Phylogenetic Relationships and Species Richness of Coprophilous Ascomycetes

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Relationships and Species Richness of Coprophilous Ascomycetes Phylogenetic Relationships and Species Richness of Coprophilous Ascomycetes Åsa Nyberg Kruys Department of Ecology and Environmental Science Umeå University Umeå 2005 AKADEMISK AVHANDLING som med vederbörligt tillstånd av rektorsämbetet vid Umeå universitet för avläggande av filosofie doktorsexamen framläggs till offentligt försvar i Stora hörsalen, KBC, fredagen den 25 november 2005, kl. 9.00. Avhandlingen kommer att försvaras på engelska. Examinator: Dr. Mats Wedin, Umeå Universitet Opponent: Ass. Prof. Thomas Laessøe, Department of Microbiology, University of Copenhagen, Denmark. ISBN 91-7305-949-8 © Åsa Nyberg Kruys Printed by Solfjädern Offset AB Cover: Ascus of Sporormiella antarctica with eight 13-celled ascospores. Design by Åsa and Nic Kruys. Organization Document name UMEÅ UNIVERSITY DOCTORAL DISSERTATION Department of Ecology and Environmental Science Date of issue SE-901 87 Umeå, Sweden November 2005 Author Åsa Nyberg Kruys Title Phylogenetic relationships and species richness of coprophilous ascomycetes. Abstract Coprophilous ascomycetes are a diverse group of saprobes, of which many belong to three families, Delitschiaceae, Phaeotrichaceae and Sporormiaceae, within the large order Pleosporales. The natural relationships and circumscription of these families are unclear, especially within the family Sporormiaceae, where the generic delimitation have been questioned. There is also a need to understand how different ecological processes affect species richness and occurrence of coprophilous ascomycetes in general. The aim of this thesis was therefore to test earlier classifications of coprophilous taxa within Pleosporales, using phylogenetic analyses of DNA sequences; and to study how the habitat, dung type and herbivores´ food choice may affect the species richness and species composition of coprophilous ascomycetes. A phylogenetic study shows that coprophilous taxa have arisen several times within Pleosporales. Sporormiaceae and Delitschiaceae are separate monophyletic groups and should continue to be recognized as two distinct families within Pleosporales. Phaeotrichaceae forms a monophyletic group, and is, unexpectedly, a strongly supported sister-group to Venturiaceae, but if they belong to Pleosporales or not, remains unresolved. Testudinaceae and Zopfiaceae, which previously had an unclear position in Ascomycota, are shown to be members of Pleosporales and should be treated as two separate families. The genus Eremodothis is, however, not related to Testudinaceae, but is nested within Sporormiaceae and should be transferred to Westerdykella. The natural relationships within Sporormiaceae are still not fully resolved and consequently, I suggest a rather conservative generic classification, accepting Preussia, Sporormia, Westerdykella, as well as Sporormiella, despite that the latter is not conclusively well supported as monophyletic. Characters previously used in the taxonomy and classification of Sporormiaceae, as choice of substrate, presence or absence of an ostiole, presence or absence of germ slits, and spore ornamentation, were all homoplastic and not very useful for circumscribing monophyletic groups. Field-studies of moose (Alces alces), mountain hare (Lepus timidus) and roe deer (Capreolus capreolus) dung resulted in several new species records, which suggests that coprophilous ascomycetes in boreal Sweden are poorly known. Fungal species richness and occurrence on moose dung varied significantly between habitats. Species diversity was negatively associated with amount of insect attack, and insects feeding either on the dung and/or the fungi may be an important factor explaining the observed pattern. Species richness of coprophilous fungi varied also significantly between different dung types. A study of moose, mountain hare, and roe deer dung did not show any consistent patterns in respect to the animals´ digestive system. There was, however, a general strong positive relationship between the total number of ascomycete species and the number of plant species foraged by the three herbivores. Fungal species with large spores (≥ 50 µm) were over-represented on roe deer dung, and under-represented on moose dung, while the reverse was found for species with small spores (<10µm). This suggests that the foraging level of the herbivore, which in turn mirrors species-specific differences in spore dispersal of the fungi, may be an important factor in explaining species richness and diversity of the coprophilous community. Key words: ß-tubulin, Bayesian analysis, dung, forage, fungi, moose, parsimony, phylogeny, Pleosporales, spore dispersal, Sporormiaceae Language: English ISBN: 91-7305-949-8 Number of pages: 28 + 4 papers Signature: Date: 25 Oktober 2005 List of papers This thesis is based on the following papers, which