Effect of Contrasting Strength from Inherited Crustal Fabrics on the Development of Rifting Margins

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Contrasting Strength from Inherited Crustal Fabrics on the Development of Rifting Margins Research Paper GEOSPHERE Effect of contrasting strength from inherited crustal fabrics on the development of rifting margins 1, 2, GEOSPHERE, v. 15, no. 2 S. Jammes * and L.L. Lavier * 1Department of Geography, Texas State University, San Marcos, Texas 78666, USA 2Department of Geological Sciences and Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA https://doi.org/10.1130/GES01686.1 5 figures; 1 supplemental file ABSTRACT deformation, many fundamental questions remain about the effects of inher- ited geological conditions on localization processes at rifted margins. Several CORRESPONDENCE: [email protected] To investigate the effect of crustal heterogeneities inherited from previous studies suggest that inheritance is a key control on the development of rift tectonic phases on magma-poor rifting processes, we performed numerical structures (Dunbar and Sawyer, 1989; Ring, 1994; Piqué and Laville, 1996; Corti CITATION: Jammes, S., and Lavier, L.L., 2019, Effect of contrasting strength from inherited crustal experiments of lithospheric extension with initial conditions that included et al., 2007; Clerc et al., 2015; Manatschal et al., 2015). Inheritances are the fabrics on the development of rifting margins: Geo- strength variations from inherited crustal fabrics. Crustal fabrics were intro- result of the successive tectonic events that affect the continental lithosphere sphere, v. 15, no. 2, p. 407–422, https://doi.org/10.1130 duced in the model by using an element-wise bimineralic composition in during its complex geological history. Although they are interrelated, geol- /GES01686.1. which mineral phases were distributed in a way that was compatible with the ogists usually distinguish three types of inheritances: compositional, struc- orientation and distribution of kilometric-scale heterogeneities observed in tural, and thermal. In the literature, most of the studies focus on the effect Science Editor: Raymond M. Russo seismic reflection data. Our numerical models show that strength variations of structural inheritances (Ring, 1994; Corti et al., 2004, 2007; van Wijk, 2005; Received 24 February 2018 from inherited crustal fabrics strongly influence the mechanisms of deforma- Autin et al., 2013; Chenin and Beaumont, 2013) and thermal inheritances (Buck, Revision received 18 November 2018 tion in the stretching and thinning phases of rifting. The strength variations 1991; Brune et al., 2014, 2017; Svartman Dias et al., 2015) on rifting localization. Accepted 10 January 2019 also generate alternative models for the evolution of faulting during distrib- Structural inheritances are defined as mechanically weak shear zones inher- uted stretching and localized thinning phases that are usually associated ited from previous orogenic events. Studies suggest that they can control the Published online 8 February 2019 with detachment or sequential faulting models. During the stretching phase, localization of deformation from the beginning of rifting and rejuvenate litho- inherited strength variations control the distribution and the processes of spheric structures that are properly oriented with respect to the direction of deformation. Vertical fabrics favor the formation of horst-and-graben struc- extension (Harry and Sawyer, 1992; Ring, 1994; Corti et al., 2004, 2007; Autin tures. Horizontal and dipping fabrics favor the formation of detachment faults et al., 2013; Chenin and Beaumont, 2013). However, according to Manatschal and core complexes. During the thinning phase, processes differ depending et al. (2015), structural inheritances do not significantly control the location of on the orientation of the crustal fabrics and involve either a combination of breakup. Thermal inheritances can cause variations in the degree of coupling detachment faults and sequential normal faults or an alternative model in between crustal and mantle deformation, which in turn controls the long-term which deformation remains decoupled between the upper crust and litho- evolution and architecture of rifts (e.g., Manatschal et al., 2015). The rifting spheric mantle, with the formation of high-angle faults in the upper crust and of