University of Southampton Research Repository

Total Page:16

File Type:pdf, Size:1020Kb

University of Southampton Research Repository University of Southampton Research Repository Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s. When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g. Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the University Faculty or School or Department, PhD Thesis, pagination. Data: Author (Year) Title. URI [dataset] UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL & ENVIRONMENTAL SCIENCES Biological Sciences Volume 1 of 1 Using GFP to investigate protein localisation, function and global cellular response by Benjamin Yarnall Thesis for the degree of Doctor of Philosophy September_2017 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL & ENVIRONMENTAL SCIENCES Biological Sciences Thesis for the degree of Doctor of Philosophy USING GFP TO INVESTIGATE PROTEIN LOCALISATION, FUNCTION AND GLOBAL CELLULAR RESPONSE By Benjamin Paul Yarnall Integral membrane proteins (IMPs) make up 20-30 % of genes in all walks of life. They are major determinants of disease pathology, making them prime therapeutic targets for cancer, bacterial infection and genetic disorders. Despite this, they are underrepresented in the literature; this is often attributed to complications with IMP expression, purification and characterisation. This thesis aimed to tackle the difficulties with IMP characterisation. Exploitation of tagged versions of the IMPs has opened up new research fields, initially based on simple observations. The tag used is the well characterised GFP which has allowed for the simple optimisation of conditions for protein over-expression, determination of intracellular localisation of H. sapiens SWEET sugar transporter, development of a ligand binding method that does not rely on properties of the ligand and demonstrated that protein over-expression using the Escherichia coli pET system only occurs in mutant forms of this organism. The implication being that protein over- expression only occurs via genetically modified organisms. Ubiquitously expressed, the MFS is one of the largest protein superfamilies, with roles including metabolite and xenobiotic transport. They have been implicated in the development of antimicrobial resistance in E. coli, making them a clinically relevant target. An expression library of 63 GFP-tagged proteins was produced, before screening for optimal expression conditions. The larger amounts of transporter obtained via this approach enabled the implementation of a ligand-binding assay using the technique of thermophoresis. This approach produced novel binding substrates as well as identifying a new binding event for the well characterised drug efflux transporter mdfA. Significantly, the approach has shown that cyclic AMP also binds to mdfA and another MFS transporter kgtP, potentially identifying a novel role for these transporters in the catabolite repression process. The work presented in this thesis has shown the versatility of a reporter system like GFP to uncover fundamental properties at the cellular level (protein localisation experiments), the biochemical level (optimisation of protein over-expression and ligand binding studies) but also at the cellular level (E. coli’s use of mutants during protein over-expression). This research is a building block to identifying new drug targets to tackle the global problem of antimicrobial resistance. Table of Contents Table of Contents Table of Contents ..................................................................................................................... i Table of Tables ........................................................................................................................ ix Table of Figures ................................................................................................................... xiii Academic Thesis: Declaration of Authorship ..................................................... xxi Acknowledgements ......................................................................................................... xxiii Definitions and Abbreviations ................................................................................... xxv Chapter 1 Using GFP to investigate protein localisation, function and global cellular response ............................................................................. 1 1.1 Characterised membrane proteins are underrepresented in the literature .......................................................................................1 1.2 Green Fluorescent Protein discovery and physiology .......................4 1.3 Alternative fluorescent proteins .....................................................8 1.4 Using GFP fluorescence as a reporter ........................................... 12 1.5 Complications associated with the use of GFP as a reporter .......... 18 1.6 Project aims and applications ...................................................... 18 Chapter 2 Materials and methods ............................................................................. 22 2.1 General molecular biology ........................................................... 22 2.1.1 Polymerase chain reaction (PCR) amplification for expression vector construction ........................................................... 