Direct Oral Anticoagulants

Total Page:16

File Type:pdf, Size:1020Kb

Direct Oral Anticoagulants 6/19/18 Direct Oral Anticoagulants A Comprehensive History and Current Developments BCSLS Telehealth Seminar, Vancouver, BC June 26, 2018 Terence M. Litavec B.Sc., MLT(CSMLS), SHCM(ASCP)HCM,MLTCM,HTLCM(ASCP)QIHCCM Acknowledgements: 2017-2018 KGH Student Interns British Columbia College of New Institute of Caldonia, Technology, Burnaby Prince George Stefani Guidi, MLT Soraya Hadjirul, MLT Henry Lu, MLT Neelam Lilly, MLT Jenna Zhang, MLT Alix Savoy, MLT Dawny Tabilangan, MLT Overview and Objectives (A Work In Progress) Provide background information about the classification and function of DOAC’s Outline the various subtypes of DOAC’s listing their similarities and differences List the brief histories and the most current advances in the field of DOAC drug development Discuss the abnormalities in routine screening coagulation assays for patients taking DOAC’s Describe the laboratory assays used to measure the level of DOAC medication in plasma samples 1 6/19/18 Direct Oral Anticoagulants (DOAC) A new class of drugs to treat and prevent thrombosis related to: Acute Coronary Syndrome (ACS), Atrial Fibrillation (AF), Cerebrovascular Accident (CVA), Myocardial Infarction (MI), Joint Replacement, etc. Can be given as an immediate treatment for an acute crisis, or as a long-term anticoagulant regiment Can be given as alternatives to traditional “clot- busting” medications in patients who have developed sensitivities to Heparin (HIT antibody formation) or Warfarin (Coumadin-related limb gangrene due to Protein C inhibition) Do not require scheduled monitoring, but they typically cause abnormalities in coag screening assays (PT, aPTT) Alternate Names For DOAC’s NOAC = Novel Oral Anticoagulants, label initially applied to Dabigatran (Praxada) when it was introduced to the US market in 2010 Since 2010, additional medications with similar mechanisms of action have been developed which render the description “novel” no longer applicable Novel - (adj.) of a new kind, different from anything seen or known before, having no precedent; (syn.) new, original, first-ever, unique, uncommon, unheard-of NOAC = Non-vitamin K Oral Anticoagulants, was introduced by the American College of Chest Physicians (Feb. 2016) to keep the same acronym, but it has been criticized as being too vague and cumbersome NOAC can be mistaken as “NO AntiCoagulants” Alternate Names For DOAC’s TSOAC = Target-Specific Oral Anticoagulant ODI = Oral Direct Inhibitor SODA = Specific Oral Direct Anticoagulant “DOAC seems to be a very reasonable term moving forward that should be embraced by clinicians to describe these new oral anticoagulants and oral anticoagulants with similar direct mechanisms that haven’t yet been released.” Source: Kane, S., NOAC, DOAC, or TSOAC: What Should We Call Novel Oral Anticoagulants? Sept.19, 2016 www.pharmacytimes.com 2 6/19/18 United States Food and Drug Administration (USFDA) Drug Development Process After a drug is manufactured and tested using animal models, human testing is carried out in 3 Clinical Trial Phase Studies (Source: www.fda.gov) Phase I – Safety and Dosage on a group of healthy volunteers – Several Months Phase II – Efficacy and Side Effects on a group of patients with a disease or condition – Up to 2 Years Phase III – Efficacy and Monitoring of Adverse Reactions on a group of volunteers with a disease or condition – 1 to 4 Years – 25-30% of all drugs tested will be approved for further review Biological Half-Life Definition: The time required for the body to eliminate half of an administered dose of any substance by regular physiological processes The plasma drug level falls at a logarithmic rate that is dependent upon factors such as: the nature and composition of the drug, accumulation of the drug in tissues, activity of the drug