old, cold lithosphere, with strong coupling between the upper brittle crust a low-angle detachment fault in the upper mantle. As a consequence, strength and mantle, results in the formation of narrow rifts, whereas rifting of a young, variations inherited from crustal fabrics also control the resulting geometry of warm lithosphere with a thick decoupled lower crust results in the formation of the margin and the width of the necking and hyperextended domains. Finally, a wide rift (Bassi, 1991; Bassi et al., 1993; Bassi, 1995; Buck, 1991; Brune et al., our models demonstrate that inherited crustal fabrics do not control breakup 2014, 2017; Svartman Dias et al., 2015). Field and seismic observations clearly and mantle exhumation. These processes are ubiquitously associated with demonstrate that the composition of the crust is compositionally heteroge- the development of new detachment faults exhuming mantle to the seafloor. neous (Smithson, 1978; Rudnick and Fountain, 1995). However, due to their ap- parent complexity, little attention has been given to the effects of compositional inheritances on the rifting process. Indeed, in most numerical experiments of INTRODUCTION lithospheric extension, the composition of the crust and mantle is assumed to be layered and homogeneous and composed of wet or dry plagioclase, quartz, Passive margins define about half of Earth’s coastlines and have been the or olivine (Buck, 1991; Lavier and Buck, 2002; Huismans and Beaumont, 2003, focus of many geological and geophysical studies in the last decades. While 2007, 2011; Huismans et al., 2005; van Wijk and Blackman, 2005; Gueydan et great progress has been made in understanding the mechanics of extensional al., 2008; Rosenbaum et al., 2010; Duretz et al., 2016). To take into account This paper is published under the terms of the the heterogeneities of the lithosphere, some numerical models use a labo- CC-BY-NC license. *E-mails: [email protected], [email protected] ratory-determined flow law for polymineralic rock like granite, quartz-diorite, © 2019 The Authors GEOSPHERE | Volume 15 | Number 2 Jammes and Lavier | Effect of inheritances on rifting processes Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/15/2/407/4663900/407.pdf 407 by guest on 01 October 2021 Research Paper diabase, or gabbro (Dunbar and Sawyer, 1989; Lavier and Manatschal, 2006; approximating rheological heterogeneities in the crust and mantle succeeds van Wijk and Blackman, 2005). By using a bulk strength envelope for the poly- in reproducing the following structural features related to the formation of mineralic aggregate, these studies do not explicitly take into consideration the magma-poor rifted margins: (1) the absence of a sharp deformation zone at interaction between the different minerals and imply, as for monomineralic the brittle-ductile transition; (2) the initiation of the rifting process as a wide assemblages, that rheology is either elastoplastic, in order to simulate a brittle delocalized rift system with multiple normal faults dipping in both directions; upper crust and upper lithospheric mantle, or viscous/viscoelastic to simulate (3) the development of anastomosing shear zones in the middle/lower crust a ductile middle to lower crust and lower lithospheric mantle. Consequently, and the upper lithospheric mantle similar to the crustal-scale anastomosing in numerical studies, the role of compositional inheritance has mainly been patterns observed in the field (Carreras, 2001; Fusseis et al., 2006) or in seis- tested by comparing models in which the globally averaged crustal or mantle mic data (Clerc et al., 2015); and (4) the preservation of undeformed lenses compositions vary. For example, Svartman Dias et al. (2015) compared models of material leading to lithospheric-scale boudinage structures and resulting in which the crust is made of either dry quartz or plagioclase, and the mantle in the formation of continental ribbons, as observed along the Iberian-New- composition is wet or dry olivine. The main problem with such approaches foundland margin. is that the overall lithospheric composition remains homogeneous and lay- Following these results, we believe that using an explicit bimineralic as- er-caked, and deformation at the brittle-ductile transition is constrained to semblage is a better approximation of the rheological complexity of the lith- occur at the sharp transition