IAC-2020-Commercial

Total Page:16

File Type:pdf, Size:1020Kb

IAC-2020-Commercial 71st International Astronautical Congress (IAC) – The CyberSpace Edition, 12-14 October 2020. Copyright ©2020 by the International Astronautical Federation (IAF). All rights reserved. IAC-20,E6,1,x57479 Commercial Incentives for Debris Removal Services H. Brettle 1, A. Ziadlourad 1, M. Lindsay 2, J. Forshaw 1, J. Auburn 1 1 Astroscale UK, 2 Astroscale Holdings Abstract As the threat of space debris grows, so does the potential market for debris removal services. This paper assesses commercial incentives for satellite operators to pay for debris removal services and quantifies their willingness to pay. The amount of orbital debris generated in low Earth orbit has been steadily increasing over the years and whilst on- orbit collisions are rare, historical trends cannot reliably be used to infer future risk. The nature of low Earth orbit (LEO) is set to change considerably, with satellite constellations projected to launch tens of thousands of new satellites over the next decade. As the number of satellites in key orbits increases, so does the likelihood of collision, posing a risk to the sustainability of the entire orbital environment. The challenge of space debris can be considered as a tragedy of the commons, whereby individual actors damage the shared orbital environment through their contribution to space debris, even though it is not in their long-term interest to do so. Whilst governments and international frameworks may be able to shape the discussion, the missing enabler has been identifying commercial incentives that could address the problem. As technological solutions to address the threat of space debris become feasible, so must the commercial incentives for satellite operators to use such solutions. In addition to being an environmental concern, space debris also poses a direct threat to the service provision and safety of satellites for a given satellite constellation operator. In addition, ensuring that debris is removed from operational orbit can enable satellite operators to utilise more efficient orbits and optimise their satellite design for operational service. This paper presents quantitative analysis justifying action by commercial satellite operators to remove failed satellites from orbit, strengthening the business case for this new market. Firstly, we assess how debris removal services can mitigate the risk of extended satellite lifetimes. Secondly, we analyse the trade-off between satellite reliability and cost, demonstrating how the consideration of third- party debris removal services can outsource end-of-life capabilities to third-party debris removal services. Finally, we evaluate the value to satellite operators of having access to higher orbits that give them a better satellite efficiency, with debris mitigation risks offset by third-party debris removal services. Keywords: (commercial, sustainability, debris removal services, business case) Acronyms/Abbreviations As the technology for debris removal matures, so • ADR – Active Debris Removal must the business case for these services. Customers are • CAM – Collision avoidance maneuver currently reluctant to pay for debris removal services • LEO – Low Earth Orbit until either there is stricter regulation in place mandating • PMD - post-mission disposal debris removal or a clearer economic case for such • QoS – Quality of service services. The objective of this activity is to identify viable commercial business models for debris removal services. Introduction The successful development of the debris removal market requires 3 core components: viable technology Though it is still nascent, the market for debris solutions, effective regulation and policy, and a strong monitoring and removal is predicted to grow business case for satellite operators to act. There can be significantly in the next decade. The increasing number no successful market without these components. In of launch vehicle providers and decreasing costs for performing this business analysis, we present results to satellite development leads to a rise in the number of support a number of commercial incentives for debris operators in orbit. The deployment of unprecedented removal services. number of satellites in the next few decades will The following arguments demonstrate the business contribute to more crowded and dangerous orbits. case for an affordable debris removal service for large Anomalies in orbit, as a result of strong particle radiation LEO constellations. Different arguments will resonate from the Van Allen Belts or generic malfunctions, will more strongly with different satellite operators, contribute to, and result in the failure of a certain depending on their business strategy. Some arguments percentage of satellites. Debris removal services can are more quantifiable, whilst others are more subjective provide the backstop for the tail-end of the failed satellite incentives. distribution to ensure a sustainable orbital environment. IAC-20,E6,1,x57479 Page 1 of 10 71st International Astronautical Congress (IAC) – The CyberSpace Edition, 12-14 October 2020. Copyright ©2020 by the International Astronautical Federation (IAF). All rights reserved. This paper begins in Section 1 by demonstrating the reported that ‘the majority of installations on the UK value of debris removal services in mitigating the risk of Continental Shelf have exceeded their design life’ [3]. extended satellite lifetimes. Section 2 presents the trade- The difference in other sectors is that regulatory off that satellite operators face between cost and permission is required to extend asset lifetimes, in reliability, demonstrating