metabolites, and interactions between the drug and its target receptor within the body Examples: Oxaliplatin (Colorectal Cancer medication) = 14 minutes Bedaquiline (Tuberculosis medication) = 5½ months Drug Levels Displaying 1-Hour Half-Life www.slideshare.net 3 6/19/18 Subcategories of DOAC’s Direct Thrombin Inhibitors – Bind to one or more active sites or exosites on both free and fibrin-bound thrombin (Factor IIa) thereby preventing the conversion of soluble fibrinogen (Factor I) into a fibrin monomer; also display an anti-platelet effect by reducing the thrombin- mediated activation of platelets Factor Xa Inhibitors – Bind directly to both free and clot- bound Factor Xa resulting in an interruption of both the intrinsic and extrinsic pathways of the cascade sequence without requiring cofactors such as ATIII (Sources: Nisio, M., et al. N. Engl. J. Med. 2005;353:1028-1040, Samama, M. Thromb. Res. 2011 Jun;127(6):497-504) Direct Thrombin Inhibitors Univalent – Bind only to the active site of thrombin: Dabigatran, Argatroban, Inogatran, Efegatran, Melagatran (Ximelagatran) Bivalent – Bind to both the active site and exosite 1 of thrombin: Hirudin and derivatives Lepirudin, Desirudin, Bivalirudin Allosteric Inhibitors – New class of medications currently under investigation which inhibit thrombin using a variety of approaches: Ichorcumab (parenteral thrombin inhibitor), BMS-986177 (oral FXIa inhibitor), BAY- 1213790 Xisomab and Aximab (parenteral FXIa inhibitors), several FXIIa monoclonal antibodies are under investigation 4 6/19/18 Inogatran - Parenteral Entered Phase I Clinical Trials in 1995 Half-life = 1 hour, aPTT and TCT were doubled Discontinued by AstraZeneca during Phase II Clinical Trials due to a lack of efficacy compared to heparin for preventing ischemic events in patients with unstable coronary artery disease (CAD) (Sources: Teger-Nilsson, A. et al. J. Amer. Coll. Cardiol. Feb 1995, Volume 25, Issue 2, Supp. 1, p 117A-118A; TRIM-Thrombin Inhibition in Myocardial Ischaemia Study Group. Euro. Heart J. 1997(18):1416-1425) Efegatran - Parenteral Tested in a Phase II Clinical Trial from May 1995 to June 1996 in cardiovascular patients with unstable angina, and MI patients undergoing thrombolytic therapy Half-life in humans not published, caused a dose- dependent prolongation of aPTT and TCT Analysis of Phase II data demonstrated that Efegatran “exhibited equivalent efficacy” to Heparin and was discontinued by Eli Lilly Pharmaceuticals (Sources: The PRIME Investigators, Am. Heart J. 2002;143:95-105; Shuman, R. and Gesellchen, P. Integration of Pharmaceutical Discovery and Development Ch. 4 pp. 57-80, Springer, Boston, MA. ISBN – 978-0-306-47384-5) 5 6/19/18 Argatroban (Acova) - Parenteral Licensed in 2000 and USFDA approved in 2002 for use in percutaneous coronary interventions (angioplasty) in patients who have HIT or are at risk for developing HIT Half-life = 50 minutes, metabolized by the liver Monitored using the aPTT, therapeutic range is 1.5 to 3x the initial baseline value, but can not exceed 100 sec In healthy patients (without HIT), anticoagulation was 4x faster with Argatroban than with UFH and produced more predictable dose-related increases of the activated clotting time (ACT) and the aPTT (Sources: Bambrah, R., et al. Ther. Adv. Chronic Dis. 2013 Nov;4(6):302-304, Swan, S., et al. Pharmacotherapy 2000 July;20(7):756-770) Melagatran (Ximelagatran) Ximelagatran was the first oral direct thrombin inhibitor developed and approved for Clinical Trials in Dec. 2003 Ximelagatran is a pro-drug which is converted by the liver to the active agent Melagatran During clinical trials, the results were comparable to Warfarin and LMWH for VTE prophylaxis However, 6%-12% of patients developed elevated liver enzymes subsequent to severe hepatotoxicity leading to its withdrawal by AstraZeneca in 2006 (Sources: Eriksson, B. I. Thromb. Haemost. 