between brittle and ductile material. osphere and yields a better understanding of rifting processes. However, this Observations of the brittle-ductile transition show strong evidence of se- previous work (Jammes et al., 2015; Jammes and Lavier, 2016) used a random mibrittle deformation at the scale of rock or outcrop. One can observe that distribution of heterogeneities unconstrained by any observations. Hetero- over the brittle-ductile transition, porphyroclasts remain slightly deformed or geneities in the crust are not completely random; they preserve a structural exhibit localized fractures, while the surrounding matrix shows evidence of pattern (fabric) inherited from a complex tectonic history. Here, we designed ductile deformation (e.g., Wakefield, 1977; Mitra, 1978; White et al., 1980; Handy, numerical experiments with initial conditions that included strength variations
Recommended publications
  • GEO 2008 Conference Abstracts, Bahrain GEO 2008 Conference Abstracts
    GEO 2008 conference abstracts, Bahrain GEO 2008 Conference Abstracts he abstracts of the GEO 2008 Conference presentations (3-5 March 2008, Bahrain) are published in Talphabetical order based on the last name of the first author. Only those abstracts that were accepted by the GEO 2008 Program Committee are published here, and were subsequently edited by GeoArabia Editors and proof-read by the corresponding author. Several names of companies and institutions to which presenters are affiliated have been abbreviated (see page 262). For convenience, all subsidiary companies are listed as the parent company. (#117804) Sandstone-body geometry, facies existing data sets and improve exploration decision architecture and depositional model of making. The results of a recent 3-D seismic reprocessing Ordovician Barik Sandstone, Oman effort over approximately 1,800 square km of data from the Mediterranean Sea has brought renewed interest in Iftikhar A. Abbasi (Sultan Qaboos University, Oman) deep, pre-Messinian structures. Historically, the reservoir and Abdulrahman Al-Harthy (Sultan Qaboos targets in the southern Mediterranean Sea have been the University, Oman <[email protected]>) Pliocene-Pleistocene and Messinian/Pre-Messinian gas sands. These are readily identifiable as anomalousbright The Lower Paleozoic siliciclastics sediments of the amplitudes on the seismic data. The key to enhancing the Haima Supergroup in the Al-Haushi-Huqf area of cen- deeper structure is multiple and noise attenuation. The tral Oman are subdivided into a number of formations Miocene and older targets are overlain by a Messinian- and members based on lithological characteristics of aged, structurally complex anhydrite layer, the Rosetta various rock sequences.
    [Show full text]
  • Part 3: Normal Faults and Extensional Tectonics
    12.113 Structural Geology Part 3: Normal faults and extensional tectonics Fall 2005 Contents 1 Reading assignment 1 2 Growth strata 1 3 Models of extensional faults 2 3.1 Listric faults . 2 3.2 Planar, rotating fault arrays . 2 3.3 Stratigraphic signature of normal faults and extension . 2 3.4 Core complexes . 6 4 Slides 7 1 Reading assignment Read Chapter 5. 2 Growth strata Although not particular to normal faults, relative uplift and subsidence on either side of a surface breaking fault leads to predictable patterns of erosion and sedi­ mentation. Sediments will fill the available space created by slip on a fault. Not only do the characteristic patterns of stratal thickening or thinning tell you about the 1 Figure 1: Model for a simple, planar fault style of faulting, but by dating the sediments, you can tell the age of the fault (since sediments were deposited during faulting) as well as the slip rates on the fault. 3 Models of extensional faults The simplest model of a normal fault is a planar fault that does not change its dip with depth. Such a fault does not accommodate much extension. (Figure 1) 3.1 Listric faults A listric fault is a fault which shallows with depth. Compared to a simple planar model, such a fault accommodates a considerably greater amount of extension for the same amount of slip. Characteristics of listric faults are that, in order to maintain geometric compatibility, beds in the hanging wall have to rotate and dip towards the fault. Commonly, listric faults involve a number of en echelon faults that sole into a low­angle master detachment.