the value of debris removal recognition of the risk it poses to the environment [4]. services in outsourcing residual risks. Section 3 The trade-off between extended revenues and space illustrates how debris removal services provide satellite sustainability poses a challenge for satellite operators: operators with a responsible way to deploy into higher de-orbiting functional satellites at the end of their design orbits and access the associated benefits, presenting life will protect the space environment but it comes at a debris removal services as an enabling service for cost of potential additional revenue from continued satellite operators. Section 4 presents a number of other operations. elements of the debris removal service value proposition Debris removal services present a solution to this including: protecting operational service (Section 4.1), trade-off, enabling satellite operators to de-orbit satellites managing regulatory risk (Section 4.2), recognition as a beyond the anticipated end of their life, even if they have responsible space actor (Section 4.3) and reducing failed or run out of fuel. In this section, we analyse the insurance premiums (Section 4.4). The main findings of value that debris removal services can provide to satellite this paper are summarised in the Conclusion (Section 5). operators, recognising the economic incentives that they face in extending satellite lifetimes, whilst ensuring that 1. Mitigate Risk of Extended Satellite Lifetimes the orbital environment is protected. We model the additional value in retaining satellites in LEO while It is common practice for operators to keep their employing active debris removal services to ensure that satellites in orbit for as long as they are operational, often post mission disposal can still be maintained. extending beyond their original design life. There are clear economic incentives to do so, given that the capital 1.1 Metrics Considered: Additional Revenue and PMD expenditure has already been sunk in the build and launch Rates phases. In geostationary orbit, nearly a third [1] of commercial communications satellites are operating Measuring the PMD rate is an established way to beyond their design lives, more than double the amount assess the proportion of satellites that have been de- in 2009. Such life extension activities are likely to orbited responsibly. For a given constellation, the PMD increase in the coming years, with TelAstra reporting that rate is defined as the percentage of satellites that are “keeping aging satellites in service is likely to become a removed from Earth’s orbit within a reasonable time trend”. In LEO, there are similar incentives to extend period (currently less than 25 years). Multiple NASA and satellite lifetimes. For example, the Iridium first ESA studies in recent years have shown that the achieved generated satellites were designed for an initial seven- reliability of post-mission disposal operations is one of year mission but many remained in orbit for over 20 the most critical factors in the growth of the LEO debris years. environment. A target PMD rate of 95% assumes that 5% However, such life extension can pose a risk to the of satellites fail and remain on orbit but that 95% are de- orbital environment, as the longer satellites continue to orbited at end-of-life. However, if satellites remain in operate, the more likely it is that they fail and remain in orbit beyond their design life, the number that fail is orbit. If left in orbit, such satellites can degrade, risking expected to rise, and therefore the PMD rate of a fragmentation events that cause further damage to the constellation may drop below the pre-defined target, as orbital environment. ESA’s Envisat had a design life of illustrated in the following figure. five years but remained operational for 10 years before unexpectedly failing. At over 8000 kg and orbiting in a 790 km sun-synchronous
Recommended publications
  • To Secure Long-Term Spaceflight Safety and Orbital Sustainability for the Benefit of Future Generations the Impact of Space Debris
    To secure long-term spaceflight safety and orbital sustainability for the benefit of future generations The impact of space debris Our growing reliance on satellite services 1 active satellite 1957 1,950 active satellites 2019 20,000+ active satellites by 2030 67,000 collision alerts per year very day billions of people around the world rely One of the key ways to reduce the risk of collision in on data from satellites to go about their lives. We orbit is to remove potential threats. Designing and Eexchange messages, talk to family and friends, building a satellite to identify, track, rendezvous, dock check the weather, manage finances, and undertake and de-orbit a piece of debris is an extraordinarily numerous other tasks. In addition, satellites are used difficult technical task on its own. However, developing to manage and mitigate natural disasters, monitor the an orbital debris removal business involves more than Earth’s climate and well-being and provide information just creating the technical solution. We now need a for national security. In short, without satellite data, the consistent global effort to shape regulations and a lives of people around the world would be dramatically vibrant ecosystem that assures a business case. At different. And now the source of this data is at growing Astroscale we are working these important tasks risk of being destroyed by space debris. – developing the technologies, working with the policymakers and closing the business case – that will We don’t see these satellites and the millions of pieces allow for a long-term orbital debris solution.