2002 Feb;87(2):231-7. Brighton, T. A. Med. J. Aust. 2004 Oct 18;181(8):432-7) Dabigatran (Praxada) USFDA approved in October 2010 for treatment and prophylaxis of DVT and PE as well as prophylaxis of VTE and stroke in patients with atrial fibrillation Half-life = 12-17 hours, eliminated by the kidney (80%) Recommended as an alternative to Warfarin in 2011 with no need for frequent monitoring due to its stable hematologic response and short half-life In the therapeutic range (27-411 ng/mL), the PT, aPTT, and ACT were not affected, the TCT and dilute TCT displayed good linear correlation with lower doses only (Sources: Ganetsky, M., et al. J. Med. Toxicol. 2011 Dec;7(4):281-287, Hawes, E., et al. J. Thromb. Haemost. 2013 Aug;11(8):1493-1502) 6 6/19/18 Idarucizumab (Praxabind) A monoclonal antibody fragment developed by Boehringer Ingelheim Pharmaceuticals for the reversal of Dabigatran (Praxada) Displays a binding affinity with Dabigatran that is 350x stronger than Dabigatran’s binding affinity with thrombin ensuring rapid and complete reversal of Dabigatran within minutes after IV infusion USFDA approved in 2015 (Source: Pollack, C., et al. N. Engl. J. Med. 2015 Aug;373:511-520) Hirudin and Derivatives Hirudin is produced by the salivary glands of the European Medicinal Leech Hirudo medicinalis, first isolated and studied in 1884 by John Berry Haycraft Native (Unmodified) Hirudin is not recommended for acute coronary syndrome due to significantly higher incidence of bleeding compared to Heparin Native Hirudin is not given as a medication, but it has been evaluated as a universal anticoagulant in blood collection tubes for hematology, clinical chemistry, and blood bank testing (Source: Menssen, HD, et al. Clin. Chem. Lab Med. 2001 Dec;39(12):1267-1277) All Hirudin derivatives must be given
Recommended publications
  • The Evolving Role of Direct Thrombin Inhibitors in Acute Coronary
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of the American College of Cardiology providedVol. by 41, Elsevier No. 4 - SupplPublisher S Connector © 2003 by the American College of Cardiology Foundation ISSN 0735-1097/03/$30.00 Published by Elsevier Science Inc. PII S0735-1097(02)02687-6 The Evolving Role of Direct Thrombin Inhibitors in Acute Coronary Syndromes John Eikelboom, MBBS, MSC, FRACP, FRCPA,* Harvey White, MB, CHB, DSC, FRACP, FACC,† Salim Yusuf, MBBS, DPHIL, FRCP (UK), FRCPC, FACC‡ Perth, Australia; Auckland, New Zealand; and Hamilton, Ontario, Canada The central role of thrombin in the initiation and propagation of intravascular thrombus provides a strong rationale for direct thrombin inhibitors in acute coronary syndromes (ACS). Direct thrombin inhibitors are theoretically likely to be more effective than indirect thrombin inhibitors, such as unfractionated heparin or low-molecular-weight heparin, because the heparins block only circulating thrombin, whereas direct thrombin inhibitors block both circulating and clot-bound thrombin. Several initial phase 3 trials did not demonstrate a convincing benefit of direct thrombin inhibitors over unfractionated heparin. However, the Direct Thrombin Inhibitor Trialists’ Collaboration meta-analysis confirms the superiority of direct thrombin inhibitors, particularly hirudin and bivalirudin, over unfractionated heparin for the prevention of death or myocardial infarction (MI) during treatment in patients with ACS, primarily due to a reduction in MI (odds ratio, 0.80; 95% confidence interval, 0.70 to 0.91) with little impact on death. The absolute risk reduction in the composite of death or MI at the end of treatment (0.8%) was similar at 30 days (0.7%), indicating no loss of benefit after cessation of therapy.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • From Vitamin K Antagonism to New Oral Anticoagulants: Basic Concepts