will be referred to in the text by their Roman numerals: I. Kruys Å, Eriksson OE, Wedin M. Phylogenetic relationships of coprophilous Pleosporales (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position. Manuscript. II. Kruys Å, Wedin M. A study of the natural relationships and traditionally used taxonomic characters in Sporormiaceae (Pleosporales, Ascomycota), utilizing multi-gene phylogenies. Manuscript. III. Nyberg Å, Persson I-L. 2002. Habitat differences of coprophilous fungi on moose dung. Mycological Research 106: 1360-1366. IV. Kruys Å, Ericson L. Species richness of coprophilous ascomycetes in relation to variable food intake by herbivores. Submitted manuscript. Paper III is published with the kind permission of the publisher. TABLE OF CONTENTS 1. INTRODUCTION .............................................................. 5 1.1 Natural relationships of the coprophilus Pleosporales.................. 6 1.2 Focus on Sporormiaceae................................................. 7 1.3 Species richness of coprophilous ascomycetes ......................... 8 2. OBJECTIVES.................................................................. 9 3. MATERIAL AND METHODS .................................................10 3.1 Molecular methods......................................................10 3.2 Field studies.............................................................10 4. MAJOR RESULTS AND DISCUSSION........................................11 4.1 Phylogenetic relationships of coprophilous families in Pleosporales..11 4.2 Phylogenetic relationships within Sporormiaceae.....................13 4.3 The effect of habitat on coprophilous fungi on moose dung ..........16 4.4 Species richness in relation to variable food intake by herbivores ..17 4.5 New records of coprophilous ascomycetes in Sweden ................19 5. FINAL CONCLUSIONS.......................................................19 6. ACKNOWLEDGEMENTS.....................................................21 7. REFERENCES ................................................................21 8. POSTSCRIPT .................................................................27 APPENDICES: PAPER I-IV 1. INTRODUCTION A dung pile is a tremendously rich substrate sparkling with life! Fungi, bacteria, arthropods, and mosses compete for space and nutrients, and interact in the degradation of the heterogeneous substrate. Coprophilous (dung-loving!) fungi are a diverse group of saprobes including taxa from most major fungal groups. This thesis will, however, focus on Ascomycota, which is the largest group of fungi with more than 32 000 species described (Kirk et al. 2001). The number of coprophilous ascomycetes has not been estimated, though. Coprophilous ascomycetes can be found on various dung types from all over the world, but are more frequent on dung of herbivores than carnivores (Lundqvist 1972, Richardson 2001). In addition, they have seldom been reported on reptile or amphibian dung, indicating that coprophily of fungi developed among the warm-blooded animals (Webster 1970). Some species are strictly coprophilous, others occur on different ephemeral substrates. The strictly coprophilous ascomycetes have a remarkable life-cycle, dung Æ plant Æ animal gut Æ dung (Fig. 1). Thus, they do not disperse between habitat patches (Wicklow 1992). Instead they have to pass the digestive system of an animal, and spore germination may even be triggered by gastric juices (Sussman & Halvorson 1966, Furuya & Naito 1980). The spores of coprophilous ascomycetes are often darkly pigmented, with thick walls, and are probably well protected against both gastric juices and the harmful UV-light of the sun (Ingold & Hudson 1993). Fig. 1. The life-cycle of a strictly coprophilous pyrenomycete. A fruit-body that is produced on a dung pile, will discharge its spores when mature. The spores are often surrounded by mucilage or have gelatinous appendages, and attach easily to the plant parts on which they land. When a plant is foraged by a herbivore, the spores will follow and be transported through the digestive gut. Finally, when ending up in a new dung pile, the spores will germinate and produce new fruit- bodies. Drawing inspired by Bell (1983). 5 Coprophilous ascomycetes are advantageous organisms to study; a great range of various morphologically and systematically different taxa can appear on a fresh dung pile within few weeks, there is also no shortage of dung in nature, and a majority of the species are possible to grow in vitro. Consequently, coprophilous fungi have been subject to early and extensive studies (Massee & Salmon 1901, Lundqvist 1972, Richardson 2001). The dark, thick-walled spores can be found in ancient
Recommended publications
  • Development and Evaluation of Rrna Targeted in Situ Probes and Phylogenetic Relationships of Freshwater Fungi
