DFT)-Aided Structure Elucidation of Linear Diterpenes from the Irish Brown Seaweed Bifurcaria Bifurcata

Total Page:16

File Type:pdf, Size:1020Kb

DFT)-Aided Structure Elucidation of Linear Diterpenes from the Irish Brown Seaweed Bifurcaria Bifurcata marine drugs Article Density Functional Theory (DFT)-Aided Structure Elucidation of Linear Diterpenes from the Irish Brown Seaweed Bifurcaria bifurcata Vangelis Smyrniotopoulos 1 , Daria Firsova 1, Howard Fearnhead 2, Laura Grauso 3 , Alfonso Mangoni 4 and Deniz Tasdemir 1,5,6,* 1 School of Chemistry, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; [email protected] (V.S.); dashafi[email protected] (D.F.) 2 Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, H91 W2TY Galway, Ireland; [email protected] 3 Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici (NA), Italy; [email protected] 4 Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy; [email protected] 5 GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany 6 Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany * Correspondence: [email protected]; Tel.: +49-431-600-4430 Abstract: Brown alga Bifurcaria bifurcata is an extraordinarily rich source of linear (acylic) diterpenes with enormous structural diversity. As part of our interest into secondary metabolites of the Irish seaweeds, here we report four new acyclic diterpenes (1–4) and seven known terpenoids (5–11) from Citation: Smyrniotopoulos, V.; the CHCl3 extract of B. bifurcata. The planar structures of the new metabolites were elucidated by Firsova, D.; Fearnhead, H.; Grauso, L.; means of 1D and 2D NMR, HRMS, and FT-IR spectroscopy. Since linear diterpenes are highly flexible Mangoni, A.; Tasdemir, D. Density compounds, the assignment of their stereochemistry by conventional methods, e.g., NOESY NMR, Functional Theory (DFT)-Aided is difficult. Therefore, we employed extensive quantum-mechanical prediction of NMR chemical Structure Elucidation of Linear shifts and optical rotation analyses to identify the relative and absolute configurations of the new Diterpenes from the Irish Brown compounds 1–4. Several compounds moderately inhibited the human breast cancer cell line (MDA- Seaweed Bifurcaria bifurcata. Mar. MB-231) with IC values ranging from 10.0 to 33.5 µg/mL. This study not only demonstrates the Drugs 2021, 19, 42. https:// 50 B. bifurcata doi.org/10.3390/md19010042 vast capacity of the Irish to produce highly oxygenated linear diterpenoids, but also highlights the potential of new methodologies for assignment of their stereogenic centers. Received: 18 December 2020 Accepted: 15 January 2021 Keywords: Bifurcaria bifurcata; brown alga; seaweed; linear diterpene; DFT; anticancer activity Published: 19 January 2021 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in 1. Introduction published maps and institutional affil- Bifurcaria is a small genus within the brown algal family Sargassaceae (order Fucales). iations. Bifurcaria bifurcata (Velley) R. Ross, also known as brown forking weed or brown tuning fork weed [1,2] is widespread on the seashores and tidepools of the Atlantic Ocean [1,3]. In Ire- land, it is commonly found on the limestone areas of the Northwestern Ireland [1]. From a chemical point of view, B. bifurcata is reputed for being a rich source of linear diterpenes Copyright: © 2021 by the authors. (LDs) that originate from geranylgeraniol, a C20 metabolite bearing four double bonds and Licensee MDPI, Basel, Switzerland. five methyl functions [2,3]. Further substitutions and rearrangements, such as oxygenation, This article is an open access article