    [Show full text]
  • Astroscale’S Vision for Active Debris Removal Services
    Towards Global Space Sustainability – Astroscale’s Vision for Active Debris Removal Services Speaker Dr Jason Forshaw MEng MS (Stanford) PhD CEng MIEEE SMAIAA European R&D Manager, Astroscale Holdings United Nations World Space Forum Vienna, Austria 20th November 2019 ©Astroscale Space Debris Threatens Space Sustainability 1950 2018 Astroscale: An International Company Solving a Global Problem • Astroscale’s mission is to secure long-term spaceflight safety and orbital sustainability for the benefit of future generations • Our services include End of Life (including large constellations) and Active Debris Removal Growing Team, Increased Fundraising and Expanded Global Presence 80 140 D2: $32M 70 72 120 Funds raised: 60 55 D: $50M $140 million 100 50 Astroscale Singapore Astroscale Japan - Tokyo Astroscale UK - Harwell May 2013 May 2015 May 2017 Global staff: 80 40 95 people 60 30 32 C: $27M Staff members Staff 20 20 40 15 B: $20M 10 5 20 US$) (in raised Money A: $7M 1 Astroscale US – Denver 0 April 2019 0 2013 2014 2015 2016 2017 2018 2019 2020 Personnel Fundraising ©︎Astroscale 3 Astroscale is actively addressing the orbital debris problem Business Case Technology & Policy & Capability Regulation Business – Business Lines End of Life (EOL) Active Debris Removal (ADR) Services “Don’t add any more debris” “Remove debris that is already there” Potential customers Constellations, Private Satellite Operators Governments, International framework Target Objects - Satellites that have failed in orbit or reached - Environment Critical Objects end of operational lifetime - Existing debris - 50~500kg - 500kg+ - Business continuity and maximize revenue - Demonstrate commitment to orbital - Adhere to best practices and public sustainability demands - Assure spaceflight safety for all operators Rationale Global Responsibility Technical concept Semi-cooperative approach and capture Non-cooperative approach and capture ©︎Astroscale 5 Business – Market Demand • Astroscale is tracking 120+ 80 satellite constellations.
    [Show full text]
  • Trends in Small Satellite Technology and the Role of the NASA Small Spacecraft Technology Program
    Trends in Small Satellite Technology and the Role of the NASA Small Spacecraft Technology Program Final Update to the NASA Advisory Committee Technology, Innovation and Engineering Committee March 28, 2017 Bhavya Lal, Asha Balakrishnan, Alyssa Picard, Ben Corbin, Jonathan Behrens, Ellen Green, Roger Myers Reviewers: Brian Zuckerman, Mike Yarymovych, Iain Boyd, Malcolm MacDonald Project Goal Given investments outside STMD, and NASA’s mission needs, what is the “the appropriate, discriminating role for STMD vis-à-vis all the other organizations that are developing small satellite technology?” 2 Overall Approach • Examined smallsat developments • Scope – State-of-the-art and activities outside – STMD’s Small Spacecraft Technology STMD Program (SSTP) supplemented by other – Evolution of the ecosystem: players STMD efforts and markets – Did not conduct an evaluation – Drivers of future activities: • No comment on adequacy of funding infrastructure, policies, investment levels • Analyzed STMD’s current and • Definition of a small spacecraft or emerging smallsat portfolio smallsat • Identified NASA’s small spacecraft – Considered several metrics – mass, cost, innovation approach (“lean needs, both user driven (tech satellite”) pull) and technology driven (tech – Settled on mass with upper limit ~200 push) kg • Identified gaps and made • With exceptions up to 500 kg as needed recommendations 3 Data Sources • Reviewed the literature • Conducted 57 stakeholder – National Academy of Sciences discussions CubeSat Report (2016) – Industry representatives
