCTION Health Care Informatics Vs. Nursing Informatics By now, the majority of health centers have moved to electronic patient records, which has created enormous possibilities in the field of health informatics.
    [Show full text]
  • FCC Approves Eighth Set of COVID-19 Telehealth Program
    -- Media Contact: Katie Gorscak, (202) 418-2156 [email protected] For Immediate Release FCC APPROVES EIGHTH SET OF COVID-19 TELEHEALTH PROGRAM APPLICATIONS Commission Continues Approving Telehealth Funding During Coronavirus Pandemic -- WASHINGTON, May 28, 2020—The Federal Communications Commission’s Wireline Competition Bureau today approved an additional 53 funding applications for the COVID-19 Telehealth Program. Health care providers in both urban and rural areas of the country will use this $18.22 million in funding to provide telehealth services during the coronavirus pandemic. To date, the FCC’s COVID-19 Telehealth Program, which was authorized by the CARES Act, has approved funding for 185 health care providers in 38 states plus Washington, DC for a total of $68.22 million in funding. Below is a list of health care providers that were approved for funding: AccessHealth, in Richmond, Texas, was awarded $439,286 for telehealth carts and network upgrades to increase clinical capacity and prevent further community spread of COVID-19 by treating primary care patients remotely for COVID-19, diabetes, hypertension, asthma, and other diseases and illnesses. The Arc Madison Cortland, in Oneida, New York, was awarded $49,455 for laptop computers and headsets to provide remote consultations and treatment during the COVID-19 pandemic for psychological services, counseling, and occupational and physical therapy for people with developmental and other disabilities. Bridge Counseling Associates, in Las Vegas, Nevada, was awarded $91,460 for laptops, cameras, telehealth equipment, internet service, and software licenses to significantly expand telehealth capabilities during the COVID-19 emergency and continue to provide mental health and substance abuse treatment, psychiatric care, and medical wellness services, including for persons who currently have, or are recovering from, COVID-19.
    [Show full text]
  • Health Information Technology
    Published for 2020-21 school year. Health Information Technology Primary Career Cluster: Business Management and Technology Course Contact: [email protected] Course Code: C12H34 Introduction to Business & Marketing (C12H26) or Health Science Prerequisite(s): Education (C14H14) Credit: 1 Grade Level: 11-12 Focused Elective This course satisfies one of three credits required for an elective Graduation Requirements: focus when taken in conjunction with other Health Science courses. This course satisfies one out of two required courses to meet the POS Concentrator: Perkins V concentrator definition, when taken in sequence in an approved program of study. Programs of Study and This is the second course in the Health Sciences Administration Sequence: program of study. Aligned Student HOSA: http://www.tennesseehosa.org Organization(s): Teachers are encouraged to use embedded WBL activities such as informational interviewing, job shadowing, and career mentoring. Coordinating Work-Based For information, visit Learning: https://www.tn.gov/content/tn/education/career-and-technical- education/work-based-learning.html Available Student Industry None Certifications: 030, 031, 032, 034, 037, 039, 041, 052, 054, 055, 056, 057, 152, 153, Teacher Endorsement(s): 158, 201, 202, 203, 204, 311, 430, 432, 433, 434, 435, 436, 471, 472, 474, 475, 476, 577, 720, 721, 722, 952, 953, 958 Required Teacher None Certifications/Training: https://www.tn.gov/content/dam/tn/education/ccte/cte/cte_resource Teacher Resources: _health_science.pdf Course Description Health Information Technology is a third-level applied course in the Health Informatics program of study intended to prepare students with an understanding of the changing world of health care information.
    [Show full text]
  • Health Care Informatics Keng Siau
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 1, MARCH 2003 1 Health Care Informatics Keng Siau Abstract—The health care industry is currently experiencing a fundamental change. Health care organizations are reorganizing their processes to reduce costs, be more competitive, and provide better and more personalized customer care. This new business strategy requires health care organizations to implement new tech- nologies, such as Internet applications, enterprise systems, and mo- bile technologies in order to achieve their desired business changes. This article offers a conceptual model for implementing new in- formation systems, integrating internal data, and linking suppliers and patients. Index Terms—Bioinformatics, data mining, enterprise systems, health informatics, information warehouse, internet, mobile tech- nology, patient relationship management, telemedicine. I. INTRODUCTION Fig. 1. Health care supply chain. NFORMATION technology has expanded to encompass I nearly every industry in the world from finance and banking to universities and nonprofit organizations. The health placement for the physician–patient relationship; instead it is care industry, which is composed of hospitals, individual meant to enhance this relationship, by making both physicians physician practices, specialty practices, as well as managed and patients better informed. care providers, pharmaceutical companies, and insurance companies, is no exception. The industry’s expanded interest II. CURRENT USE OF IT IN HEALTHCARE in information systems implementation has primarily been Current literature on the deployment of information systems fueled by needs for cost efficiency, increased competition, as in the health care sector shows that most organizations are al- well as a fundamental change in the health care industry, in locating a relatively small amount of resources toward informa- which providers have changed their focus from reactive care tion systems.