isomerization, unsaturation or formation of terminal ring systems (e.g., furan), result in a distributed under the terms and highly diverse LD family. In general, LDs deriving from B. bifurcata have been divided into conditions of the Creative Commons 3 subfamilies: (a) those with C-12 oxygenation, (b) those with C-13 oxygenation, and (c) the Attribution (CC BY) license (https:// non-C-12/C-13 oxygenated diterpenes [3]. The diterpene composition of B. bifurcata has creativecommons.org/licenses/by/ been reported to vary with the collection site and season, and several types of chemotypes 4.0/). Mar. Drugs 2021, 19, 42. https://doi.org/10.3390/md19010042 https://www.mdpi.com/journal/marinedrugs Mar. Drugs 2021, 19, 42 2 of 12 have been reported [4–6]. These diterpenes are of ecological importance and considered as chemotaxonomical markers [5,6]. They also exhibit pharmacologically-relevant activities, such as antiprotozoal, anticancer, and neuroprotective [3,7–11]. Identification of the stereogenic centers within linear, highly flexible natural products is challenging. Our previous studies on Irish B. bifurcata reported several acyclic diterpenes belonging to the C-13 oxygenated LD series, e.g., eleganediol (12)[10]. In that work, we em- ployed, for the first time for a LD, vibrational circular dichroism (VCD) spectroscopy joined with density functional theory (DFT) calculations and DP4 probability analyses to assign S absolute configuration for single (C-13) or two (C-7, C-13) stereogenic centers [10,11]. In the continuation of our chemical studies on this seaweed [10–12], we have now isolated four new LDs (1–4) along with four known linear diterpenes (5–8), a monoterpene loliolide (9), the tetraterpene carotenoid fucoxanthin (11) and a truncated fucoxanthin analogue (10). The planar structures of the isolated metabolites were elucidated by NMR, HRMS, and FT- IR spectroscopy. Due to low supply of the new compounds, VCD spectroscopy, which requires higher amounts of pure compounds [10–12], could not be used for stereochemical assignments. Instead, we employed DFT calculation of NMR chemical shifts, followed by DP4+ analysis, and DFT prediction of optical rotations. This study describes purification, structure determination and cytotoxic activity (in vitro) of the isolated compounds, as well as DFT studies for identification of the configuration of the new compounds 1–4. 2. Results and Discussion The freeze-dried algal material was successively extracted with CH2Cl2 and MeOH. The combined organic extracts were submitted to a modified Kupchan partition [10,11]. The CHCl3-soluble portion of the crude extract was fractionated by NP-Flash column chromatography (CC) to yield twenty-one fractions (C1−C21). The RP-HPLC separation of fractions C4, C9, C10, and C14 afforded the compounds 1–11 (Figure1). The new compound 1 was obtained as a colorless film. The molecular formula of + 1 was determined by its HR-ESIMS data (m/z 345.2401 [M + Na] ) as C20H34O3, consis- tent with four double bond equivalents (DBEs). Analysis of the 1H, 13C and gHSQC NMR spectra indicated the presence of one tertiary methyl δH/δC 1.30/18.3 (CH3–18) and four olefinic methyl groups δH/δC 1.70/25.7 (CH3-16); 1.66/18.2 (CH3-17); 1.61/16.0 (H3-19) and 1.65/16.2 (H3-20), an oxymethylene δH/δC 4.13/59.4 (CH2-1), three olefinic methines δH/δC 5.38/123.6 (CH-2); δH/δC 5.16/124.7(CH-6) and 5.15/127.4 (CH-14), two oxymethines δH/δC 2.98/62.1 (CH-10); and 4.44/65.5 (CH-13) and five methylenes δH/δC 2.03/39.3 (CH2-4); 2.12/26.1 (CH2-5); 2.13/36.2 (CH2-8); 1.64/26.9 (CH2-9) and 13 1.81,1.74/44.1 (CH2-12) (Tables1 and2). The C NMR spectrum (Table2) contained four 2 additional fully substituted carbons, including three sp carbons δC 134.3 (C-7); 134.7 (C-15); 139.3 (C-3) and one fully substituted oxygenated carbon δC 60.4 (C-11), which was suggestive of an acyclic diterpene skeleton. A close comparison of the NMR data of 1 with those of eleganediol (12, Figure1), a LD, which we previously isolated from the same seaweed [10] suggested that 1 was a 13-hydroxygeranylgeraniol analogue with an 1 13 additional oxygenation. The H NMR signal at δH 2.98 (t, J = 6.2 Hz) and two C signals at δC 62.1 (CH) and δC 60.4 (C), supported the oxygenation to be due to an epoxy functionality in 1. Three double bonds and an epoxy ring make up for the required four DBEs within 1. Mar. Drugs 2021, 19, 42 3 of 12 Mar. Drugs 2021, 19, x FOR PEER REVIEW 4 of 12 16 O 3 O 13 9 7 5 1 OH OH 11 OH 17 18 19 20 OH 1 2 OH OH OH OH OH OH 3 4 OH OH O O 5 6 OH OH HO OH 7 8 HO O O O O O HO 9 10 C O O O HO 11 HO O OH OH 12 Figure 1. CompoundsCompounds isolated from Bifurcaria bifurcata. The planar structure of 1 was assigned by means of 1D and 2D NMR experiments. The gCOSY spectrum included four spin systems, comprising of (i) H2-1 and H-2, (ii) H2-4, H2- 5 and H-6, (iii) H2-8, H2-9 and the oxirane proton H-10 and (iv) H2-12, the oxymethine H- 13 and the olefinic proton H-14. This data, especially the spin system iii provided clear indication that the epoxy ring resided between C-10 and C-11. The proton sequences (i– iv) were easily connected to each other with the aid of HMBC correlations. Specifically, diagnostic 1H-13C long range couplings between H-2/C-1, H2-1/C-2, and H2-1/C-3 corrob- orated the position of terminal secondary alcohol at C-1, while HMBC correlations be- tween C-11/H-13, C-13/H2-12, C-14/H2-12, and C-15/H2-12 provided further support for Mar. Drugs 2021, 19, 42 4 of 12 1 Table 1. H NMR data (600 MHz, CDCl3) of 1–4.
Recommended publications
  • The Valorisation of Sargassum from Beach Inundations
    Journal of Marine Science and Engineering Review Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations John J. Milledge * and Patricia J. Harvey Algae Biotechnology Research Group, School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-0208-331-8871 Academic Editor: Magnus Wahlberg Received: 12 August 2016; Accepted: 7 September 2016; Published: 13 September 2016 Abstract: In recent years there have been massive inundations of pelagic Sargassum, known as golden tides, on the beaches of the Caribbean, Gulf of Mexico, and West Africa, causing considerable damage to the local economy and environment. Commercial exploration of this biomass for food, fuel, and pharmaceutical products could fund clean-up and offset the economic impact of these golden tides. This paper reviews the potential uses and obstacles for exploitation of pelagic Sargassum. Although Sargassum has considerable potential as a source of biochemicals, feed, food, fertiliser, and fuel, variable and undefined composition together with the possible presence of marine pollutants may make golden tides unsuitable for food, nutraceuticals, and pharmaceuticals and limit their use in feed and fertilisers. Discontinuous and unreliable supply of Sargassum also presents considerable challenges. Low-cost methods of preservation such as solar drying and ensiling may address the problem of discontinuity. The use of processes that can handle a variety of biological and waste feedstocks in addition to Sargassum is a solution to unreliable supply, and anaerobic digestion for the production of biogas is one such process.