22 2.1.2 Gel electrophoresis to assess DNA and generate purified vector inserts .............................................................................. 24 2.1.3 DNA purification of expression vector inserts following PCR and gel electrophoresis .................................................... 24 2.1.4 Cloning ................................................................................. 25 2.1.4.1 Ligation-dependent T4 cloning of PQ loop genes ............. 25 2.1.4.2 Ligation-independent cloning (LIC) of HsSWEET and MFS genes ............................................................................. 27 2.1.4.3 Confirmation of gene incorporation into expression vectors ........................................................................... 29 2.2 General bacterial materials and methods ..................................... 30 i Table of Contents 2.2.1 Recipes of different media used for bacterial growth ............. 30 2.2.2 Creation of chemically competent E. coli cells ....................... 30 2.2.3 Transformation of expression vectors into competent E. coli . 31 2.2.4 Extraction of plasmid DNA from E. coli.................................. 31 2.3 General protein expression ......................................................... 32 2.3.1 Expression of cloned genes using T7 polymerase regulated vectors ............................................................................ 32 2.3.2 Affinity chromatography purification of bacterially expressed protein ............................................................................ 32 2.3.3 SDS-PAGE electrophoresis analysis of bacterially expressed protein ............................................................................ 33 2.3.4 Concentration of expressed protein ...................................... 33 2.3.5 Gel filtration analysis of bacterially expressed protein ........... 34 2.3.6 Western blot immunoanalysis of bacterially expressed protein ............................................................................ 34 2.3.7 GFP quantification using protein fluorescence ....................... 35 2.4 Expression, purification and characterisation of HsSWEET ............ 36 2.4.1 Tertiary structural predictions of HsSWEET using amino acid sequence ......................................................................... 36 2.4.2 Cloning of HsSWEET and PQ-loop proteins into vectors for subcellular localisation and protein expression ................ 36 2.4.3 Subcellular localisation of HsSWEET in human HEK and RPE cell lines ................................................................................ 40 2.4.4 Predictions of HsSWEET subcellular localisation using primary sequence ......................................................................... 41 2.4.5 Comparison of GFP-tagged HsSWEET expression at different temperatures ................................................................... 41 2.4.6 Batch purification of HsSWEET with different detergents to identify solubilisation efficiency ....................................... 42 2.4.7 Using GFP-tagged HsSWEET to compare the yield of expression conditions growth comparison ......................................... 43 2.4.8 Gel filtration of HsSWEET ...................................................... 43 2.4.9 Tm thermostability test of HsSWEET titrated with glucose ....... 44 ii Table of Contents 2.5 Expression, purification and characterisation of MFS proteins ....... 45 2.5.1 Cloning of MFS proteins into the E. coli expression vector H6- msfGFP............................................................................. 45 2.5.2 Comparing expression yield of MFS proteins using
Recommended publications
  • Allele-Specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish
    Allele-specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish by Ailu Chen A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 1, 2015 Keywords: catfish, interspecific hybrids, allele-specific expression, ribosomal protein Copyright 2015 by Ailu Chen Approved by Zhanjiang Liu, Chair, Professor, School of Fisheries, Aquaculture and Aquatic Sciences Nannan Liu, Professor, Entomology and Plant Pathology Eric Peatman, Associate Professor, School of Fisheries, Aquaculture and Aquatic Sciences Aaron M. Rashotte, Associate Professor, Biological Sciences Abstract Interspecific hybridization results in a vast reservoir of allelic variations, which may potentially contribute to phenotypical enhancement in the hybrids. Whether the allelic variations are related to the downstream phenotypic differences of interspecific hybrid is still an open question. The recently developed genome-wide allele-specific approaches that harness high- throughput sequencing technology allow direct quantification of allelic variations and gene expression patterns. In this work, I investigated allele-specific expression (ASE) pattern using RNA-Seq datasets generated from interspecific catfish hybrids. The objective of the study is to determine the ASE genes and pathways in which they are involved. Specifically, my study investigated ASE-SNPs, ASE-genes, parent-of-origins of ASE allele and how ASE would possibly contribute to heterosis. My data showed that ASE was operating in the interspecific catfish system. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5,420 (8.2%) and 13,390 (7.5%) SNPs were identified as significant ASE-SNPs, respectively.