    Development and evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi vorgelegt von Diplom-Biologin Christiane Baschien aus Berlin Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. sc. techn. Lutz-Günter Fleischer Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: Prof. Dr. rer. nat. Felix Bärlocher Berichter: Dr. habil. Werner Manz Tag der wissenschaftlichen Aussprache: 19.05.2003 Berlin 2003 D83 Table of contents INTRODUCTION ..................................................................................................................................... 1 MATERIAL AND METHODS .................................................................................................................. 8 1. Used organisms ............................................................................................................................. 8 2. Media, culture conditions, maintenance of cultures and harvest procedure.................................. 9 2.1. Culture media........................................................................................................................... 9 2.2. Culture conditions .................................................................................................................. 10 2.3. Maintenance of cultures.........................................................................................................10
    [Show full text]
  • Dung Beetles: Key to Healthy Pasture? an Overview
    Available online at www.worldscientificnews.com WSN 153(2) (2021) 93-123 EISSN 2392-2192 Dung beetles: key to healthy pasture? An overview Sumana Saha1,a, Arghya Biswas1,b, Avirup Ghosh1,c and Dinendra Raychaudhuri2,d 1Post Graduate Department of Zoology, Barasat Government College, 10, K.N.C. Road, Barasat, Kolkata – 7000124, India 2IRDM Faculty Centre, Department of Agricultural Biotechnology, Ramakrishna Mission Vivekananda University, Narendrapur, Kolkata – 700103, India a,b,c,dE-mail address: [email protected], [email protected], [email protected], [email protected] ABSTRACT Dung beetles (Coleoptera: Scarabaeidae) do just what their name suggests: they use the manure, or dung of other animals in some unique ways! Diversity of the coprine members is reflected through the differences in morphology, resource relocation and foraging activity. They use one of the three broad nesting strategies for laying eggs (Dwellers, Rollers, Tunnelers and Kleptocoprids) each with implications for ecological function. These interesting insects fly around in search of manure deposits, or pats from herbivores like cows and elephants. Through manipulating faeces during the feeding process, dung beetles initiate a series of ecosystem functions ranging from secondary seed dispersal to nutrient cycling and parasite suppression. The detritus-feeding beetles play a small but remarkable role in our ecosystem. They feed on manure, use it to provide housing and food for their young, and improve nutrient cycling and soil structure. Many of the functions provide valuable ecosystem services such as biological pest control, soil fertilization. Members of the genus Onthophagus have been widely proposed as an ideal group for biodiversity inventory and monitoring; they satisfy all of the criteria of an ideal focal taxon, and they have already been used in ecological research and biodiversity survey and conservation work in many regions of the world.
    [Show full text]
  • Insecta: Coleoptera: Leiodidae: Cholevinae), with a Description of Sciaphyes Shestakovi Sp.N
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2011 Band/Volume: 69 Autor(en)/Author(s): Fresneda Javier, Grebennikov Vasily V., Ribera Ignacio Artikel/Article: The phylogenetic and geographic limits of Leptodirini (Insecta: Coleoptera: Leiodidae: Cholevinae), with a description of Sciaphyes shestakovi sp.n. from the Russian Far East 99-123 Arthropod Systematics & Phylogeny 99 69 (2) 99 –123 © Museum für Tierkunde Dresden, eISSN 1864-8312, 21.07.2011 The phylogenetic and geographic limits of Leptodirini (Insecta: Coleoptera: Leiodidae: Cholevinae), with a description of Sciaphyes shestakovi sp. n. from the Russian Far East JAVIER FRESNEDA 1, 2, VASILY V. GREBENNIKOV 3 & IGNACIO RIBERA 4, * 1 Ca de Massa, 25526 Llesp, Lleida, Spain 2 Museu de Ciències Naturals (Zoologia), Passeig Picasso s/n, 08003 Barcelona, Spain [[email protected]] 3 Ottawa Plant Laboratory, Canadian Food Inspection Agency, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada [[email protected]] 4 Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta, 37 – 49, 08003 Barcelona, Spain [[email protected]] * Corresponding author Received 26.iv.2011, accepted 27.v.2011. Published online at www.arthropod-systematics.de on 21.vii.2011. > Abstract The tribe Leptodirini of the beetle family Leiodidae is one of the most diverse radiations of cave animals, with a distribution centred north of the Mediterranean basin from the Iberian Peninsula to Iran. Six genera outside this core area, most notably Platycholeus Horn, 1880 in the western United States and others in East Asia, have been assumed to be related to Lepto- dirini.