    [Show full text]
  • World's First Commercial Satellite Tracking Sub
    FOR IMMEDIATE RELEASE World’s First Commercial Satellite Tracking Sub-Millimeter Sized Debris IDEA OSG 1 Scheduled to Launch on November 28 November 2, 2017 – ASTROSCALE PTE. LTD. (ASTROSCALE), a company with a mission to secure long-term spaceflight safety by developing debris monitoring and removal services, will launch IDEA OSG 1 on November 28 at 14:41:46 (JST) from Russia’s Vostochny Cosmodrome with the Russian State Space Corporation Roscosmos meteorology mission Meteor-M №2-1. Shipped from Japan in the end of September, IDEA OSG 1, the world’s first in-situ space debris monitoring microsatellite in low- Earth orbit, now awaits checkout before rocket integration at the launch site. As the first private company to attempt to mitigate space debris through technology, business model, and regulatory solutions, ASTROSCALE plans to contribute to the sustainable use of space. Founded in 2013, ASTROSCALE’s first satellite took only two and half years to manufacture from its conception. The microsatellite will be placed in an elliptical low-Earth orbit at an altitude of 600 - 800km, and will monitor the size and position of space debris to create debris distribution maps to better understand the space environment. The launch details of IDEA OSG 1 are as follows: Launch Date: November 28, 2017 (JST) Launch Time: 14:41:46 (JST) Launch Station: Vostochny Cosmodrome, Russia *Launch date and time are subject to change. IDEA OSG 1 Official Sponsors OSG Corporation https://www.osg.co.jp/en/ POCARI SWEAT (Otsuka Pharmaceutical Co., Ltd.) https://www.otsuka.co.jp/en/product/pocarisweat/ Copyright © ASTROSCALE Pte.
    [Show full text]
  • Astroscale Awarded Grand Prix at the UNESCO Netexplo Innovation Forum 2020
    FOR IMMEDIATE RELEASE Astroscale Awarded Grand Prix At The UNESCO Netexplo Innovation Forum 2020 September 22, 2020 - Astroscale Holdings Inc. (“Astroscale”), the market-leader in securing long-term ​ ​ orbital sustainability, was today awarded Grand Prix during the UNESCO Netexplo Innovation Forum 2020, out of 10 breakthrough digital innovations which were selected for their disruptive potential. Netexplo, an independent observatory that studies the impact of digital tech on society and business, has been a UNESCO partner since 2011. This year’s UNESCO Netexplo Innovation Forum showcased 10 breakthrough digital innovations with the potential of profound and lasting impact on digital society. The innovations were identified worldwide through a year-long search by the Netexplo University Network, made up of globally renowned universities in the technology domain. Astroscale won Grand Prix for its innovative satellite technologies that will reduce orbital debris and support the long-term, sustainable use of space. “We are truly honored to be named Netexplo Grand Prix 2020, and I share this win with everyone on our team working hard on the technology, policy and business case challenges of this complex, global issue,” said Nobu Okada, Founder & CEO. “I am encouraged to see what’s happening in Earth’s orbits as having a profound and positive impact on society. Right now COVID-19 and countless environmental catastrophes are wreaking havoc all over the globe, and we’re committed to stopping another potential disaster from unfolding over our heads.” The rise of large commercial satellite constellations in low Earth orbit (LEO) means that the threat of a potential collision or break-up in key orbits will escalate.