    [Show full text]
  • Scholarworks@UNO
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Summer 8-4-2011 Identification and characterization of enzymes involved in the biosynthesis of different phycobiliproteins in cyanobacteria Avijit Biswas University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Biswas, Avijit, "Identification and characterization of enzymes involved in the biosynthesis of different phycobiliproteins in cyanobacteria" (2011). University of New Orleans Theses and Dissertations. 446. https://scholarworks.uno.edu/td/446 This Dissertation-Restricted is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation-Restricted in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Identification and characterization of enzymes involved in biosynthesis of different phycobiliproteins in cyanobacteria A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemistry (Biochemistry) By Avijit Biswas B.S.
    [Show full text]
  • Nobel Lecture by Roger Y. Tsien
    CONSTRUCTING AND EXPLOITING THE FLUORESCENT PROTEIN PAINTBOX Nobel Lecture, December 8, 2008 by Roger Y. Tsien Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0647, USA. MOTIVATION My first exposure to visibly fluorescent proteins (FPs) was near the end of my time as a faculty member at the University of California, Berkeley. Prof. Alexander Glazer, a friend and colleague there, was the world’s expert on phycobiliproteins, the brilliantly colored and intensely fluorescent proteins that serve as light-harvesting antennae for the photosynthetic apparatus of blue-green algae or cyanobacteria. One day, probably around 1987–88, Glazer told me that his lab had cloned the gene for one of the phycobilipro- teins. Furthermore, he said, the apoprotein produced from this gene became fluorescent when mixed with its chromophore, a small molecule cofactor that could be extracted from dried cyanobacteria under conditions that cleaved its bond to the phycobiliprotein. I remember becoming very excited about the prospect that an arbitrary protein could be fluorescently tagged in situ by genetically fusing it to the phycobiliprotein, then administering the chromophore, which I hoped would be able to cross membranes and get inside cells. Unfortunately, Glazer’s lab then found out that the spontane- ous reaction between the apoprotein and the chromophore produced the “wrong” product, whose fluorescence was red-shifted and five-fold lower than that of the native phycobiliprotein1–3. An enzyme from the cyanobacteria was required to insert the chromophore correctly into the apoprotein. This en- zyme was a heterodimer of two gene products, so at least three cyanobacterial genes would have to be introduced into any other organism, not counting any gene products needed to synthesize the chromophore4.
    [Show full text]
  • Phycobiliprotein Evolution (Phycoerythrin/Phycobilisomes/Cell Wall/Photosynthesis/Prokaryotic Evolution) THOMAS A
    Proc. Natd Acad. Sci. USA Vol. 78, No. 11, pp. 6888-6892, November 1981 Botany Morphology of a novel cyanobacterium and characterization of light-harvesting complexes from it: Implications for phycobiliprotein evolution (phycoerythrin/phycobilisomes/cell wall/photosynthesis/prokaryotic evolution) THOMAS A. KURSAR*, HEWSON SwIFTt, AND RANDALL S. ALBERTEt tBarnes Laboratory, Department ofBiology, and *Department of Biophysics and Theoretical Biology, University of Chicago, Chicago, Illinois 60637 Contributed by Hewson Swift, July 2, 1981 ABSTRACT The morphology of the marine cyanobacterium After examining the in vivo spectral properties of several of DC-2 and two light-harvesting complexes from it have been char- the recently discovered species ofcyanobacteria, it came to our acterized. DC-2 has an outer cell wall sheath not previously ob- attention that one of the PE-containing types termed DC-2 served, the purified phycoerythrin shows many unusual proper- showed some rather unusual features. Further study revealed ties that distinguish it from all phycoerythrins characterized to that this species possesses novel PE, phycobilisomes, and outer date, and isolated phycobilisomes have a single absorption band cell wall sheath; these characteristics suggest that it should be at 640 nm in the phycocyanin-allophycocyanin region of the spec- trum. On the basis of these observations we suggest that DC-2, placed in a new phylogenetic branch for the cyanobacteria. rather than being a member of the Synechococcus group, should be placed in its own taxonomic group. In addition, the particular MATERIALS AND METHODS properties of the isolated phycoerythrin suggest that it may be An axenic representative of an early stage in the evolution of the phyco- isolate of Synechococcus sp., clone DC-2, obtained erythrins.