    [Show full text]
  • First Report of the Asian Seaweed Sargassum Filicinum Harvey (Fucales) in California, USA
    First Report of the Asian Seaweed Sargassum filicinum Harvey (Fucales) in California, USA Kathy Ann Miller1, John M. Engle2, Shinya Uwai3, Hiroshi Kawai3 1University Herbarium, University of California, Berkeley, California, USA 2 Marine Science Institute, University of California, Santa Barbara, California, USA 3 Research Center for Inland Seas, Kobe University, Rokkodai, Kobe 657–8501, Japan correspondence: Kathy Ann Miller e-mail: [email protected] fax: 1-510-643-5390 telephone: 510-387-8305 1 ABSTRACT We report the occurrence of the brown seaweed Sargassum filicinum Harvey in southern California. Sargassum filicinum is native to Japan and Korea. It is monoecious, a trait that increases its chance of establishment. In October 2003, Sargassum filicinum was collected in Long Beach Harbor. In April 2006, we discovered three populations of this species on the leeward west end of Santa Catalina Island. Many of the individuals were large, reproductive and senescent; a few were small, young but precociously reproductive. We compared the sequences of the mitochondrial cox3 gene for 6 individuals from the 3 sites at Catalina with 3 samples from 3 sites in the Seto Inland Sea, Japan region. The 9 sequences (469 bp in length) were identical. Sargassum filicinum may have been introduced through shipping to Long Beach; it may have spread to Catalina via pleasure boats from the mainland. Key words: California, cox3, invasive seaweed, Japan, macroalgae, Sargassum filicinum, Sargassum horneri INTRODUCTION The brown seaweed Sargassum muticum (Yendo) Fensholt, originally from northeast Asia, was first reported on the west coast of North America in the early 20th c. (Scagel 1956), reached southern California in 1970 (Setzer & Link 1971) and has become a common component of California intertidal and subtidal communities (Ambrose and Nelson 1982, Deysher and Norton 1982, Wilson 2001, Britton-Simmons 2004).
    [Show full text]
  • Plants and Ecology 2013:2
    Fucus radicans – Reproduction, adaptation & distribution patterns by Ellen Schagerström Plants & Ecology The Department of Ecology, 2013/2 Environment and Plant Sciences Stockholm University Fucus radicans - Reproduction, adaptation & distribution patterns by Ellen Schagerström Supervisors: Lena Kautsky & Sofia Wikström Plants & Ecology The Department of Ecology, 2013/2 Environment and Plant Sciences Stockholm University Plants & Ecology The Department of Ecology, Environment and Plant Sciences Stockholm University S-106 91 Stockholm Sweden © The Department of Ecology, Environment and Plant Sciences ISSN 1651-9248 Printed by FMV Printcenter Cover: Fucus radicans and Fucus vesiculosus together in a tank. Photo by Ellen Schagerström Summary The Baltic Sea is considered an ecological marginal environment, where both marine and freshwater species struggle to adapt to its ever changing conditions. Fucus vesiculosus (bladderwrack) is commonly seen as the foundation species in the Baltic Sea, as it is the only large perennial macroalgae, forming vast belts down to a depth of about 10 meters. The salinity gradient results in an increasing salinity stress for all marine organisms. This is commonly seen in many species as a reduction in size. What was previously described as a low salinity induced dwarf morph of F. vesiculosus was recently proved to be a separate species, when genetic tools were used. This new species, Fucus radicans (narrow wrack) might be the first endemic species to the Baltic Sea, having separated from its mother species F. vesiculosus as recent as 400 years ago. Fucus radicans is only found in the Bothnian Sea and around the Estonian island Saaremaa. The Swedish/Finnish populations have a surprisingly high level of clonality.
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Spiral wrack (Fucus spiralis) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White 2008-05-29 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1337]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. 2008. Fucus spiralis Spiral wrack. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1337.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-05-29 Spiral wrack (Fucus spiralis) - Marine Life Information Network See online review for distribution map Detail of Fucus spiralis fronds. Distribution data supplied by the Ocean Photographer: Keith Hiscock Biogeographic Information System (OBIS).
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Channelled wrack (Pelvetia canaliculata) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White 2008-05-29 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1342]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. 2008. Pelvetia canaliculata Channelled wrack. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1342.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-05-29 Channelled wrack (Pelvetia canaliculata) - Marine Life Information Network See online review for distribution map Pelvetia canaliculata at the water's edge. Distribution data supplied by the Ocean Photographer: Judith Oakley Biogeographic Information System (OBIS).