    [Show full text]
  • Get the Facts About Telehealth
    Get the Facts About Telehealth The COVID-19 pandemic has demonstrated that telehealth is a viable option for providing convenient, accessible and seamless care for patients. Myth #1: FACT: Data shows older patients are very comfortable with telehealth. Telehealth is In a survey conducted by Sutter Health, disease. More than 20% of Tera patients less feasible 52% of people aged 65 and older are aged 65 and above, allowing us reported having used telehealth during to quickly learn that telemedicine is for senior the pandemic and 93% of these patients welcome across any age range, disease citizens. reported having a positive experience. state and socioeconomic group. The key In addition, Sutter’s Tera Practice, factor for acceptance came down to a virtual-first medical practice that individuals experiencing firsthand Tera’s offers a whole ecosystem of healthcare convenience and responsiveness, and the support, has purposefully enrolled rapport they were able to build with their seniors who have at least one chronic personal care team virtually. OF SENIORS WHO USED TELEHEALTH 93% REPORTED A POSITIVE EXPERIENCE FACT: While more work needs to be done, Myth #2: telehealth is already improving critical access to care in rural and underserved communities. Telehealth Additional investments in technology, broadband and access are will amplify necessary to prevent the deepening of inequities and ensuring health widespread availability. Providers and policymakers must continue to work together to ensure the benefits of virtual care extend to our inequities. most vulnerable patients and that no community is left behind. Sutter serves millions of Medi-Cal patients in Northern California so this is a priority for our system.
    [Show full text]
  • 6 Things to Know About Telehealth
    Technology Decision Support COVID-19 Operations Recovery Resource July 20, 2020 6 Things to Know about Telehealth COVID-19 has resulted in a surge of interest in telehealth. Healthcare organizations are ECRI offers a wealth of resources actively exploring how telehealth can be leveraged to expand the availability of care and to help member healthcare services while keeping patients and clinicians away from unnecessary COVID-19 exposure. facilities transition from the crisis practices instituted during As facilities are preparing for a surge of COVID-19 patients or plan recovery, building COVID-19 surges, to more routine telehealth programs can aid organizations to manage their patient population. A number patient care practices that reflect of different telehealth technologies exist that can support a range of applications such as the “new normal” of maintaining primary care, specialist consultations, procedure collaboration, tele-ICU, tele-stroke, tele- operations in the presence of the psychiatry, and remote patient monitoring. SARS-CoV-2 virus. Each article in our COVID-19 Operations Recovery Added flexibility from federal agencies is also making it easier to adopt telehealth in Series highlights an area of concern, response to COVID-19. Reviewing the six key points outlined below can help you identify outlines some of the key challenges, the best use cases and the technology to fit your organizations needs. and offers tips, recommendations, and resources to help you face those 1. Consider monitoring low acuity COVID-19 patients at home challenges in an effective and cost- effective manner. ─ All patients with COVID-19 do not require hospitalization,; however, follow-up monitoring of the patient’s condition may still be required.
    [Show full text]
  • Cerner: Coordinating Care in a Virtual World
    EXECUTIVE INSIGHTS RESILIENCY + RECOVERY COORDINATING CARE IN A VIRTUAL WORLD Integrating and using data to engage patients and providers SPONSORED BY: COORDINATING CARE IN A VIRTUAL WORLD: Integrating and using data to engage patients and providers When the first wave of the COVID-19 pandemic hit, hospitals, health systems and their affiliated physician practices became online caregivers almost overnight. Though many providers had telehealth and remote patient-monitoring capabilities in place prior to the outbreak, they used them relatively infrequently and only for a small subset of their patient populations. Within weeks, most providers were using virtual care models to deliver nonemergent care safely and effectively to most of their patients. As providers and patients adapt to virtual care and as the pandemic subsides, it’s clear that virtual care is here to stay. This executive dialogue examines the capabilities hospitals and health systems are developing and the barriers they’re tackling in building a data-driven, health information technology (IT) infrastructure that seamlessly connects virtual care with in-person care for all their patients and all the affiliated and nonaffiliated care settings throughout patients’ health journeys. KEY FINDINGS Hospitals, health systems and medical practices pivoted quickly to digital health technologies 1 and virtual care models in response to the COVID-19 outbreak. What became apparent during that fast transition was not only the wide variation in telehealth technologies used by providers, but also the wide variation in patients’ readiness to use those technologies. Disparate telehealth technologies and range of patients’ access to those technologies exposed 2 the lack of a common health IT infrastructure to capture clinical, financial and operational data from the exponential growth in the number of virtual care encounters.