    [Show full text]
  • An Early Requisite for Efficient Photosynthesis in Cyanobacteria
    EXCLI Journal 2015;14:268-289 – ISSN 1611-2156 Received: December 16, 2014, accepted: January 16, 2015, published: February 20, 2015 Original article: THE PHYCOBILISOMES: AN EARLY REQUISITE FOR EFFICIENT PHOTOSYNTHESIS IN CYANOBACTERIA Niraj Kumar Singh1,$, Ravi Raghav Sonani2,$, Rajesh Prasad Rastogi2,*, Datta Madamwar2,* 1 Shri A. N. Patel PG Institute (M. B. Patel Science College Campus), Anand, Sardargunj, Anand – 388001, Gujarat, India 2 BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Anand, Gujarat, India * Corresponding authors: Tel.: +91 02692 229380; fax: +91 02692 231042/236475; E-mail addresses: [email protected] (R.P. Rastogi), [email protected] (D. Madamwar) $ These authors have contributed equally. http://dx.doi.org/10.17179/excli2014-723 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). ABSTRACT Cyanobacteria trap light energy by arrays of pigment molecules termed “phycobilisomes (PBSs)”, organized proximal to "reaction centers" at which chlorophyll perform the energy transduction steps with highest quantum efficiency. PBSs, composed of sequential assembly of various chromophorylated phycobiliproteins (PBPs), as well as nonchromophoric, basic and hydrophobic polypeptides called linkers. Atomic resolution structure of PBP is a heterodimer of two structurally related polypeptides but distinct specialised polypeptides- α and β, made up of seven alpha-helices each which played a crucial step in evolution of PBPs. PBPs carry out various light de- pendent responses such as complementary chromatic adaptation. The aim of this review is to summarize and discuss the recent progress in this field and to highlight the new and the questions that remain unresolved.
    [Show full text]
  • Phycobiliproteins and Tandem Conjugates
    Phycobiliproteins & Tandem Conjugates Multicolor Flow Cytometric Detection with Superior Fluorescence AAT Bioquest® Overview of Phycobiliproteins Phycobiliproteins are a family of photosynthetic light-harvesting proteins derived from microalgae and cyanobacteria. These proteins contain covalently attached linear tetrapyrrole groups, known as phycobilins, which play a critical role in capturing light energy. In microalgae and cyanobacteria, energy absorbed by these phycobilins is efficiently transferred via fluorescence resonance energy transfer (FRET), to chlorophyll pigments for their use in photosynthetic reactions (Figure 1). Because phycobiliproteins have extremely high fluorescence quantum yields and absorbance coefficients over a wide spectral range, they serve as valuable fluorescent tags in a variety of fluorescence applications, primarily flow cytometry. Phycobiliproteins conjugated to molecules having biological specificity (e.g. immunoglobulin, protein A or streptavidin) are effective tools in fluorescence activated cell sorting (FACS), imaging, immunophenotyping and immunoassay applications. Compared to organic and synthetic fluorescent dyes, phycobiliproteins offer several advantages when used as fluorescent probes, including: • Intense long-wavelength excitation and emission profiles to minimize auto-fluorescence from biological materials • Minimal fluorescence quenching contributed by the covalent binding of phycobilins to the protein backbone • Highly water-soluble to facilitate chemical manipulation for conjugation reactions
    [Show full text]