    [Show full text]
  • Multiphase Boudinage: a Case Study of Amphibolites in Marble in the Naxos Migmatite Core
    Solid Earth, 9, 91–113, 2018 https://doi.org/10.5194/se-9-91-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Multiphase boudinage: a case study of amphibolites in marble in the Naxos migmatite core Simon Virgo, Christoph von Hagke, and Janos L. Urai Structural Geology, Tectonics and Geomechanics, RWTH Aachen University, Lochnerstrasse 4–20, 52056 Aachen, Germany Correspondence: Simon Virgo ([email protected]) Received: 15 August 2017 – Discussion started: 23 August 2017 Revised: 18 December 2017 – Accepted: 20 December 2017 – Published: 15 February 2018 Abstract. In multiply deformed terrains multiphase boudi- sions, it has been shown that in three dimensions boudins can nage is common, but identification and analysis of these is be complex (Abe et al., 2013; Marques et al., 2012; Zulauf et difficult. Here we present an analysis of multiphase boudi- al., 2011b). This complexity can be distinctive when boudins nage and fold structures in deformed amphibolite layers in are the result of more than one deformation event. Some mul- marble from the migmatitic centre of the Naxos metamor- tiphase structures such as mullions or bone boudins are in- phic core complex. Overprinting between multiple boudi- dicative of a specific sequence of deformation (Kenis et al., nage generations is shown in exceptional 3-D outcrop. We 2005; Maeder et al., 2009). Chocolate tablet boudins form identify five generations of boudinage, reflecting the transi- by two phases of extension of layers in different directions tion from high-strain high-temperature ductile deformation (Abe and Urai, 2012; Ghosh, 1988; Zulauf et al., 2011a, to medium- to low-strain brittle boudins formed during cool- b), and have been used to analyse the deformation history ing and exhumation.
    [Show full text]
  • The Origin and Evolution of the Southern Snake Range Decollement, East Central Nevada Allen J
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dayton University of Dayton eCommons Geology Faculty Publications Department of Geology 2-1993 The Origin and Evolution of the Southern Snake Range Decollement, East Central Nevada Allen J. McGrew University of Dayton, [email protected] Follow this and additional works at: https://ecommons.udayton.edu/geo_fac_pub Part of the Geology Commons, Geomorphology Commons, Geophysics and Seismology Commons, Glaciology Commons, Hydrology Commons, Other Environmental Sciences Commons, Paleontology Commons, Sedimentology Commons, Soil Science Commons, Stratigraphy Commons, and the Tectonics and Structure Commons eCommons Citation McGrew, Allen J., "The Origin and Evolution of the Southern Snake Range Decollement, East Central Nevada" (1993). Geology Faculty Publications. 29. https://ecommons.udayton.edu/geo_fac_pub/29 This Article is brought to you for free and open access by the Department of Geology at eCommons. It has been accepted for inclusion in Geology Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. TECTONICS, VOL. 12, NO. 1, PAGES 21-34, FEBRUARY 1993 THE ORIGIN AND EVOLUTION OF INTRODUCTION THE SOUTHERN SNAKE RANGE The origin,kinematic significance and geometrical evolu- DECOLLEMENT, EAST CENTRAL tion of shallowlyinclined normal fault systemsare NEVADA fundamentalissues in extensionaltectonics. Regionally extensivefaults that juxtapose nonmetamorphic sedimentary Allen J. McGrew1 rocksin theirhanging walls againstplastically deformed Departmentof Geology,Stanford University, Stanford, crystallinerocks in their footwallscommand special California attentionbecause they offer rare opportunitiesto characterize kinematiclinkages between contrasting structural levels. Thesefaults, commonly known as detachmentfaults, are the Abstract.Regional and local stratigraphic, metamorphic, subjectsof muchcontroversy.
    [Show full text]
  • Crossing the Several Scales of Strain-Accomplishing Mechanisms in the Hinterland of the Central Andean Fold±Thrust Belt, Bolivia