    [Show full text]
  • Phaeoseptaceae, Pleosporales) from China
    Mycosphere 10(1): 757–775 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/17 Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China Liu NG1,2,3,4,5, Hyde KD4,5, Bhat DJ6, Jumpathong J3 and Liu JK1*,2 1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China 3 Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Mushroom Research Foundation, Chiang Rai 57100, Thailand 6 No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17 Abstract A new hyphomycete genus, Pleopunctum, is introduced to accommodate two new species, P. ellipsoideum sp. nov. (type species) and P. pseudoellipsoideum sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and TEF1α sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to Lignosphaeria and Thyridaria macrostomoides.
    [Show full text]
  • Livro-Inpp.Pdf
    GOVERNMENT OF BRAZIL President of Republic Michel Miguel Elias Temer Lulia Minister for Science, Technology, Innovation and Communications Gilberto Kassab MUSEU PARAENSE EMÍLIO GOELDI Director Nilson Gabas Júnior Research and Postgraduate Coordinator Ana Vilacy Moreira Galucio Communication and Extension Coordinator Maria Emilia Cruz Sales Coordinator of the National Research Institute of the Pantanal Maria de Lourdes Pinheiro Ruivo EDITORIAL BOARD Adriano Costa Quaresma (Instituto Nacional de Pesquisas da Amazônia) Carlos Ernesto G.Reynaud Schaefer (Universidade Federal de Viçosa) Fernando Zagury Vaz-de-Mello (Universidade Federal de Mato Grosso) Gilvan Ferreira da Silva (Embrapa Amazônia Ocidental) Spartaco Astolfi Filho (Universidade Federal do Amazonas) Victor Hugo Pereira Moutinho (Universidade Federal do Oeste Paraense) Wolfgang Johannes Junk (Max Planck Institutes) Coleção Adolpho Ducke Museu Paraense Emílio Goeldi Natural resources in wetlands: from Pantanal to Amazonia Marcos Antônio Soares Mário Augusto Gonçalves Jardim Editors Belém 2017 Editorial Project Iraneide Silva Editorial Production Iraneide Silva Angela Botelho Graphic Design and Electronic Publishing Andréa Pinheiro Photos Marcos Antônio Soares Review Iraneide Silva Marcos Antônio Soares Mário Augusto G.Jardim Print Graphic Santa Marta Dados Internacionais de Catalogação na Publicação (CIP) Natural resources in wetlands: from Pantanal to Amazonia / Marcos Antonio Soares, Mário Augusto Gonçalves Jardim. organizers. Belém : MPEG, 2017. 288 p.: il. (Coleção Adolpho Ducke) ISBN 978-85-61377-93-9 1. Natural resources – Brazil - Pantanal. 2. Amazonia. I. Soares, Marcos Antonio. II. Jardim, Mário Augusto Gonçalves. CDD 333.72098115 © Copyright por/by Museu Paraense Emílio Goeldi, 2017. Todos os direitos reservados. A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610).
    [Show full text]
  • Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
    Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • Pleosporomycetidae, Dothideomycetes) from a Freshwater Habitat in Thailand
    Mycological Progress (2020) 19:1031–1042 https://doi.org/10.1007/s11557-020-01609-0 ORIGINAL ARTICLE Mycoenterolobium aquadictyosporium sp. nov. (Pleosporomycetidae, Dothideomycetes) from a freshwater habitat in Thailand Mark S. Calabon1,2 & Kevin D. Hyde1,3 & E. B. Gareth Jones4 & Mingkwan Doilom5,6 & Chun-Fang Liao5,6 & Saranyaphat Boonmee1,2 Received: 25 May 2020 /Revised: 25 July 2020 /Accepted: 28 July 2020 # German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract A study of freshwater fungi in Thailand led to the discovery of Mycoenterolobium aquadictyosporium sp. nov. Evidence for the novelty and placement in Mycoenterolobium is based on comparison of morphological data. The new species differs from the type species, M. platysporum, in having shorter and wider conidia, and from M. flabelliforme in having much longer and wider conidia. The hyphomycetous genus Mycoenterolobium is similar to Cancellidium but differs in the arrangement of conidial rows of cells at the attachment point to the conidiophores. The conidia of the former are made up of rows of cells, radiating in a linear pattern from a single cell attached to the conidiophore, while in Cancellidium, adherent rows of septate branches radiate from the conidiophore. Cancellidium conidia also contain branched chains of blastic monilioid cells arising from the conidia, while these are lacking in Mycoenterolobium.AtmaturityinMycoenterolobium, the two conidial lobes unite and are closely appressed. Phylogenetic analyses based on a combined LSU, SSU, ITS, TEF1-α,andRPB2 loci sequence data support the placement of Mycoenterolobium aquadictyosporium close to the family Testudinaceae within Pleosporomycetidae, Dothideomycetes. The novel species Mycoenterolobium aquadictyosporium is described and illustrated and is compared with other morphologically similar taxa.