  • Haplotype-Based Phylogenetic Analysis Uncovers the Tetraploid Progenitor of Sweet Potato
    Haplotype-based phylogenetic analysis uncovers the tetraploid progenitor of sweet potato Mengxiao Yan Shanghai Chenshan Botanical Garden Ming Li Sichuan Academy of Agricultural Sciences M-Hossein Moeinzadeh Max Planck Institute for Molecular Genetics Dora G. Quispe-Huamanquispe Ghent University Weijuan Fan Shanghai Chenshan Botanical Garden Haozhen Nie Shanghai Chenshan Botanical Garden Zhangying Wang Guangdong Academy of Agricultural Sciences Bettina Heider International Potato Center (CIP) Robert Jarret USDA-ARS/PGRU Jan Kreuze International Potato Center (CIP) Godelieve Gheysen Department of Biotechnology, Ghent University Hongxia Wang Shanghai Chenshan Botanical Garden Ralph Bock Max Planck Institute of Molecular Plant Physiology https://orcid.org/0000-0001-7502-6940 Martin Vingron Max Planck Institute for Molecular Genetics Jun Yang ( [email protected] ) Shanghai Chenshan Botanical Garden https://orcid.org/0000-0002-0371-8814 Genetics Article Page 1/24 Keywords: sweet potato, tetraploid progenitor, haplotype-based phylogenetic analysis Posted Date: August 10th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-750500/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/24 Abstract The hexaploid sweet potato is one of the most important root crops worldwide. However, its genetic origins, especially that of its tetraploid progenitor, are unclear. In this study, we conceived a pipeline consisting of a genome-wide variation-based phylogeny and a novel haplotype-based phylogenetic analysis (HPA) to determine that the tetraploid accession CIP695141 of Ipomoea batatas 4x from Peru is the tetraploid progenitor of sweet potato. We detected biased gene exchanges between subgenomes. The B1 to B2 subgenome conversions were almost 3-fold higher than the B2 to B1 subgenome conversions.
    [Show full text]
  • Phycobiliproteins: R-PE, B-PE, CPC, APC
    FT-28310A Phycobiliproteins: R-PE, B-PE, CPC, APC Product Information Product name MW exc\em. max. mol. abs. cat.number (g·mol-1) (nm) (M-1cm-1) R-PhycoErythrin (R-PE) 240 000 498.546.566nm EC: 1.53x106 1mg/ml solution / 576nm FP-28310A, 1mg QY: 0.84 FP-28310B, 5mg Supplied in 100 mM K Phosphate buffer, pH7.0 with 60% saturated (NH4)2SO4, 1 mM EDTA and 1 mM Sodium Azide. FP-326011, 5mg Supplied Lyophilized B-PhycoErythrin (B-PE) 240 000 546.566nm EC(545nm) : 2.4x106 FP-17885A, 1mg / 576nm EC(563nm) 6 FP-17885B, 5mg QY: 0.98 :2.33x10 C-PhycoCyanine (C-PC) 232 000 620nm/642nm EC: 1.54x106 FP-35191A, 1mg QY: 0.81 FP-35191B, 5mg P.1 FT-28310A Product name MW exc\em. max. mol. abs. cat.number (g·mol-1) (nm) (M-1cm-1) AlloPhycoCyanine, 105 000 651nm/662nm EC: 7.3x105 cross-linked (cl-APC) QY : 0.68 FP-35298A, 1 mg Supplied in saturated (NH4)2SO4 soln see page 2 for spectra and other APCs AlloPhycoCyanine, 105 000 651nm/662nm EC: 7.3 105 not stabilized (APC) QY : 0.68 FP-CD759A, 5 mg Supplied in saturated (NH4)2SO4 soln. AlloPhycoCyanine, cross-linked (cl-APC) FP-35298A, 1 mg FP-35298B, 5 mg Supplied in saturated (NH4)2SO4 soln. FP-855251, 5mg Lyophilized AlloPhycoCyanine, SMCC activated FP-CD7550, 2 mg Storage: +4°C (in the dark, avoid moisture, DO NOT FREEZE) (H) Technical and scientific information Applications As a result from their efficient features, phycobiliproteins allow higher detection sensitivity, and can be used in various fluorescence based techniques (Fluorimetry in microplate, Flow Cytometry, FISH, two or multicolor detections…).