    Journal of Structural Geology 24 02002) 1587±1602 www.elsevier.com/locate/jstrugeo Crossing the several scales of strain-accomplishing mechanisms in the hinterland of the central Andean fold±thrust belt, Bolivia Nadine McQuarriea,b,*, George H.Davis a aDepartment of Geosciences, University of Arizona, Tucson, AZ 85721, USA bDivision of Geological andPlanetary Science, California Institute of Technology, Pasadena, CA 91125, USA Received 14 November 2000; revised 28 October 2001; accepted 29 October 2001 Abstract Depictions of structures at outcrop, regional and tectonic scales enforce horizontal shortening and vertical thickening as the predominant style of deformation at all scales within the hinterland of the central Andean fold±thrust belt.Outcrop-scale structures document a progression of strain that created: 01) ¯exural-slip folds, 02) fold ¯attening via axial-planar cleavage, 03) vertical stretching via boudinage and late-stage faulting and, ®nally, 04) kink folding.These examples of intraformational deformation are generally concentrated just beyond the tip lines of thrust faults, where fault-propagation folds and related structures are well developed.Fault-propagation folding accommo- dated the accrual of strain indicated by outcrop-scale structures while the structures themselves indicate how deformation developed within each individual fold.Fault-propagation fold geometries at a regional scale emerge from the construction of regional balanced cross-sections. The sections were drawn with careful attention to: 01) known map relationships,
    [Show full text]
  • Ductile Deformation, Boudinage, Continentward-Dipping
    Rifted margins: Ductile deformation, boudinage, continentward-dipping normal faults and the role of the weak lower crust Camille Clerc, Jean-Claude Ringenbach, Laurent Jolivet, Jean-François Ballard To cite this version: Camille Clerc, Jean-Claude Ringenbach, Laurent Jolivet, Jean-François Ballard. Rifted margins: Ductile deformation, boudinage, continentward-dipping normal faults and the role of the weak lower crust. Gondwana Research, Elsevier, 2018, 53, pp.20-40. 10.1016/j.gr.2017.04.030. insu-01522472 HAL Id: insu-01522472 https://hal-insu.archives-ouvertes.fr/insu-01522472 Submitted on 15 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Accepted Manuscript Rifted margins: Ductile deformation, boudinage, continentward- dipping normal faults and the role of the weak lower crust Camille Clerc, Jean-Claude Ringenbach, Laurent Jolivet, Jean- François Ballard PII: S1342-937X(17)30215-0 DOI: doi: 10.1016/j.gr.2017.04.030 Reference: GR 1802 To appear in: Received date: 4 July 2016 Revised date: 21 April 2017 Accepted date: 28 April 2017 Please cite this article as: Camille Clerc, Jean-Claude Ringenbach, Laurent Jolivet, Jean- François Ballard , Rifted margins: Ductile deformation, boudinage, continentward-dipping normal faults and the role of the weak lower crust, (2016), doi: 10.1016/j.gr.2017.04.030 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Deformation Pattern During Normal Faulting: a Sequential Limit Analysis
    Originally published as: Yuan, X., Maillot, B., Leroy, Y. M. (2017): Deformation pattern during normal faulting: A sequential limit analysis. ‐ Journal of Geophysical Research, 122, 2, pp. 1496—1516. DOI: http://doi.org/10.1002/2016JB013430 Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Deformation pattern during normal faulting: 10.1002/2016JB013430 A sequential limit analysis Key Points: • New 2-D mechanically balanced X. P. Yuan1,2 , B. Maillot3, and Y. M. Leroy1,4 model of formation and evolution of half-grabens above low-angle normal 1Laboratoire de Géologie, CNRS UMR, École Normale Supérieure, Paris, France, 2Now at Helmholtz Centre Potsdam, detachment 3 • Tectonic extensional and gravitational German Research Center for Geosciences (GFZ), Potsdam, Germany, Laboratoire Géosciences et Environnement Cergy, 4 modes of deformation in frictional Université de Cergy-Pontoise, Cergy-Pontoise, France, Now at Total, CSTJF, Pau, France wedges are well captured • Fault weakening and sedimentation control number of fault-bounded Abstract We model in 2-D the formation and development of half-graben faults above a low-angle blocks in hanging wall normal detachment fault. The model, based on a “sequential limit analysis” accounting for mechanical equilibrium and energy dissipation, simulates the incremental deformation of a frictional, cohesive, and Supporting Information: fluid-saturated rock wedge above the detachment. Two modes of deformation, gravitational collapse and • Supporting Information S1 tectonic collapse, are revealed which compare well with the results of the critical Coulomb wedge theory. •MovieS1 •MovieS2 We additionally show that the fault and the axial surface of the half-graben rotate as topographic •MovieS3 subsidence increases. This progressive rotation makes some of the footwall material being sheared and •MovieS4 entering into the hanging wall, creating a specific region called foot-to-hanging wall (FHW).