    Thrombosis From vitamin K antagonism to new oral anticoagulants: basic concepts S. Schulman ABSTRACT Vitamin K antagonists have been used as oral anticoagulants since 1942, but the dose is difficult to Department of Medicine, McMaster predict beween individuals and is also variable over time in most patients. The research to produce University and Thrombosis and improved, target-specific anticoagulants started with the thrombin inhibitor argatroban in 1981. This Atherosclerosis Research Institute, was followed by several injectable thrombin and factor Xa inhibitors, but the ideal drug had to be oral - Hamilton, Canada and Karolinska ly available. It was necessary to map the catalytic site in order to understand how a highly selective Institutet, Stockholm, Sweden inhibitor can be developed. Structure-activity-relationship studies with a variety of analogs were cru - cial to identify compounds that combined potency, selectivity, membrane permeability and long half- Correspondence: life. These efforts from a dozen pharmaceutical companies have now resulted in one thrombin Sam Schulman inhibitor (dabigatran) and four factor Xa inhibitors (rivaroxaban, apixaban, edoxaban and betrixaban) E-mail: [email protected] that are either already used in clinical practice or in final stages of phase III clinical trials. These drugs are orally available and do not require routine laboratory monitoring due to a predictable therapeutic dose for the majority of patients. Additional advantages of these anticoagulants are rapid onset of Hematology Education: effect, faster decrease in effect after discontinuation than with warfarin, and a lower risk for intracra - the education program for the nial bleeding. They appear to have a higher risk of lower intestinal bleeding and there is to date no annual congress of the European widely available coagulation screening test that allows drug level to be assessed for all new agents Hematology Association and no clinically available reversal agent.
    [Show full text]
  • New Oral Anticoagulants Combined with Antiplatelet Therapy in the Treatment of Coronary Heart Disease: an Updated Meta-Analysis
    New oral anticoagulants combined with antiplatelet therapy in the treatment of coronary heart disease: an updated meta-analysis Leiling Liu Second Xiangya Hospital Jiahui Hu Second Xiangya Hospital Yating Wang Second Xiangya Hospital Hao Lei Second Xiangya Hospital Danyan Xu ( [email protected] ) Second Xiangya Hospital https://orcid.org/0000-0003-2113-0800 Research Keywords: stable coronary artery disease, acute coronary syndrome, new oral anticoagulants, antiplatelet therapy, meta-analysis Posted Date: August 26th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-64078/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Objective New oral anticoagulants (NOACs) combined with antiplatelet therapy for acute coronary syndrome (ACS) may reduce ischemic events, but there is no consensus on bleeding risk. Moreover, the effect of NOACs on stable coronary artery disease (CAD) needs to be elucidated. We conducted a meta-analysis, to summarize the ecacy and safety of NOACs combined with antiplatelet therapy in the treatment of stable CAD and ACS. Methods We searched PubMed, Web of Science, and the Cochrane Library, then performed a systematic review of all 17 randomized controlled trials. Results For patients with stable CAD, rivaroxaban combined with antiplatelet therapy signicantly reduced the rate of major adverse cardiovascular events (MACEs) (risk ratio; 95% condence interval: 0.88; 0.81–0.95) and ischemic stroke (0.62; 0.50–0.77), with a relatively low risk of major bleeding (1.72; 1.42–2.07). For patients with ACS, the combination of NOACs could reduce the risk of MACEs (0.91; 0.85–0.97), myocardial infarction (MI) (0.90; 0.83–0.98) and ischemic stroke (0.75; 0.58–0.97), accompanied by increased non–fatal bleeding events and intracranial hemorrhage (3.42; 1.76– 6.65).