    [Show full text]
  • Ascophyllum Distribution Knotted Wrack Is
    This is easily seen along the shoreline throughout Ascophyllum nodosum the year round. Class: Phaeophyceae common on Order: Fucales the shoreline all year round Family: Fucaceae Genus: Ascophyllum Distribution Knotted Wrack is seaweed It is common on the north-western coast of Europe (from of the northern Atlantic northern Norway to Portugal) as well as the east Greenland and extending as far north as the north-eastern coast of North America. It occurs in the Bay the Arctic Ocean. Its of Fundy, Nova Scotia, Prince Edward Island, Baffin Island, southern distribution Hudson Strait, Labrador and Newfoundland. It has been extends as far south as recorded as an accidental introduction to San Francisco, northern Portugal in the California, and as a potentially invasive species eradicated. east and New Jersey on the As well as Knotted Wrack it is known as Rockweed, Norwegian west side of the Atlantic. Kelp, Knotted Kelp, or Egg Wrack. Habitat The species attaches itself to rocks and stones in the middle of It is most abundant on the tidal region. It is found in a range of coastal habitats from sheltered rocky shores in sheltered estuaries to moderately exposed coasts. Often it the mid-intertidal zone (the dominates the inter-tidal zone. Sub-tidal populations are known area that is fully covered to exist in very clear waters such as those of Rhode Island, USA. and uncovered each day) However, an intertidal habitat is more usual. Reproduction Receptacles begin to develop in response to seasonal variations Knotted Wrack is in late spring and early summer. They are oval pods that are dioecious; each plant is initially flat and become inflated, changing from olive green to either male or female.
    [Show full text]
  • Original Article
    Available online at http://www.journalijdr.com ISSN: 2230-9926 International Journal of Development Research Vol. 09, Issue, 01, pp.25214-25215, January, 2019 ORIGINAL RESEARCH ARTICLEORIGINAL RESEARCH ARTICLE OPEN ACCESS SPECIES COMPOSITION, FREQUENCY AND TOTAL DENSITY OF SEAWEEDS *Christina Litaay, Hairati Arfah Centre for Deep Sea Research, Indonesian Institute of Sciences ARTICLE INFO ABSTRACT Article History: This study was conducted to determine the species composition, frequency and total density of Received 27th October, 2018 seaweeds found on the island of Nusalaut. There were 33 species of seaweed. Of the 33 species, Received in revised form 15 were from the class of Chlorophyceae (45.5%), 10 species from Rhodophyceae (30.3%), and 9 14th November, 2018 species from Phaeophyceae (27.3%).Total frequency showed the highest Gracilaria Accepted 01st December, 2018 (Rhodopyceae) of 29.63% in Akoon and Titawaii is 20.34%, while Halimeda (Chloropyceae) of th Published online 30 January, 2019 19.60% found on the Nalahia. Highest total frequency Phaeophyceae (Padina) is 12.96% found on the Akoon. The highest value of total density is village Ameth that is 1984 gr / m² is from the Key Words: Rhodophyceae group (Acantophora), Nalahia is 486 gr/m² from the Cholorophyceae group Frequency, (Halimeda), and Akoon that is 320 gr/m² from the Phaeophyceae group (Padina). Species composition, Seaweed, Total density. Copyright © 2019, Christina Litaay, Hairati Arfah. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Christina Litaay, Hairati Arfah.