    [Show full text]
  • How to Choose Telehealth Technologies
    HOW TO CHOOSE TELEHEALTH TECHNOLOGIES WHEN CHOOSING TELEHEALTH TECHNOLOGIES FOR YOUR PUBLIC HEALTH PROGRAM, FIRST CONSIDER: Note what capabilities your facilities and participants have before determining which telehealth technologies to purchase. What are you hoping to achieve with this program? Are you trying to scale up or maintain an existing program? Include specifics such as whether the What needs will the device(s) have to meet? facility has wired or wireless connection. Telehealth technologies can transmit data Where will the telehealth technology be located and who will in various ways: it connect to? • Encrypted internet connections • Major broadband networks What patient population are you planning to serve and what technology will work best for them? • High-speed telecommunications lines • Private point-to-point broadband What information is required for healthcare providers to meet connections the targeted needs of patients and in what time frame? • Patient monitoring centers • Single-line telephone and video lines RESEARCH: EFFICIENT APPROACHES Research and compare features of devices and become familiar with their functionality. Reach out to your colleagues and/or your regional telehealth resource center (TRC). Expensive does not always mean better! Some issues can be addressed with a laptop and a consumer-grade webcam. Test before you buy! Research and select a vendor(s) with knowledge of the telehealth industry, then obtain devices for an in-person comparison. Once your team has determined which • Assure vendors provide necessary support, any needed device is the most appropriate for your updates, maintenance, or installation, and meet privacy needs, purchase the equipment and install requirements for telehealth equipment.
    [Show full text]
  • Course Syllabus
    Introduction to Health Informatics (101) Course Syllabus COURSE Health Informatics (101) COURSE DESCRIPTION Introduction to Health Informatics (101) offers an overview of the field of health informatics by providing students with the fundamental knowledge of the concepts of health informatics and how technology can be used in the delivery of health care. The course is intended to increase VA workforce capacity for the design, configuration, use, and maintenance of informatics interventions that improve health care delivery to our nation’s veterans. Geared towards the community college level, this web-based course is based on the content offered in conjunction with Bellevue College and developed for use in the Office of the National Coordinator (ONC) for Health Information Technology Workforce Development Program. One of six different self-study modules is offered each month on a rotating basis. COURSE GOALS & Upon completion of all six modules, participants will have: OBJECTIVES • Explored how technology can be used to improve health care delivery in health care organizations and in public health. • Acquired breadth of knowledge of the principles of health informatics. • Developed basic skills in using health informatics principles to improve practice. • Acquired a conceptual and theoretical framework of the design, development, and implementation of health information systems. • Acquired a basic understanding of educational and instructional design theory and principles and how the principles can be applied to deliver effective training to users of health information systems. COURSE PREREQUISITES There are no pre-requisites for this course. It is open to anyone interested in health informatics. There are no course fees and no tuition requirements for the program.
    [Show full text]
  • ASHP Statement on the Pharmacist's Role in Clinical Informatics
    Automation and Information Technology–Statements 13 ASHP Statement on the Pharmacist’s Role in Clinical Informatics Position ogy professionals to promote the safe, efficient, effective, timely, and optimal use of medications. They contribute to ASHP believes that pharmacists have the training, knowl- the transformation of healthcare by analyzing, designing, edge, background, and responsibility to assume a significant implementing, maintaining, and evaluating information and role in clinical informatics. communication systems that improve medication-related outcomes and strengthen the pharmacist–patient relation- Background ship. The role of pharmacy informaticists revolves around their knowledge of pharmacy practice, safe medication use, Healthcare organizations continue to invest a significant clinical decision-making, and the improvement of medica- amount of financial and human resources in health informa- tion therapy outcomes, combined with their understanding tion technology (HIT) initiatives, including advanced clini- of the discipline of informatics and HIT systems.10 Their pri- cal systems, electronic health records, business intelligence mary roles and responsibilities must encompass five broadly and analytics tools, and applications that deliver the highest defined categories: levels of patient safety and value. This growth has not only led to a considerable demand for HIT workers but, more • Data, information, and knowledge management: man- importantly, has identified the need for a work force with aging medication-related information while promot- training and skills to create a successful and safe interface ing integration, interoperability, and information ex- between HIT and the healthcare delivery system. This work change. force must understand healthcare, information and commu- • Information and knowledge delivery: delivering med- nication technology, and the people, processes, and culture ication-related information and knowledge throughout of an organization.
    [Show full text]