    [Show full text]
  • Two Pleosporalean Root-Colonizing Fungi, Fuscosphaeria Hungarica Gen
    Mycological Progress (2021) 20:39–50 https://doi.org/10.1007/s11557-020-01655-8 ORIGINAL ARTICLE Two pleosporalean root-colonizing fungi, Fuscosphaeria hungarica gen. et sp. nov. and Delitschia chaetomioides, from a semiarid grassland in Hungary Alexandra Pintye1 & Dániel G. Knapp2 Received: 15 May 2020 /Revised: 14 November 2020 /Accepted: 29 November 2020 # The Author(s) 2020 Abstract In this study, we investigated two unidentified lineages of root-colonizing fungi belonging to the order Pleosporales (Dothideomycetes), which were isolated from Festuca vaginata (Poaceae), a dominant grass species in the semiarid sandy grass- lands of Hungary. For molecular phylogenetic studies, seven loci (internal transcribed spacer, partial large subunit and small subunit region of nrRNA, partial transcription elongation factor 1-α, RNA polymerase II largest subunit, RNA polymerase II second largest subunit, and ß-tubulin genes) were amplified and sequenced. Based on morphology and multilocus phylogenetic analyses, we found that one lineage belonged to Delitschia chaetomioides P. Karst. (Delitschiaceae), and the isolates of the other lineage represented a novel monotypic genus in the family Trematosphaeriaceae (suborder Massarineae). For this lineage, we proposed a new genus, Fuscosphaeria, represented by a single species, F. hungarica. In both lineages, only immature and degenerated sporocarps could be induced. These were sterile, black, globose, or depressed globose structures with numerous mycelioid appendages submerged in culture media or on the
    [Show full text]
  • An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
    Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Towards a Phylogenetic Clarification of Lophiostoma / Massarina and Morphologically Similar Genera in the Pleosporales
    Fungal Diversity Towards a phylogenetic clarification of Lophiostoma / Massarina and morphologically similar genera in the Pleosporales Zhang, Y.1, Wang, H.K.2, Fournier, J.3, Crous, P.W.4, Jeewon, R.1, Pointing, S.B.1 and Hyde, K.D.5,6* 1Division of Microbiology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China 2Biotechnology Institute, Zhejiang University, 310029, P.R. China 3Las Muros, Rimont, Ariège, F 09420, France 4Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands 5School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand 6International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, P.R. China 650034 Zhang, Y., Wang, H.K., Fournier, J., Crous, P.W., Jeewon, R., Pointing, S.B. and Hyde, K.D. (2009). Towards a phylogenetic clarification of Lophiostoma / Massarina and morphologically similar genera in the Pleosporales. Fungal Diversity 38: 225-251. Lophiostoma, Lophiotrema and Massarina are similar genera that are difficult to distinguish morphologically. In order to obtain a better understanding of these genera, lectotype material of the generic types, Lophiostoma macrostomum, Lophiotrema nucula and Massarina eburnea were examined and are re-described. The phylogeny of these genera is investigated based on the analysis of 26 Lophiostoma- and Massarina-like taxa and three genes – 18S, 28S rDNA and RPB2. These taxa formed five well-supported sub-clades in Pleosporales. This study confirms that both Lophiostoma and Massarina are polyphyletic. Massarina-like taxa can presently be differentiated into two groups – the Lentithecium group and the Massarina group.
    [Show full text]