    [Show full text]
  • Seasonal Variations of Fucus Vesiculosus Fertility Under Ocean Acidification and Warming in the Western Baltic Sea
    Botanica Marina 2017; aop Angelika Graiff*, Marie Dankworth, Martin Wahl, Ulf Karsten and Inka Bartsch Seasonal variations of Fucus vesiculosus fertility under ocean acidification and warming in the western Baltic Sea DOI 10.1515/bot-2016-0081 of F. vesiculosus in spring and summer, which may alter Received 28 July, 2016; accepted 21 April, 2017 and/or hamper its ecological functions in shallow coastal ecosystems of the Baltic Sea. Abstract: Ocean warming and acidification may substan- tially affect the reproduction of keystone species such as Keywords: bladder wrack; mesocosm; multi-factorial Fucus vesiculosus (Phaeophyceae). In four consecutive change; reproduction; seasonal pattern. benthic mesocosm experiments, we compared the repro- ductive biology and quantified the temporal development of Baltic Sea Fucus fertility under the single and com- Introduction bined impact of elevated seawater temperature and pCO2 (1100 ppm). In an additional experiment, we investigated In the Baltic Sea, Fucus vesiculosus L. is the most common the impact of temperature (0–25°C) on the maturation of canopy-forming and hence structurally important seaweed North Sea F. vesiculosus receptacles. A marked seasonal dominating the biomass along rocky and stony coasts reproductive cycle of F. vesiculosus became apparent in (Kautsky et al. 1992, Torn et al. 2006, Rönnbäck et al. 2007). the course of 1 year. The first appearance of receptacles on Fucus communities provide food for numerous organisms, vegetative apices and the further development of immature thereby supporting complex trophic interactions (Kautsky receptacles of F. vesiculosus in autumn were unaffected by et al. 1992, Middelboe et al. 2006, Korpinen et al. 2007) and warming or elevated pCO .
    [Show full text]
  • Bioactive Properties of Sargassum Siliquosum J. Agardh (Fucales, Ochrophyta) and Its Potential As Source of Skin-Lightening Active Ingredient for Cosmetic Application
    Journal of Applied Pharmaceutical Science Vol. 10(07), pp 051-058, July, 2020 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2020.10707 ISSN 2231-3354 Bioactive properties of Sargassum siliquosum J. Agardh (Fucales, Ochrophyta) and its potential as source of skin-lightening active ingredient for cosmetic application Eldrin De Los Reyes Arguelles1*, Arsenia Basaran Sapin2 1 Philippine National Collection of Microorganisms, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, Los Baños, Philippines. 2Food Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, Los Baños, Philippines. ARTICLE INFO ABSTRACT Received on: 18/12/2019 Seaweeds are notable in producing diverse kinds of polyphenolic compounds with direct relevance to cosmetic Accepted on: 08/05/2020 application. This investigation was done to assess the bioactive properties of a brown macroalga, Sargassum Available online: 04/07/2020 siliquosum J. Agardh. The alga has a total phenolic content of 30.34 ± 0.00 mg gallic acid equivalents (GAE) g−1. Relative antioxidant efficiency showed that S. siliquosum exerted a potent diphenyl-1, 2-picrylhydrazyl scavenging activity and high ability of reducing copper ions in a dose-dependent manner with an IC value of 0.19 mg GAE Key words: 50 ml−1 and 18.50 μg GAE ml−1, respectively. Evaluation of antibacterial activities using microtiter plate dilution assay Antioxidant activity, revealed that S. siliquosum showed a strong activity against bacterial skin pathogen, Staphylococcus aureus (minimum Catanauan, cosmetics, inhibitory concentration (MIC) = 125 µg ml−1 and minimum bactericidal concentration (MBC) = 250 μg ml−1) and lightening ingredient, Staphylococcus epidermidis (MIC = 250 µg ml−1 and MBC = 500 μg ml−1).
    [Show full text]
  • The Potential of Seaweeds As a Source of Functional Ingredients of Prebiotic and Antioxidant Value
    antioxidants Review The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value Andrea Gomez-Zavaglia 1 , Miguel A. Prieto Lage 2 , Cecilia Jimenez-Lopez 2 , Juan C. Mejuto 3 and Jesus Simal-Gandara 2,* 1 Center for Research and Development in Food Cryotechnology (CIDCA), CCT-CONICET La Plata, Calle 47 y 116, La Plata, Buenos Aires 1900, Argentina 2 Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo – Ourense Campus, E32004 Ourense, Spain 3 Department of Physical Chemistry, Faculty of Science, University of Vigo – Ourense Campus, E32004 Ourense, Spain * Correspondence: [email protected] Received: 30 June 2019; Accepted: 8 September 2019; Published: 17 September 2019 Abstract: Two thirds of the world is covered by oceans, whose upper layer is inhabited by algae. This means that there is a large extension to obtain these photoautotrophic organisms. Algae have undergone a boom in recent years, with consequent discoveries and advances in this field. Algae are not only of high ecological value but also of great economic importance. Possible applications of algae are very diverse and include anti-biofilm activity, production of biofuels, bioremediation, as fertilizer, as fish feed, as food or food ingredients, in pharmacology (since they show antioxidant or contraceptive activities), in cosmeceutical formulation, and in such other applications as filters or for obtaining minerals. In this context, algae as food can be of help to maintain or even improve human health, and there is a growing interest in new products called functional foods, which can promote such a healthy state.