    [Show full text]
  • Risk of Drug-Induced Liver Injury with the New Oral Anticoagulants
    Health care delivery, economics and global health ORIGINAL ARTICLE Risk of drug-induced liver injury with the new oral anticoagulants: systematic review and meta-analysis Daniel Caldeira,1,2 Márcio Barra,1,2 Ana Teresa Santos,1,2 Daisy de Abreu,1,2 Fausto J Pinto,3 Joaquim J Ferreira,1,2 João Costa1,2,4,5 ▸ Additional material is ABSTRACT only emerged with postmarketing experience published online only. To view Objective In recent years, safety alerts have been because hepatic adverse drug reactions due to car- please visit the journal online (http://dx.doi.org/10.1136/ made warning of the risk of serious drug-induced liver diovascular drugs are relatively uncommon, but heartjnl-2013-305288). injury (DILI) caused by cardiovascular drugs. The new potentially serious, and premarketing clinical trials 1 oral anticoagulants (NOACs) have now reached the are underpowered to detect differences between Clinical Pharmacology Unit, fi Instituto de Medicina market. However, safety concerns have been raised treatment arms. These recent high pro le cases of Molecular, Lisbon, Portugal about their hepatic safety. Therefore we aimed to serious liver adverse reactions associated with car- 2Laboratory of Clinical evaluate NOAC liver-related safety. diovascular drugs have amplified the need for Pharmacology and Methods Systematic review and meta-analysis of phase careful premarketing analysis of DILI risk asso- Therapeutics, Faculty of Medicine, University of Lisbon, III randomised controlled trials (RCTs). Medline and ciated safety. Lisboa, Portugal CENTRAL were searched to September 2013. Reviews In the last 5 years, new oral anticoagulants (NOACs), 3Cardiology Department, and reference lists were also searched.
    [Show full text]
  • 1 Oral Anticoagulants and Risk of Dementia: a Systematic Review
    Oral Anticoagulants and Risk of Dementia: A Systematic Review and Meta-analysis of Observational Studies and Randomized Controlled Trials Pajaree Mongkhon, PharmD1,2,3; Abdallah Y. Naser, MBA3; Laura Fanning, BPharm (Hons) MPH4; Gary Tse, PhD FACC FRCP5,6; Wallis C.Y. Lau, PhD3; Ian C.K. Wong, PhD3,7,8; Chuenjid Kongkaew, PhD1,3,9 1Centre for Safety and Quality in Health, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Thailand 2School of Pharmaceutical Sciences, University of Phayao, Thailand 3Research Department of Practice and Policy, School of Pharmacy, University College London, London, United Kingdom 4Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia 5Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China 6Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China 7Centre for Safe Medication Practice and Research Department of Pharmacology and Pharmacy University of Hong Kong 8Centre for Medication Optimisation Research and Education (CMORE), University College London Hospital, United Kingdom 9Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand 1 Corresponding author Chuenjid Kongkaew, Ph.D. Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University 99 Moo 9, Phitsanulok-Nakhon Sawan Road, Tha Pho, Mueang Phitsanulok, Phitsanulok 65000, Thailand. Tel: 66 55 961825 Fax: 66 55 963731 E-mail: [email protected] Word count: 4320 words (excluding title page, abstract, references, figures and tables) Number of references: 42 references Number of figures: 3 figures Number of tables: 3 tables 2 Abstract Atrial fibrillation (AF) is a documented risk factor for dementia.
    [Show full text]
  • Low Molecular Weight Heparin Versus Other Anti-Thrombotic Agents For
    Lu and Lin BMC Musculoskeletal Disorders (2018) 19:322 https://doi.org/10.1186/s12891-018-2215-3 RESEARCH ARTICLE Open Access Low molecular weight heparin versus other anti-thrombotic agents for prevention of venous thromboembolic events after total hip or total knee replacement surgery: a systematic review and meta-analysis Xin Lu and Jin Lin* Abstract Background: Venous thromboembolism (VTE) is an important complication following total hip replacement (THR) and total knee replacement (TKR) surgeries. Aim of this study was to comprehensively compare the clinical outcomes of low-molecular-weight heparin (LMWH) with other anticoagulants in patients who underwent TKR or THR surgery. Methods: Medline, Cochrane, EMBASE, and Google Scholar databases were searched for eligible randomized controlled studies (RCTs) published before June 30, 2017. Meta-analyses of odds ratios were performed along with subgroup and sensitivity analyses. Results: Twenty-one RCTs were included. In comparison with placebo, LMWH treatment was associated with a lower risk of VTE and deep vein thrombosis (DVT) (P values < 0.001) but similar risk of pulmonary embolism (PE) (P =0.227)in THR subjects. Compared to factor Xa inhibitors, LMWH treatment was associated with higher risk of VTE in TKR subjects (P < 0.001), and higher DVT risk (P < 0.001) but similar risk of PE and major bleeding in both THR and TKR. The risk of either VTE, DVT, PE, or major bleeding was similar between LMWH and direct thrombin inhibitors in both THR and TKR, but major bleeding was lower with LMWH in patients who underwent THR (P =0.048). Conclusion: In comparison with factor Xa inhibitors, LMWH may have higher risk of VTE and DVT, whereas compared to direct thrombin inhibitors, LMWH may have lower risk of major bleeding after THR or TKR.