    [Show full text]
  • The Callovian Unconformity and the Ophiolite Obduction Onto the Pelagonian Carbonate Platform of the Internal Hellenides
    Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, τόμος L, σελ. 144-152 Bulletin of the Geological Society of Greece, vol. L, p. 144-152 Πρακτικά 14ου Διεθνούς Συνεδρίου, Θεσσαλονίκη, Μάιος 2016 Proceedings of the 14th International Congress, Thessaloniki, May 2016 THE CALLOVIAN UNCONFORMITY AND THE OPHIOLITE OBDUCTION ONTO THE PELAGONIAN CARBONATE PLATFORM OF THE INTERNAL HELLENIDES Scherreiks R.1, Meléndez G.2, Bouldagher-Fadel M.3, Fermeli G.4 and Bosence D.5 1Bayerische Staaatssammlung, Department of Geology, University of Munich, Luisenstr. 33, 80333 Munich, Germany, [email protected] 2Departamento de Geologia (Paleontologia), Universidad de Zaragoza, 50009 Saragossa, Spain, [email protected] 3Earth Sciences, University College London, Gower Street, London WC1E6BT, UK, [email protected] 4Department of Historical Geology and Paleontology, University of Athens, Panepistimioupolis, Zographou, 15784 Athens, Greece, [email protected] 5Department of Earth Sciences, Royal Holloway University of London, Egham TW20 0EX, UK, [email protected] Abstract The carbonate-platform-complex and the oceanic formations of the central Pelagonian zone of the Hellenides evolved in response to a sequence of plate-tectonic episodes of ocean spreading, plate convergence and ophiolite obduction. The bio- stratigraphies of the carbonate platform and the oceanic successions, show that the Triassic-Early Jurassic platform was coeval with an ocean where pillow basalts and radiolarian cherts were being deposited. After convergence began during late Early- Jurassic - Middle Jurassic time, the oceanic leading edge of the Pelagonian plate was subducted beneath the leading edge of the oceanic, overriding plate. The platform subsided while a supra-subduction, volcanic-island-arc evolved.
    [Show full text]
  • Boudinage Classification
    Journal of Structural Geology 26 (2004) 739–763 www.elsevier.com/locate/jsg Boudinage classification: end-member boudin types and modified boudin structuresq Ben D. Goscombea,*, Cees W. Passchierb, Martin Handa aContinental Evolution Research Group, Department of Geology and Geophysics, Adelaide University, Adelaide, S.A. 5005, Australia bInstitut fuer Geowissenschaften, Johannes Gutenberg Universitaet, Becherweg 21, Mainz, Germany Received 28 March 2002; received in revised form 25 August 2003; accepted 30 August 2003 Abstract In monoclinic shear zones, there are only three ways a layer can be boudinaged, leading to three kinematic classes of boudinage. These are (1) symmetrically without slip on the inter-boudin surface (no-slip boudinage), and two classes with asymmetrical slip on the inter-boudin surface: slip being either (2) synthetic (S-slip boudinage) or (3) antithetic (A-slip boudinage) with respect to bulk shear sense. In S-slip boudinage, the boudins rotate antithetically, and in antithetic slip boudinage they rotate synthetically with respect to shear sense. We have investigated the geometry of 2100 natural boudins from a wide variety of geological contexts worldwide. Five end-member boudin block geometries that are easily distinguished in the field encompass the entire range of natural boudins. These five end-member boudin block geometries are characterized and named drawn, torn, domino, gash and shearband boudins. Groups of these are shown to operate almost exclusively by only one kinematic class; drawn and torn boudins extend by no-slip, domino and gash boudins form by A-slip and shearband boudins develop by S-slip boudinage. In addition to boudin block geometry, full classification must also consider boudin train obliquity with respect to the fabric attractor and material layeredness of the boudinaged rock mass.