    [Show full text]
  • Phycobiliproteins As a Commodity: Trends in Applied Research, Patents and Commercialization
    J Appl Phycol (2008) 20:113–136 DOI 10.1007/s10811-007-9188-1 Phycobiliproteins as a commodity: trends in applied research, patents and commercialization Soundarapandian Sekar & Muruganandham Chandramohan Received: 23 March 2007 /Revised and accepted: 25 May 2007 /Published online: 16 August 2007 # Springer Science + Business Media B.V. 2007 Abstract Phycobiliproteins are a group of colored proteins means for improvements in the application and production commonly present in cyanobacteria and red algae possess- of phycobiliproteins. ing a spectrum of applications. They are extensively commercialized for fluorescent applications in clinical and Keywords Colorant . Cyanobacteria . Fluorophore . Patent immunological analysis. They are also used as a colorant, analysis . Phycobiliprotein extraction . Red alga and their therapeutic value has also been categorically demonstrated. However, a comprehensive knowledge and technological base for augmenting their commercial utilities is lacking. Hence, this work is focused towards this Introduction objective by means of analyzing global patents and commercial activities with application oriented research. The phycobiliproteins (PBPs) are antennae-protein pigments Strategic mining of patents was performed from global involved in light harvesting in cyanobacteria (blue-green patent databases resulting in the identification of 297 algae, procaryotic), rhodophytes (red algae, eukaryotic), patents on phycobiliproteins. The majority of the patents cryptomonads (biflagellate unicellular eukaryotic algae) and are from USA, Japan and Europe. Patents are grouped into cyanelles (endosymbiotic plastid-like organelles) (Glazer fluorescent applications, general applications and produc- 1994). In cyanobacteria and red algae, the phycobiliproteins tion aspects of phycobiliproteins and the features of each are organized in supramolecular complexes, called phycobi- group are discussed. Commercial and applied research lisomes (PBSs), which are assembled in regular arrays on the activities are compared in parallel.
    [Show full text]
  • Factors Regulating Phycobiliprotein Production in Cyanobacteria
    Int.J.Curr.Microbiol.App.Sci (2014) 3(5): 764-771 ISSN: 2319-7706 Volume 3 Number 5 (2014) pp. 764-771 http://www.ijcmas.com Original Research Article Factors regulating phycobiliprotein production in cyanobacteria S.S.Maurya1, J.N. Maurya2 and V.D. Pandey3* 1Department of Botany, Government Degree College, Talwadi, Uttarakhand, India 2Department of Plant Sciences, M.J.P. Rohilkhand University, Bareilly, Uttar Pradesh, India 3Department of Botany, Government Post-Graduate College, Rishikesh, Uttarakhand, India *Corresponding author email: A B S T R A C T Cyanobacteria (Blue- green algae) are a morphologically diverse and widely distributed group of prokaryotic organisms which show plant-type oxygenic photosynthesis. Cyanobacterial phycobiliproteins are water-soluble florescent K e y w o r d s accessory photosynthetic pigments which include phycocyanin, allophycocyanin and phycoerythrin. The commercial or biotechnological applications of Cyanobacteria, phycobiliproteins in food and cosmetic industries as well as in nutraceuticals and Phyco- pharmaceuticals are known. Different factors regulating phycobiliprotein biliproteins, production in coccoid (Synechocystis sp. and Gloeocapsa sp.) and filamentous Phycocyanin, (Anabaena sp. and Lyngbya sp.) cyanobacteria, isolated from high altitude Allo- freshwater and terrestrial habitats, were investigated. The study revealed that the phycocyanin, content of phycobiliprotein varied with factors like pH, temperature, light intensity Phycoerythrin and light-dark period in the cyanobacteria investigated. Maximum level of phycobiliprotein was recorded at pH 8, temperature 35 oC, light intensity 2000 lux and light-dark period 16:08 h. The results indicate that the production of phycobiliproteins in cyanobacteria can be optimized by regulating these factors. Introduction Cyanobacteria (Blue-green algae), are an (branched or unbranched) with or without ancient, diverse and highly adaptable heterocysts, the thick-walled differentiated group of photosynthetic prokaryotes, cells carrying nitrogen fixation.