    [Show full text]
  • Horizons in Novel Oral Anticoagulation Therapy In
    maco har log P y: r O la u p c e n s a A v Shihadeh et al., Cardiol Pharmacol 2015, 4:4 c o c i e d r s a s Open Access C Cardiovascular Pharmacology: DOI: 10.4172/2329-6607.1000155 ISSN: 2329-6607 Review Article OpenOpen Access Access Horizons in Novel Oral Anticoagulation Therapy in Concomitant Acute Coronary Syndromes and Atrial Fibrillation Leydimar Anmad Shihadeh, Diego Fernández-Rodríguez*, Javier Lorenzo-González and Julio Hernández-Afonso Cardiology Department, Nuestra Señora de Candelaria University Hospital, Santa Cruz de Tenerife, Spain Abstract Thrombus formation and coronary artery occlusion, in acute coronary syndromes, occur as a result of an atherosclerotic plaque rupture/erosion and the subsequent activation of platelets and coagulation factors. Also, cardioembolic events, in atrial fibrillation, are related to the thrombus formation and the systemic arterial embolization secondary to the blood stasis in left atrium. Antiplatelet treatments in acute coronary syndromes and long-term oral anticoagulation in atrial fibrillation have improved prognosis by reducing ischemic events but both treatments are associated with an increase in the risk of bleeding. Furthermore, thrombin and activated factor X are the key elements in the coagulation cascade and novel oral anticoagulants act by inhibiting these coagulation factors, generating a double effect: the reduction of ischemic events and the increment in hemorrhagic events. To date, the clinical benefit of novel oral anticoagulants, in patients presenting acute coronary syndromes and atrial fibrillation, has not well studied. For that reason, the objective of this manuscript is to explain basic clinical trials testing novel oral anticoagulants in patients with acute coronary syndromes and ongoing trials evaluating the use of new oral anticoagulants in population with acute coronary syndromes and atrial fibrillation: the PIONEER AF-PCI (Rivaroxaban), the RT-AF (Rivaroxaban) and the REDUAL-PCI (Dabigatran) trials.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • New Oral Anticoagulants in Atrial Fibrillation and Acute Coronary
    Journal of the American College of Cardiology Vol. 59, No. 16, 2012 © 2012 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2012.02.008 STATE-OF-THE-ART PAPER New Oral Anticoagulants in Atrial Fibrillation and Acute Coronary Syndromes ESC Working Group on Thrombosis—Task Force on Anticoagulants in Heart Disease Position Paper Coordinating Committee: Raffaele De Caterina, MD, PHD,* Steen Husted, MD, DSC,† Lars Wallentin, MD, PHD,‡ Task Force Members: Raffaele De Caterina, MD, PHD,* Steen Husted, MD, DSC,† Lars Wallentin, MD, PHD,‡ Felicita Andreotti, MD, PHD,§ Harald Arnesen, MD,ʈ Fedor Bachmann, MD,¶ Colin Baigent, MD,# Kurt Huber, MD,** Jørgen Jespersen, MD, DSC,†† Steen Dalby Kristensen, MD,† Gregory Y. H. Lip, MD,‡‡ João Morais, MD,§§ Lars Hvilsted Rasmussen, MD, PHD,ʈʈ Agneta Siegbahn, MD, PHD,‡ Freek W. A. Verheugt, MD,¶¶ Jeffrey I. Weitz, MD## Chieti, Pisa, and Rome, Italy; Aarhus, Esbjerg, and Aalborg, Denmark; Uppsala, Sweden; Oslo, Norway; Lausanne, Switzerland; Oxford and Birmingham, United Kingdom; Amsterdam, the Netherlands; Hamilton, Ontario, Canada; Vienna, Austria; and Leiria, Portugal Until recently, vitamin K antagonists were the only available oral anticoagulants, but with numerous limitations that prompted the introduction of new oral anticoagulants targeting the single coagulation enzymes thrombin (dabigatran) or factor Xa (apixaban, rivaroxaban, and edoxaban) and given in fixed doses without coagulation monitoring. Here we review the pharmacology and the results of clinical trials with these new agents in stroke prevention in atrial fibrillation and secondary prevention after acute coronary syndromes, providing perspectives on their future incorporation into clinical practice.