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • Astroscale Advances On-Orbit Servicing Technologies with Mitsubishi Heavy Industries and the Government of Japan
    FOR IMMEDIATE RELEASE Astroscale Advances On-Orbit Servicing Technologies with Mitsubishi Heavy Industries and the Government of Japan Jul. 27, 2021 – Astroscale Holdings Inc. (“Astroscale”), the market leader in satellite servicing and long- term orbital sustainability across all orbits, today announced Astroscale Japan Inc. (“Astroscale Japan”) has signed a Memorandum of Understanding with Mitsubishi Heavy Industries, Ltd. (“Mitsubishi Heavy Industries”) to cooperate on active debris removal and other projects for improving space environmental protection, marking the first collaboration between Astroscale and a launch services provider. Astroscale Japan has also been selected by the Government of Japan’s Ministry of Economy, Trade, and Industry (“METI”) to research and develop robotic hand and arm technologies that can be affixed to spacecraft to perform complex servicing activities in orbit and in lunar environments. “Active debris removal and robotic technologies are paving the way for on-orbit services that will form the infrastructure of the global space economy,” said Nobu Okada, Founder & CEO of Astroscale. “Astroscale is leading the on-orbit servicing market and providing options, which have not been available until now, for satellite and launch vehicle operators to reduce risk and increase ROI. I would like to thank Mitsubishi Heavy Industries, the Ministry of Economy, Trade, and Industry, and the Astroscale team — through these collaborative efforts between industry and government, we can accelerate actions toward an era of space sustainability, while expanding on-orbit servicing business opportunities.” The collaboration with Mitsubishi Heavy Industries will leverage Astroscale’s on-orbit servicing technologies and Mitsubishi Heavy Industries’ launch vehicle manufacturing and launch services capabilities to cooperate on the technical aspects required to advance sustainable space operations.
    [Show full text]
  • INCJ to Make Follow-On Investment in Astroscale Pte. Ltd. Aiming to Commercialize Space Debris Removal
    News Release INCJ to make follow-on investment in Astroscale Pte. Ltd. Aiming to commercialize space debris removal Tokyo, October 31, 2018 – INCJ Ltd. (‘INCJ’) announced today its decision to make a follow- on investment, through third-party share allocation, of up to US$35 million in Astroscale Pte. Ltd. ("Astroscale"), and the completion of US$25.5 million of this phased investment. Astroscale is engaged in the development of space debris* removal technologies and other space-related services. In addition to existing shareholders, new investors in this round of financing include funds operated by SBI Investment Co., Ltd and Mitsubishi Estate Co., Ltd.. *Space debris includes decommissioned satellites, spent rocket stages and other orbiting inoperative manmade objects or fragments of such objects produced through collisions. There are currently more than 750,000 pieces of space debris measuring more than one centimeter surrounding the Earth, and the number is rapidly increasing. Their presence puts at risk the satellites that are an essential part of our everyday lives, and represents a threat to the utilization of outer space. Recognizing that the continued utilization of space depends on the removal of space debris and containment of its growth, European and US space agencies have developed guidelines for space debris removal, and interest in the issue is growing internationally. Astroscale, a space-industry startup, was established with the aim of commercializing the removal of space debris to ensure more sustainable space exploration. Accelerating development since its establishment in 2013, Astroscale currently has two business pillars: a service to remove defective satellites which will be compatible with satellites launched in the future, and a service to remove large-scale space debris currently in orbit.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 3 July–September 2019 CONTENTS FOCUS ..................................................................................................................... 1 A new European Commission DG for Defence Industry and Space .............................................. 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 EEAS announces 3SOS initiative building on COPUOS sustainability guidelines ............................ 2 Europe is a step closer to Mars’ surface ......................................................................... 2 ESA lunar exploration project PROSPECT finds new contributor ............................................. 2 ESA announces new EO mission and Third Party Missions under evaluation ................................ 2 ESA advances space science and exploration projects ........................................................ 3 ESA performs collision-avoidance manoeuvre for the first time ............................................. 3 Galileo's milestones amidst continued development .......................................................... 3 France strengthens its posture on space defence strategy ................................................... 3 Germany reveals promising results of EDEN ISS project ....................................................... 4 ASI strengthens
    [Show full text]
  • Astroscale Announces March 2021 Launch Date for World's First Commercial Active Debris Removal Demonstration Mission
    FOR IMMEDIATE RELEASE Astroscale Announces March 2021 Launch Date for World’s First Commercial Active Debris Removal Demonstration Mission ELSA-d is the first mission to demonstrate the core technologies necessary for space debris docking and removal, a major step towards expanding on-orbit services and achieving Astroscale’s vision of safe and sustainable space for the benefit of future generations. November 18, 2020 – Astroscale Holdings Inc. (“Astroscale”), the market-leader in securing long-term ​ orbital sustainability, today announced that its End-of-Life Services by Astroscale-demonstration (ELSA-d) mission will launch on a Soyuz rocket operated by GK Launch Services from Baikonur Cosmodrome, Kazakhstan, in March 2021. “We now have the launch in our sights,” says Seita Iizuka, ELSA-d Project Manager. “Publicly announcing this significant milestone is possible thanks to years of teamwork. The ELSA-d program demonstrates complex and innovative capabilities that will support satellite operators in realizing options for their post-mission disposal strategies and establish Astroscale as a global leader in the on-orbit servicing market.” Decreased launch and satellite development costs, an increasing global dependence on data from space and the rise of large commercial satellite constellations have led to a rapidly increasing population of objects in low Earth orbit (LEO). This growing use of space brings significant benefits to society but also greatly increases the threat of collision or break-up. This growing potential for additional debris creation endangers current and future satellite missions and puts society’s reliance on data from space at risk. ELSA-d will demonstrate a valuable service by safely removing defunct satellites from orbit to maintain the viability of LEO.