    [Show full text]
  • Gene Expression Variation Resolves Species and Individual Strains Among Coral-Associated Dinoflagellates Within the Genus Symbiodinium
    GBE Gene Expression Variation Resolves Species and Individual Strains among Coral-Associated Dinoflagellates within the Genus Symbiodinium John E. Parkinson1,*, Sebastian Baumgarten2, Craig T. Michell2, Iliana B. Baums1, Todd C. LaJeunesse1,and Christian R. Voolstra2,* 1Department of Biology, Pennsylvania State University 2Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia *Corresponding author: E-mail: [email protected]; [email protected]. Accepted: February 1, 2016 Data deposition: This project has been deposited at the NCBI Sequence Read Archive database under accession numbers PRJNA274852, PRJNA274854, PRJNA274855, and PRJNA274856, and the RNAseq transcriptomes at reefgenomics.org. Downloaded from Abstract Reef-building corals depend on symbiotic mutualisms with photosynthetic dinoflagellates in the genus Symbiodinium. This large http://gbe.oxfordjournals.org/ microalgal group comprises many highly divergent lineages (“Clades A–I”) and hundreds of undescribed species. Given their eco- logical importance, efforts have turned to genomic approaches to characterize the functional ecology of Symbiodinium. To date, investigators have only compared gene expression between representatives from separate clades—the equivalent of contrasting genera or families in other dinoflagellate groups—making it impossible to distinguish between clade-level and species-level functional differences. Here, we examined the transcriptomes of four species within one Symbiodinium clade (Clade B) at ~20,000 orthologous genes, as well as multiple isoclonal cell lines within species (i.e., cultured strains). These species span two major adaptive radiations within Clade B, each encompassing both host-specialized and ecologically cryptic taxa. Species-specific expression differences were consistently enriched for photosynthesis-related genes, likely reflecting selection pressures driving niche diversification.
    [Show full text]
  • The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins
    UC San Diego UC San Diego Previously Published Works Title The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Permalink https://escholarship.org/uc/item/6jx417t1 Journal Trends in biochemical sciences, 42(2) ISSN 0968-0004 Authors Rodriguez, Erik A Campbell, Robert E Lin, John Y et al. Publication Date 2017-02-01 DOI 10.1016/j.tibs.2016.09.010 Peer reviewed eScholarship.org Powered by the California Digital Library University of California HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Trends Biochem Manuscript Author Sci. Author Manuscript Author manuscript; available in PMC 2018 February 01. Published in final edited form as: Trends Biochem Sci. 2017 February ; 42(2): 111–129. doi:10.1016/j.tibs.2016.09.010. The growing and glowing toolbox of fluorescent and photoactive proteins Erik A. Rodriguez1, Robert E. Campbell2, John Y. Lin3, Michael Z. Lin4, Atsushi Miyawaki5, Amy E. Palmer6, Xiaokun Shu7, Jin Zhang1, and Roger Y. Tsien1,8 1Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093, USA. 2Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada. 3School of Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia. 4Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA and Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA. 5Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. 6Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado Boulder, CO, 80303, USA. 7Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
    [Show full text]