    [Show full text]
  • Sargassum Fusiforme (Fucales, Phaeophyceae) Has No Characteristic Stem in the Genus Sargassum
    J. Jpn. Bot. 91: 33–40 (2016) Sargassum fusiforme (Fucales, Phaeophyceae) Has No Characteristic Stem in the Genus Sargassum a, b a Hiromori SHIMABUKURO *, Toshinobu TERAWAKI and Goro YOSHIDA aNational Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452 JAPAN; bNational Research Institute of Fisheries Engineering, Fisheries Research Agency, 7620-7, Hasaki, Kamisu, Ibaraki, 314-0408 JAPAN *Corresponding author: [email protected] (Accepted on July 1, 2015) Sargassum fusiforme is a very useful product for fisheries and is well known in Japan; however there are few detailed reports about its morphological characteristics. This species was initially assigned to the genus Cystophyllum and was subsequently categorized in the genus Turbinaria because of a lack of distinction between its leaves and vesicles. Recently, this species was categorized in the genus Sargassum based on the results of molecular studies; however, a debate has arisen between researchers who propose that the species belongs to the genus Sargassum and those in Japan who maintain that it belongs to the genus Hizikia. This difference in opinion is caused by a large morphological variation in the leaves among the different latitudes in which the species grows. The leaves of S. fusiforme growing in temperate regions are narrow, while those growing in low-latitude regions are lanceolate with dentate margins. The branches of Sargassum spp. generally arise from the stems on the holdfast; however, the branches of S. fusiforme arise directly from the holdfast. The biennial S. fusiforme has no stem, which is a characteristic of the genus Sargassum.
    [Show full text]
  • Phlorotannins As UV-Protective Substances in Early Developmental Stages of Brown Algae
    651 2012 Phlorotannins as UV-protective Substances in early developmental Stages of Brown Algae Phlorotannine als UV-Schutzsubstanzen in frühen Entwicklungsstadien von Braunalgen Franciska S. Steinhoff ALFRED-WEGENER-INSTITUT FÜR POLAR- UND MEERESFORSCHUNG in der Helmholtz-Gemeinschaft D-27570 BREMERHAVEN Bundesrepublik Deutschland ISSN 1866-3192 Hinweis Notice Die Berichte zur Polar- und Meeresforschung The Reports on Polar and Marine Research are werden vom Alfred-Wegener-Institut für Polar- issued by the Alfred Wegener Institute for Polar und Meeresforschung in Bremerhaven* in un- and Marine Research in Bremerhaven*, Federal regelmäßiger Abfolge herausgegeben. Republic of Germany. They are published in irregular intervals. Sie enthalten Beschreibungen und Ergebnisse They contain descriptions and results of der vom Institut (AWI) oder mit seiner Unter- investigations in polar regions and in the seas stützung durchgeführten Forschungsarbeiten in either conducted by the Institute (AWI) or with its den Polargebieten und in den Meeren. support. Es werden veröffentlicht: The following items are published: — Expeditionsberichte — expedition reports (inkl. Stationslisten und Routenkarten) (incl. station lists and route maps) — Expeditions- und Forschungsergebnisse — expedition and research results (inkl. Dissertationen) (incl. Ph.D. theses) — wissenschaftliche Berichte der — scientific reports of research stations Forschungsstationen des AWI operated by the AWI — Berichte wissenschaftlicher Tagungen — reports on scientific meetings Die Beiträge
    [Show full text]