    [Show full text]
  • Efficacy and Toxicity of Factor Xa Inhibitors
    Efficacy and Toxicity of Factor Xa Inhibitors Maryna Bondarenko, Christophe Curti, Marc Montana, Pascal Rathelot, Patrice Vanelle To cite this version: Maryna Bondarenko, Christophe Curti, Marc Montana, Pascal Rathelot, Patrice Vanelle. Efficacy and Toxicity of Factor Xa Inhibitors. Journal of Pharmacy and Pharmaceutical Sciences, Canadian Society for Pharmaceutical Sciences, 2013, 16, pp.74 - 88. 10.18433/J33P49. hal-01423391 HAL Id: hal-01423391 https://hal.archives-ouvertes.fr/hal-01423391 Submitted on 29 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J Pharm Pharmaceut Sci (www.cspsCanada.org) 16(1) 74 - 88, 2013 Efficacy and Toxicity of Factor Xa Inhibitors Maryna Bondarenko1, Christophe Curti2,3, Marc Montana3,4, Pascal Rathelot2,3, Patrice Vanelle2,3 1Assistance Publique - Hôpitaux de Marseille (AP-HM), Service de la pharmacie à usage intérieur de l’hôpital Nord, Marseille, France, 2Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Marseille, France, 3Assistance Publique - Hôpitaux de Marseille (AP-HM), Service Central de la Qualité et de l’Information Pharmaceutiques, Marseille, France, 4Assistance Publique - Hôpitaux de Marseille (AP-HM), Oncopharma, Marseille, France. Received, December 18, 2012; Revised, February 4, 2013; Accepted, February 13, 2013; Published, February 15, 2013.
    [Show full text]
  • Antithrombotic Agents in the Management of Sepsis
    Antithrombotic Agents in the Management of Sepsis !"#$ Loyola University Medical Center, Maywood, Illinois-60153, USA ABSTRACT Sepsis, a systemic inflammatory syndrome, is a response to infection and when associated with mul- tiple organ dysfunction is termed, severe sepsis. It remains a leading cause of mortality in the critically ill. The response to the invading bacteria may be considered as a balance between proinflammatory and antiinflammatory reaction. While an inadequate proinflammatory reaction and a strong antiinflammatory response could lead to overwhelming infection and death of the patient, a strong and uncontrolled pro- inflammatory response, manifested by the release of proinflammatory mediators may lead to microvas- cular thrombosis and multiple organ failure. Endotoxin triggers sepsis by releasing various mediators inc- luding tumor necrosis factor-alpha and interleukin-1(IL-1). These cytokines activate the complement and coagulation systems, release adhesion molecules, prostaglandins, leukotrienes, reactive oxygen speci- es and nitric oxide (NO). Other mediators involved in the sepsis syndrome include IL-1, IL-6 and IL-8; arachidonic acid metabolites; platelet activating factor (PAF); histamine; bradykinin; angiotensin; comp- lement components and vasoactive intestinal peptide. These proinflammatory responses are counterac- ted by IL-10. Most of the trials targeting the different mediators of proinflammatory response have failed due a lack of correct definition of sepsis. Understanding the exact pathophysiology of the disease will enable better treatment options. Targeting the coagulation system with various anticoagulant agents inc- luding antithrombin, activated protein C (APC), tissue factor pathway inhibitor (TFPI) is a rational appro- ach. Many clinical trials have been conducted to evaluate these agents in severe sepsis.
    [Show full text]