    [Show full text]
  • Elsa-D: an In-Orbit End-Of-Life Demonstration Mission
    IAC-18,A6,5,x43644 ELSA-D: AN IN-ORBIT END-OF-LIFE DEMONSTRATION MISSION Chris Blackerby1, Akira Okamoto, Kohei Fujimoto, Nobu Okada ASTROSCALE Japan Inc. Jason L. Forshaw2,∗, John Auburn ASTROSCALE UK Ltd. ABSTRACT Emerging plans for low Earth orbit (LEO)-based constellations featuring large numbers of satellites mean in the near future, space populations could significantly increase. Systematic spacecraft end-of-life (EOL) management strategies assuring post-mission disposal (PMD) are required to maintain utility of all LEO assets. This paper will provide an overview of the ELSA-d EOL mission, Astroscale’s first semi-cooperative spacecraft retrieval technology and capability demonstration mission, due for launch in 2020. ELSA-d consists of two spacecraft – a chaser and a target. The chaser is equipped with proximity rendezvous technologies and a magnetic capture mechanism, whereas the target has a docking plate (DP) which enables it to be captured. Each phase of the main concept of operations (CONOPS) will be discussed and how these would align with future servicing missions. Demonstrations include: target search, target inspection, target rendezvous, both non-tumbling and tumbling capture. The preliminary satellite design will also be discussed with an outline of the core rendezvous, short and long-range navigation, and capture technologies behind the mission. Keywords: active debris removal, end-of-life, in-orbit servicing, proximity rendezvous, tumbling capture, magnetic capture I. INTRODUCTION ing Control Centre Facility, developed by AS as a key part of the ground segment. LSA-d, which stands for End of Life Services by Astroscale E (-demonstration), is an in-orbit demonstration (IOD) for I.1.
    [Show full text]
  • Astroscale's ELSA-D Mission and ESA Support Mechanisms
    Astroscale’s ELSA-d Mission and ESA Support Mechanisms Author Dr Jason Forshaw, PhD CEng European R&D Manager Co-authors John Auburn, Chris Blackerby, Nobu Okada ESA Clean Space, ESTEC, 23 - 25 October 2018 Astroscale: An International Company Solving a Global Problem Representative Astroscale UK Astroscale Japan (2017) (2015) Founder and CEO, Nobu Okada, and COO, Chris Blackerby, meeting Japanese Prime Minister Shinzo Abe, March 2018 Founded: May 4, 2013 Astroscale Singapore (HQ) Team: ~55 (2013) Capital: $53M during three funding rounds, supported by angel investors, VCs, public-private fund, and private companies. Mission: Secure long-term spaceflight safety for future generations Services: End of Life (includes large constellations) Active debris removal Copyright © ASTROSCALE All Rights Reserved. 2 Key Business Markets – I Services End of Life (EOL) Active Debris Removal (ADR) “Don’t add any more debris” “Remove debris that is already there” Potential Customers Constellations, Private Satellite Operators Governments, International framework Target Objects - Satellites that have failed in orbit or - Environmentally critical objects reached end of operational lifetime - 500kg+ - 50~500kg - Existing debris - Business continuity and maximize revenue - Demonstrate commitment to orbital - Adhere to best practices and public sustainability demands - Assure spaceflight safety for all operators Rationale Global Responsibility Model Semi-cooperative approach and capture Non-cooperative approach and capture Astroscale provides Ground Ground
    [Show full text]