    [Show full text]
  • Miocene Unroofing of the Canyon Range During Extension Along the Sevier Desert Detachment, West Central Utah
    TECTONICS, VOL. 20, NO. 3, PAGES 289-307, JUNE 2001 Miocene unroofing of the Canyon Range during extension along the Sevier Desert Detachment, west central Utah Daniel F. Stockli • Departmentof Geologicaland EnvironmentalSciences, Stanford University, Stanford, California JonathanK. Linn:, J.Douglas Walker Departmentof Geology, Universityof Kansas,Lawrence, Kansas Trevor A. Dumitru Departmentof Geologicaland Environmental Scmnces, Stanford University, Stanford, California Abstract. Apatite fission track resultsfrom Neoproterozoic 1. Introduction and Lower Cambrian quartzites collected from the Canyon Rangein west centralUtah reveal a significantearly to middle The Canyon Range in west central Utah lies within the Miocene cooling event (-19-15 Ma). Preextensional Mesozoic Sevier orogenic belt of Armstrong [1968] at the temperaturesestimated from multicompositionalapatite easternmargin of the Basin and Range extensionalprovince fissiontrack data suggest-4.5 to >5.6 km of unroofingduring (Figure 1). The geology of the Canyon Range and the the early to middle Miocene, assuminga geothermalgradient adjacentSevier Desert region has become the focusof intense of-25øC/km. The spatialdistribution of thesepreextensional scientificdebate concerning the regional tectonicevolution of temperaturesindicates -15ø-20ø of eastward tilting of the the easternGreat Basin and especiallythe mechanicaland Canyon Range during rapid extensionalunroofing along a kinematic viability of low-angle detachment faulting in moderately west dipping detachmentfault (-35ø-40ø).
    [Show full text]
  • Oceanic Detachment Faults Generate Compression in Extension
    Oceanic detachment faults generate compression in extension R. Parnell-Turner1, R.A. Sohn1, C. Peirce2, T.J. Reston3, C.J. MacLeod4, R.C. Searle2, and N.M. Simão2. 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA 2Department of Earth Sciences, Durham University, South Road, Durham DH1 3LE, UK 3School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK 4School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK ABSTRACT and sampled oceanic core complexes located In extensional geologic systems such as mid-ocean ridges, deformation is typically accom- at 13°20′N and 13°30′N (Smith et al., 2006; modated by slip on normal faults, where material is pulled apart under tension and stress MacLeod et al., 2009; Mallows and Searle, 2012; is released by rupture during earthquakes and magmatic accretion. However, at slowly Escartín et al., 2017). Both core complexes have spreading mid-ocean ridges where the tectonic plates move apart at rates <80 km m.y.–1, well-developed, domed, corrugated surfaces and these normal faults may roll over to form long-lived, low-angled detachments that exhume are accompanied by a high level of hydroacous- mantle rocks and form corrugated domes on the seabed. Here we present the results of a local tically recorded seismicity, suggesting that they micro-earthquake study over an active detachment at 13°20′N on the Mid-Atlantic Ridge are currently active or have been in the recent to show that these features can give rise to reverse-faulting earthquakes in response to plate geological past (Smith et al., 2008; MacLeod et bending.
    [Show full text]
  • Fold-Thrust Belts, and the NJ Ridge and Valley Thrust System
    Lecture 15 Fold-Thrust Belts, and the NJ Ridge and Valley Thrust System Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm © WW Norton; unless noted otherwise Mt. Kidd, Alberta Canadian Rocky Mountain Front Ranges Fig. 18.1 The folds affecting the Paleozoic strata exposed on these cliffs developed in association with transport on the Lewis and Rundle Thrusts. View is to the north. 11/10/2014 © EarthStructure (2 nd ed) 2 Continent-continent Collision Fig. 18.3 • Regional cross sections depicting stages of fold- thrust belt development first during convergent-margin tectonism and then during continent-continent collision. • Thick-skinned tectonics involves slip on basement- Time penetrating reverse faults that uplifts basement and causes monoclinal forced- folds (“drape folds”) to develop in the overlying cover. • Thin-skinned tectonics involves folding and faulting above a mid-crustal detachment. 11/10/2014 © EarthStructure (2 nd ed) 3 Continent-continent Collision Fig. 18.3 Passive margin strata are deposited on thinned continental crust • In this sketch, basins on opposite sides of the margin do not have the same shape, because the basement beneath underwent different amounts of stretching. • The so-called lower-plate margin underwent more stretching, whereas the so-called upper-plate margin underwent less stretching. 11/10/2014 © EarthStructure (2 nd ed) 4 11/10/2014 © EarthStructure (2 nd ed) 5 Continent-continent Collision Fig. 18.3 Onset of convergence • An accretionary prism develops that verges towards the trench, and a backarc fold-thrust belt forms cratonward of the volcanic arc and verges towards the upper-plate craton.
    [Show full text]